
In this article, our interest is the quaternion matrix equation (AXB,DXE)=(C,F), and we study its minimal norm centrohermitian least squares solution and skew centrohermitian least squares solution. By applying of the real representation matrices of quaternion matrices and relative properties, we convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables, and then we obtain the solutions of corresponding problems. The final results can be expressed only by real matrices and vectors, and thus the corresponding algorithms only involves real operations and avoid complex quaternion operations. Therefore, they are portable and convenient. In the end, we give two examples to verify the effectiveness of the purposed algorithms.
Citation: Fengxia Zhang, Ying Li, Jianli Zhao. A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F)[J]. AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803
[1] | Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280 |
[2] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[3] | Kahraman Esen Özen . A general method for solving linear matrix equations of elliptic biquaternions with applications. AIMS Mathematics, 2020, 5(3): 2211-2225. doi: 10.3934/math.2020146 |
[4] | Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation k∑i=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181 |
[5] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Vasilios N. Katsikis, Spyridon D. Mourtas, Romanos D. Sahas . Zeroing neural networks for computing quaternion linear matrix equation with application to color restoration of images. AIMS Mathematics, 2023, 8(6): 14321-14339. doi: 10.3934/math.2023733 |
[6] | Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261 |
[7] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164 |
[8] | Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352 |
[9] | Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284 |
[10] | Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974 |
In this article, our interest is the quaternion matrix equation (AXB,DXE)=(C,F), and we study its minimal norm centrohermitian least squares solution and skew centrohermitian least squares solution. By applying of the real representation matrices of quaternion matrices and relative properties, we convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables, and then we obtain the solutions of corresponding problems. The final results can be expressed only by real matrices and vectors, and thus the corresponding algorithms only involves real operations and avoid complex quaternion operations. Therefore, they are portable and convenient. In the end, we give two examples to verify the effectiveness of the purposed algorithms.
In this article, we apply the following notations. R is the real number field. Rm×n is the set of all m×n real matrices, and the set Rm×1 is also denoted as Rm. Rp×qCS, Rp×qACS are the sets of all p×q real centrosymmetric and anti centrosymmetric matrices, respectively. Q is the quaternion skew-field, and Qm×n is the set of all m×n quaternion matrices. Qp×qCH, Qp×qSCH are the sets of all p×q quaternion centrohermitian and skew centrohermitian matrices, respectively. CT, ¯C, C† and R(C) denote the transpose, the conjugate, the Moore-Penrose inverse and the rank of the matrix C, respectively. Ik denotes the k×k identity matrix. Jk=(ek,ek−1,⋯,e2,e1), in which ei is the i -th column of Ik. Let A=(α1,α2,⋯,αn)∈Rm×n, vec(A)=(αT1,αT2,⋯,αTn)T is the vec operator. ‖⋅‖ stands for the matrix Frobenius norm. Let B=(bij)∈Rm×n,C∈Rp×q, and then B⊗C=(bijC)∈Rmp×nq means the Kronecker product of B and C. The rand(m,n) is a function, which can generate a m×n random matrix in MATLAB.
Matrix equations are the main content of numerical algebra. They are widely used in computational mathematics, control theory, quantum physics, quantum mechanics, color image processing and so on. With the rapid development of these fields, matrix equations are widely studied [1,2,3,4,5,6,7,8,9,10,11,12,13]. In this article, our interest is the following matrix equation
(AXB,DXE)=(C,F) | (1.1) |
in which X is an unknown matrix, and others are given matrices with proper sizes. In recent years, this matrix equation has attracted much attention for its important role in pole assignment [14], measurement feedback [15], matrix programming problem [16] and so on. The main methods of solving (1.1) include the iterative method and the direct method. In this article, we are concerned with the latter.
Some significant results of the matrix equation (1.1) have been obtained by direct method. Navarra et al. [17] derived a representation of the general solution for the complex matrix equation (1.1). Liao et al. [18] gave an analytical expression of the minimal norm least squares solution for the real matrix equation (1.1) by the the generalized singular value decomposition. Yuan et al. [19,20] considered the minimal norm Hermitian least squares solution, η -bi-Hermitian least squares solution and η -anti-bi-Hermitian least squares solution for the quaternion matrix equation (1.1) by the complex representation method. Wang et al. [21] studied the minimal norm Hermitian least squares solution of the complex matrix equation (1.1) by a product of matrices and vectors. Zhang et al. [22] studied the same problems as [21] by the real representation matrices of quaternion matrices. Şimşek et al. [23] purposed the precise solutions on the minimum residual and matrix nearness problems of the quaternion matrix equation (1.1) for centrohermitian and skew centrohermitian matrices.
In addition, centrohermitian and skew centrohermitian matrices have wide applications in linear system theory, information theory, numerical analysis and linear estimate theory [24,25]. Therefore, for the quaternion matrix equation (1.1), it is valuable of the research of centrohermitian and skew centrohermitian solutions. It is generally known that the quaternion skew-filed Q is a non-commutative but associate algebra. Thus, many conclusions on real number field are invalid on the quaternion algebra. For example, the result vec(AXB)=(BT⊗A)vec(X) does not hold on the quaternion algebra. Based on these, in the present paper, we will convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables by using the real representations of quaternion matrices and relative properties, and give the solutions of corresponding problems.
We will consider the following two problems.
Problem I. Let A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and
QCH={X|X∈Qp×qCH, min‖(AXB−C,DXE−F)‖}. |
Find XCH∈QCH such that ‖XCH‖=minX∈QCH‖X‖.
Problem II. Let A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and
QSCH={X|X∈Qp×qSCH, min‖(AXB−C,DXE−F)‖}. |
Find XSCH∈QSCH such that ‖XSCH‖=minX∈QSCH‖X‖.
The solution XCH is also named the minimal norm centrohermitian least squares solution of (1.1), and XSCH is also named the minimal norm skew centrohermitian least squares solution of (1.1).
The rest of this article is arranged as follows. In Section 2, we provide some preliminary results. In Section 3, by using the real representations of quaternion matrices and relative properties, we convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables, and then we obtain the solutions of Problems I and II. In Section 4, we first purpose two numerical algorithms for Problems I and II, respectively, and then we give two examples to verify our algorithms. Finally, in Section 5, we offer some brief comments.
A quaternion q∈Q can be written as
q=q1+q2i+q3j+q4k, |
where q1,q2,q3,q4∈R and i2=j2=k2=ijk=−1. The conjugate of q is defined as
¯q≡q1−q2i−q3j−q4k. |
Similarly, a quaternion matrix Q∈Qm×n can be written as
Q=Q1+Q2i+Q3j+Q4k, |
where Q1,Q2,Q3,Q4∈Rm×n, and its conjugate matrix is ¯Q≡Q1−Q2i−Q3j−Q4k. The real representation matrix of Q can be defined as
QR≡(Q1−Q2−Q3−Q4Q2Q1−Q4Q3Q3Q4Q1−Q2Q4−Q3Q2Q1)∈R4m×4n. |
The Frobenius norm of Q is defined as
‖Q‖≡√‖Q1‖2+‖Q2‖2+‖Q3‖2+‖Q4‖2. |
Obviously, QR has specific structure. Now, the k -th row block of QR is denoted by QRrk, and the k -th column block of QR is denoted by QRck. QR, QRrk, QRck have the properties as below.
Lemma 2.1 ([26]). Let A,B∈Qm×n,C∈Qn×t,l∈R. Then
(1) A=B⇔AR=BR⇔ARrk=BRrk⇔ARck=BRck,
(2) (A+B)Rrk=ARrk+BRrk,(A+B)Rck=ARck+BRck,
(3) (lA)Rrk=lARrk,(lA)Rck=lARck,
(4) (AC)Rrk=ARrkCR,(AC)Rck=ARCRck,
(5) ‖A‖=‖ARrk‖=‖ARck‖,
where k=1,2,3,4.
For simplicity, we use the first column block of QR to solve Problems I and II, and which is denoted as QRc, i.e.,
QRc=(Q1Q2Q3Q4). |
The following lemmas are useful for solving Problems I and II.
Lemma 2.2 ([27]). Let X∈Qp×q. Then vec(XR)=Fvec(XRc), where
F=(diag(I4p,⋯,I4p)diag(Qp,⋯,Qp)diag(Rp,⋯,Rp)diag(Sp,⋯,Sp))∈R16pq×4pq, |
and
Qp=(0−Ip00Ip000000Ip00−Ip0),Rp=(00−Ip0000−IpIp0000Ip00),Sp=(000−Ip00Ip00−Ip00Ip000). |
Lemma 2.3. Let X∈Rp×q. Then vec(XRc)=M(vec(X1)vec(X2)vec(X3)vec(X4)), where
M=(diag(I1,I1,I1,I1)diag(I2,I2,I2,I2)⋮diag(Iq,Iq,Iq,Iq))∈R4pq×4pq, |
and I1=(Ip,0,⋯,0),I2=(0,Ip,⋯,0),⋯,Iq=(0,0,⋯,Ip)∈Rp×pq.
For a real matrix X=(xij)∈Rp×q, if xij=x(p−i+1)(q−j+1), then X is called centrosymmetric matrix. If xij=−x(p−i+1)(q−j+1), then X is called anti centrosymmetric matrix. They can also be described equivalently as
X∈Rp×qCS⟺X=JpXJq,X∈Rp×qACS⟺X=−JpXJq. |
Similarly, for a quaternion matrix X=(xij)∈Qp×q, if xij=¯x(p−i+1)(q−j+1), then X is called centrohermitian matrix. If xij=−¯x(p−i+1)(q−j+1), then X is called skew centrohermitian matrix. And it is not difficult to get the following conclusions:
X∈Qp×qCH⟺X=Jp¯XJq,X∈Qp×qSCH⟺X=−Jp¯XJq. |
Furthermore, we can get the following Lemma 2.4.
Lemma 2.4. Let X=X1+X2i+X3j+X4k∈Qp×q. Then
(1) X∈Qp×qCH⟺X1∈Rp×qCS,X2,X3,X4∈Rp×qACS,
(2) X∈Qp×qSCH⟺X1∈Rp×qACS,X2,X3,X4∈Rp×qCS.
Proof. By the definition of centrohermitian matrix, we have
X∈Qp×qCH⟺X=Jp¯XJq⟺X1+X2i+X3j+X4k=Jp(X1−X2i−X3j−X4k)Jq⟺X1=JpX1Jq,X2=−JpX2Jq,X3=−JpX3Jq,X4=−JpX4Jq⟺X1∈Rp×qCS,X2,X3,X4∈Rp×qACS. |
Thus (1) holds. Similarly, we can show that (2) holds.
Lemma 2.5. Suppose X=(xij)∈Rp×q.
(1) If p=2m+1,q=2n+1, let
αi=(x1i,x2i,⋯,x(m+1)i),i=1,2,⋯,n+1,αj=(x1j,x2j,⋯,xmj),j=n+2,⋯,q, |
and vecCSoo(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qCS⟺vec(X)=GCSoovecCSoo(X), |
where
GCSoo=(Im+10⋯0000⋯0000⋯0000⋯0Jm0Im+1⋯0000⋯0000⋯0000⋯Jm0⋮⋮⋮⋮⋮⋮⋮⋮00⋯Im+1000⋯0000⋯000Jm⋯0000⋯0Im00⋯0000⋯0010⋯0000⋯0Jm00⋯0000⋯000Im⋯0000⋯Jm+1000⋯00⋮⋮⋮⋮⋮⋮⋮⋮00⋯0000⋯0ImJm+10⋯0000⋯00)∈Rpq×(2mn+m+n+1). |
(2) If p=2m+1,q=2n, let
αi=(x1i,x2i,⋯,x(m+1)i),i=1,2,⋯,n,αj=(x1j,x2j,⋯,xmj),i=n+1,⋯,q, |
and vecCSoe(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qCS⟺vec(X)=GCSoevecCSoe(X), |
where
GCSoe=(Im+10⋯00⋯0000⋯00⋯0Jm0Im+1⋯00⋯0000⋯00⋯Jm0⋮⋮⋮⋮⋮⋮00⋯Im+10⋯0000⋯0Jm⋯0000⋯0Im⋯0000⋯Jm+10⋯00⋮⋮⋮⋮⋮⋮00⋯00⋯0ImJm+10⋯00⋯00)∈Rpq×(2mn+n). |
(3) If p=2m,q=2n+1, let
αi=(x1i,x2i,⋯,xmi),i=1,2,⋯,q, |
and vecCSeo(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qCS⟺vec(X)=GCSeovecCSeo(X), |
where
GCSeo=(Im0⋯000⋯0000⋯000⋯0Jm0Im⋯000⋯0000⋯000⋯Jm0⋮⋮⋮⋮⋮⋮⋮00⋯Im00⋯0000⋯00Jm⋯0000⋯0Im0⋯0000⋯0Jm0⋯0000⋯00Im⋯0000⋯Jm00⋯00⋮⋮⋮⋮⋮⋮⋮00⋯000⋯0ImJm0⋯000⋯00)∈Rpq×(2mn+m). |
(4) If p=2m,q=2n, let
αi=(x1i,x2i,⋯,xmi),i=1,2,⋯,q, |
and vecee(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qCS⟺vec(X)=GCSeevecCSee(X), |
where
GCSee=(Im0⋯00⋯0000⋯00⋯0Jm0Im⋯00⋯0000⋯00⋯Jm0⋮⋮⋮⋮⋮⋮00⋯Im0⋯0000⋯0Jm⋯0000⋯0Im⋯0000⋯Jm0⋯00⋮⋮⋮⋮⋮⋮00⋯00⋯0ImJm0⋯00⋯00)∈Rpq×2mn. |
Lemma 2.6. Suppose X=(xij)∈Rp×q.
(1) If p=2m+1,q=2n+1, let
αi=(x1i,x2i,⋯,x(m+1)i),i=1,2,⋯,n,αj=(x1j,x2j,⋯,xmj),j=n+1,⋯,q, |
and vecACSoo(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qACS⟺vec(X)=GACSoovecACSoo(X), |
where
GACSoo=(Im+10⋯000⋯0000⋯000⋯0−Jm0Im+1⋯000⋯0000⋯000⋯−Jm0⋮⋮⋮⋮⋮⋮⋮00⋯Im+100⋯0000⋯00−Jm⋯0000⋯0Im0⋯0000⋯000⋯0000⋯0−Jm0⋯0000⋯00Im⋯0000⋯−Jm+100⋯00⋮⋮⋮⋮⋮⋮⋮00⋯000⋯0Im−Jm+10⋯000⋯00)∈Rpq×(2mn+m+n). |
(2) If p=2m+1,q=2n, let
αi=(x1i,x2i,⋯,x(m+1)i),i=1,2,⋯,n,αj=(x1j,x2j,⋯,xmj),j=n+1,⋯,q, |
and vecACSoe(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qACS⟺vec(X)=GACSoevecACSoe(X), |
where
GACSoe=(Im+10⋯00⋯0000⋯00⋯0−Jm0Im+1⋯00⋯0000⋯00⋯−Jm0⋮⋮⋮⋮⋮⋮00⋯Im+10⋯0000⋯0−Jm⋯0000⋯0Im⋯0000⋯−Jm+10⋯00⋮⋮⋮⋮⋮⋮00⋯00⋯0Im−Jm+10⋯00⋯00)∈Rpq×(2mn+n). |
(3) If p=2m,q=2n+1, let
αi=(x1i,x2i,⋯,xmi),i=1,2,⋯,q, |
and vecACSeo(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qACS⟺vec(X)=GACSeovecACSeo(X), |
where
GACSeo=(Im0⋯000⋯0000⋯000⋯0−Jm0Im⋯000⋯0000⋯000⋯−Jm0⋮⋮⋮⋮⋮⋮⋮00⋯Im00⋯0000⋯00−Jm⋯0000⋯0Im0⋯0000⋯0−Jm0⋯0000⋯00Im⋯0000⋯−Jm00⋯00⋮⋮⋮⋮⋮⋮⋮00⋯000⋯0Im−Jm0⋯000⋯00)∈Rpq×(2mn+m). |
(4) If p=2m,q=2n, let
αi=(x1i,x2i,⋯,xmi),i=1,2,⋯,q, |
and vecACSee(X)=(α1,α2,⋯,αq)T, then
X∈Rp×qACS⟺vec(X)=GACSeevecACSee(X), |
where
GACSee=(Im0⋯00⋯0000⋯00⋯0−Jm0Im⋯00⋯0000⋯00⋯−Jm0⋮⋮⋮⋮⋮⋮00⋯Im0⋯0000⋯0−Jm⋯0000⋯0Im⋯0000⋯−Jm0⋯00⋮⋮⋮⋮⋮⋮00⋯00⋯0Im−Jm0⋯00⋯00)∈Rpq×2mn. |
Lemma 2.7. Let X=X1+X2i+X3j+X4k∈Qp×q. Then
(1) X∈Qp×qCH⟺(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4)),
(2) X∈Qp×qSCH⟺(vec(X1)vec(X2)vec(X3)vec(X4))=GSCHμν(vecACSμν(X1)vecCSμν(X2)vecCSμν(X3)vecCSμν(X4)),
where
GCHμν=(GCSμν0000GACSμν0000GACSμν0000GACSμν),GSCHμν=(GACSμν0000GCSμν0000GCSμν0000GCSμν). |
Here, p,q are odd numbers, and then μ=ν=o. p is odd number and q is even number, and then μ=o,ν=e. p is even number and q is odd number, and then μ=e,ν=o. p,q are even numbers, and then μ=ν=e.
Lemmas 2.3, 2.5 and 2.6 can be obtained by direct calculation. According to Lemmas 2.4–2.6, we can easily get Lemma 2.7, so we omit the details.
In this section, we first convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables by applying the real representations of quaternion matrices and the relative properties, and then obtain the solutions of Problems I and II.
Theorem 3.1. Suppose A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and X=X1+X2i+X3j+X4k∈Qp×qCH, and denote K=((BRc)T⊗AR(ERc)T⊗DR).Then the set QCH in Problem I can be represented as
QCH={X|(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(KFMGCHμν)†(vec(CRc)vec(FRc))+GCHμν[Ir−(KFMGCHμν)†(KFMGCHμν)]y}, | (3.1) |
where y∈Rr is an arbitrary vector. The unique solution XCH=X1+X2i+X3j+X4k∈QCH of Problem I satisfies
(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(KFMGCHμν)†(vec(CRc)vec(FRc)). | (3.2) |
Here, if p=2m+1,q=2n+1, then μ=ν=o and r=8mn+4m+4n+1. If p=2m+1, q=2n, then μ=o,ν=e and r=8mn+4n. If p=2m,q=2n+1, then μ=e,ν=o and r=8mn+4m. If p=2m,q=2n, then μ=ν=e and r=8mn.
Proof. Because of
‖(AXB−C,DXE−F)‖2=‖AXB−C‖2+‖DXE−F‖2, |
we get
min‖(AXB−C,DXE−F)‖⟺min‖AXB−C‖2+‖DXE−F‖2. |
Therefore, the set QCH of Problem I can also be represented as
QCH={X|X∈Qp×qCH,‖AXB−C‖2+‖DXE−F‖2=min}. |
According to Lemmas 2.1–2.3, we obtain
‖AXB−C‖2+‖DXE−F‖2=‖ARXRBRc−CRc‖2+‖DRXRERc−FRc‖2=‖((BRc)T⊗AR)vec(XR)−vec(CRc)‖2+‖((ERc)T⊗DR)vec(XR)−vec(FRc)‖2=‖((BRc)T⊗AR(ERc)T⊗DR)vec(XR)−(vec(CRc)vec(FRc))‖2=‖KFvec(XRc)−(vec(CRc)vec(FRc))‖2=‖KFM(vec(X1)vec(X2)vec(X3)vec(X4))−(vec(CRc)vec(FRc))‖2. |
For X=X1+X2i+X3j+X4k∈Qp×qCH, according to Lemma 2.7, we get
(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4)). |
Consequently
‖AXB−C‖2+‖DXE−F‖2=‖KFMGCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))−(vec(CRc)vec(FRc))‖2. |
For the real matrix equation
KFMGCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))=(vec(CRc)vec(FRc)), |
its least squares solutions can be represented as
(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))=(KFMGCHμν)†(vec(CRc)vec(FRc))+[Ir−(KFMGCHμν)†(KFMGCHμν)]y, |
where y∈Rr is an arbitrary vector. Then
(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(KFMGCHμν)†(vec(CRc)vec(FRc))+GCHμν[Ir−(KFMGCHμν)†(KFMGCHμν)]y. |
Here, if p=2m+1,q=2n+1, then μ=ν=o and r=8mn+4m+4n+1. If p=2m+1, q=2n, then μ=o,ν=e and r=8mn+4n. If p=2m,q=2n+1, then μ=e,ν=o and r=8mn+4m. If p=2m,q=2n, then μ=ν=e and r=8mn.
Thus, we obtain the set QCH in (3.1), and the unique solution XCH=X1+X2i+X3j+X4k∈QCH of Problem I satisfies (3.2).
By Theorem 3.1, we can get the condition that there is a centrohermitian solution and the centrohermitian solution set of the quaternion matrix equation (1.1).
Corollary 3.2. Suppose A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and X=X1+X2i+X3j+X4k∈Qp×qCH, and denote K=((BRc)T⊗AR(ERc)T⊗DR).Then the quaternion matrix equation (1.1) has a centrohermitian solution X∈Qp×qCH if and only if
[I4m(s+t)−KFMGCHμν(KFMGCHμν)†](vec(CRc)vec(FRc))=0. | (3.3) |
When (1.1) has a centrohermitian solution, the centrohermitian solution set of (1.1) is
SCH={X|(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(KFMGCHμν)†(vec(CRc)vec(FRc))+GCHμν[Ir−(KFMGCHμν)†(KFMGCHμν)]y}, | (3.4) |
where y∈Rr is an arbitrary vector. In addition, if (1.1) has a centrohermitian solution, then (1.1) has a unique centrohermitian solution X∈SCH if and only if
R(KFMGCHμν)={8mn+4m+4n+1,if p=2m+1,q=2n+1,8mn+4n,if p=2m+1,q=2n,8mn+4m,if p=2m,q=2n+1,8mn,if p=2m,q=2n. |
And the unique centrohermitian solution X=X1+X2i+X3j+X4k∈SCH satisfies
(vec(X1)vec(X2)vec(X3)vec(X4))=GCHμν(KFMGCHμν)†(vec(CRc)vec(FRc)). | (3.5) |
Here, if p=2m+1,q=2n+1, then μ=ν=o and r=8mn+4m+4n+1. If p=2m+1, q=2n, then μ=o,ν=e and r=8mn+4n. If p=2m,q=2n+1, then μ=e,ν=o and r=8mn+4m. If p=2m,q=2n, then μ=ν=e and r=8mn.
Proof. The quaternion matrix equation (1.1) has a centrohermitian solution X if and only if X satisfies (AXB,DXE)=(C,F). Notice that
(AXB,DXE)=(C,F)⟺(AXB−C,DXE−F)=0⟺‖AXB−C,DXE−F‖=0⟺‖AXB−C‖2+‖DXE−F‖2=0. |
In addition,
‖AXB−C‖2+‖DXE−F‖2=‖KFMGCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))−(vec(CRc)vec(FRc))‖2=‖KFMGCHμν(KFMGCHμν)†(KFMGCHμν)(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))−(vec(CRc)vec(FRc))‖2=‖KFMGCHμν(KFMGCHμν)†(vec(CRc)vec(FRc))−(vec(CRc)vec(FRc))‖2=‖[I4m(s+t)−KFMGCHμν(KFMGCHμν)†](vec(CRc)vec(FRc))‖2. |
So, (1.1) has a centrohermitian solution if and only if
[I4m(s+t)−KFMGCHμν(KFMGCHμν)†](vec(CRc)vec(FRc))=0. |
Thus (3.3) holds. When (1.1) has a centrohermitian solution, the centrohermitian solution of (1.1) is the general solution of the following real matrix equation
KFMGCHμν(vecCSμν(X1)vecACSμν(X2)vecACSμν(X3)vecACSμν(X4))=(vec(CRc)vec(FRc)). |
So we obtain the formula in (3.4). In addition, (1.1) has a unique centrohermitian solution if and only if
R(KFMGCHμν)={8mn+4m+4n+1,if p=2m+1,q=2n+1,8mn+4n,if p=2m+1,q=2n,8mn+4m,if p=2m,q=2n+1,8mn,if p=2m,q=2n. |
And the unique centrohermitian solution X=X1+X2i+X3j+X4k∈SCH satisfies (3.5).
The method of solving Problem II is similar to that of Problem I, so we only give the conclusions and omit the details.
Theorem 3.3. Suppose A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and X=X1+X2i+X3j+X4k∈Qp×qSCH, and denote K=((BRc)T⊗AR(ERc)T⊗DR).Then the set QSCH in Problem II can be represented as
QSCH={X|(vec(X1)vec(X2)vec(X3)vec(X4))=GSCHμν(KFMGSCHμν)†(vec(CRc)vec(FRc))+GSCHμν[Ir−(KFMGSCHμν)†(KFMGSCHμν)]y}, | (3.6) |
where y∈Rr is an arbitrary vector. The unique solution XSCH=X1+X2i+X3j+X4k∈QSCH of Problem II satisfies
(vec(X1)vec(X2)vec(X3)vec(X4))=GSCHμν(KFMGSCHμν)†(vec(CRc)vec(FRc)). | (3.7) |
Here, if p=2m+1,q=2n+1, then μ=ν=o and r=8mn+4m+4n+3. If p=2m+1, q=2n, then μ=o,ν=e and r=8mn+4n. If p=2m,q=2n+1, then μ=e,ν=o and r=8mn+4m. If p=2m,q=2n, then μ=ν=e and r=8mn.
Corollary 3.4. Suppose A∈Qm×p, B∈Qq×s,C∈Qm×s,D∈Qm×p, E∈Qq×t,F∈Qm×t and X=X1+X2i+X3j+X4k∈Qp×qSCH, and denote K=((BRc)T⊗AR(ERc)T⊗DR).Then (1.1) has a skew centrohermitian solution X∈Qp×qSCH if and only if
[I4m(s+t)−KFMGSCHμν(KFMGSCHμν)†](vec(CRc)vec(FRc))=0. | (3.8) |
When (1.1) has a skew centrohermitian solution, the skew centrohermitian solution set of (1.1) is
SSCH={X|(vec(X1)vec(X2)vec(X3)vec(X4))=GSCHμν(KFMGSCHμν)†(vec(CRc)vec(FRc))+GSCHμν[Ir−(KFMGSCHμν)†(KFMGSCHμν)]y}, | (3.9) |
where y∈Rr is arbitrary vector. In addition, if (1.1) has a skew centrohermitian solution, then (1.1) has a unique skew centrohermitian solution X∈SSCH if and only if
R(KFMGSCHμν)={8mn+4m+4n+3,if p=2m+1,q=2n+1,8mn+4n,if p=2m+1,q=2n,8mn+4m,if p=2m,q=2n+1,8mn,if p=2m,q=2n. |
And the unique skew centrohermitian solution X=X1+X2i+X3j+X4k∈SSCH satisfies
(vec(X1)vec(X2)vec(X3)vec(X4))=GSCHμν(KFMGSCHμν)†(vec(CRc)vec(FRc)). | (3.10) |
Here, if p=2m+1,q=2n+1, then μ=ν=o and r=8mn+4m+4n+3. If p=2m+1, q=2n, then μ=o,ν=e and r=8mn+4n. If p=2m,q=2n+1, then μ=e,ν=o and r=8mn+4m. If p=2m,q=2n, then μ=ν=e and r=8mn.
Remark 1. It is generally known that quaternion operations are more complex than real operations. In the present paper, we convert the quaternion least squares problems into the corresponding real least squares problems. The final results are expressed only by real matrices and real vectors, and thus they are portable and convenient.
Remark 2. In [23], the authors studied the matrix nearness problem of the quaternion matrix equation (1.1) by the complex representation matrices of quaternion matrices. In fact, if X0=0 of Problem 2 in [23], then the solution of Problem 2 is also the solution of Problem I in this paper. We will compare the accuracy of the solution of Problem I computed by these two methods in Section 4.
In this section, we first purpose two numerical algorithms for Problems I and II according to the results in Sections 3, and then give two examples to verify our purposed algorithms.
Algorithm 4.1. (For Problem I)
(1) Input A1,A2,A3,A4∈Rm×p, B1,B2,B3,B4∈Rq×s, C1,C2,C3,C4∈Rm×s, D1,D2,D3,D4∈Rm×p, E1,E2,E3,E4∈Rq×t, F1,F2,F3,F4∈Rm×t, and F,M, GCSμν, GACSμν.
(2) Form AR, DR, BRc, ERc, CRc, FRc. Then we calculate GCHμν and K according to Lemma 2.7 and Theorem 3.1, respectively.
(3) Compute the unique solution XCH of Problem I on the base of (3.2).
Algorithm 4.2. (For Problem II)
(1) Input A1,A2,A3,A4∈Rm×p, B1,B2,B3,B4∈Rq×s, C1,C2,C3,C4∈Rm×s, D1,D2,D3,D4∈Rm×p, E1,E2,E3,E4∈Rq×t, F1,F2,F3,F4∈Rm×t, and F,M, GCSμν, GACSμν.
(2) Form AR, DR, BRc, ERc, CRc, FRc. Then we calculate GSCHμν and K according to Lemma 2.7 and Theorem 3.3, respectively.
(3) Compute the unique solution XSCH of Problem II on the base of (3.7).
Now, in order to verify the effectiveness of Algorithms 4.1–4.2, we give two examples. In the first example, we compute the errors between the actual solutions and the solutions obtained by purposed algorithms for Problems I and II. In the second example, we compare the error of the solution of Problem I computed by Algorithm 4.1 and the algorithm in [23].
Example 4.1. Let the quaternion matrix equation (AXB,DXE)=(C,F), where
A=A1+A2i+A3j+A4k, B=B1+B2i+B3j+B4k, |
D=D1+D2i+D3j+D4k, E=E1+E2i+E3j+E4k, |
and
Ai=rand(m,p),Bi=rand(q,s),Di=rand(m,p),Ei=rand(q,t),i=1,2,3,4. |
(1) Let XCH=X1+X2i+X3j+X4k∈Qp×q, in which X1 is a real centrosymmetric matrix, and X2,X3,X4 are real anti centrosymmetric matrices. Thus XCH∈Qp×qCH. Let
C=AXB,F=DXE. |
Therefore (1.1) has a unique centrohermitian solution XCH, and XCH is also the unique solution of Problem I. According to Algorithm 4.1, we compute X∗CH. Let m=k,s=t=2k. It is noticed that the centrosymmetric matrix and anti centrosymmetric matrix have different forms with the change of matrix order. The order of XCH can be divided into the following four cases:
(a)p=2k+1,q=2k+1, (b)p=2k+1,q=2k,(c)p=2k,q=2k+1,(d)p=2k,q=2k. |
Let k=1:10 and the error ε=log10(‖X∗CH−XCH‖). For the above four cases, the errors are shown in Figure 1.
(2) Let XSCH=X1+X2i+X3j+X4k∈Qp×q, in which X1 is a real anti centrosymmetric matrix, and X2,X3,X4 are real centrosymmetric matrices. Thus, XSCH∈Qp×qSCH. Let
C=AXB,F=DXE. |
Therefore (1.1) has a unique skew centrohermitian solution XSCH, and XSCH is the unique solution of Problem II. According to Algorithm 4.2, we compute the solution X∗SCH. Let m=k,s=t=2k, and the values of p,q has the following four cases:
(a)p=2k+1,q=2k+1, (b)p=2k+1,q=2k,(c)p=2k,q=2k+1,(d)p=2k,q=2k. |
Let k=1:10 and the error ε=log10(‖X∗SCH−XSCH‖). The errors are shown in Figure 2.
From Figure 1, we know that the errors ε are no more than −11.8, which illustrate Algorithm 4.1 is effective. For the same number k, when p=2k+1,q=2k+1, the order of quaternion matrix is largest. So the corresponding norm is largest. When p=2k,q=2k, the order of quaternion matrix is smallest. Thus the corresponding norm is smallest. Figure 1 is consistent with theoretical analysis. Figure 2 also reflects Algorithm 4.2 is effective.
Example 4.2. Consider the solution of Problem I, and the orders of the matrices are the same as (1) in Example 4.1. We compute the errors by Algorithm 4.1 and the algorithm of [23]. Let m=k,s=t=2k,p=2k,q=2k+1 and the error ε=log10(‖X∗CH−XCH‖). The errors are shown in Figure 3.
From Figure 3, we can know that the errors obtained by Algorithm 4.1 are smaller than those obtained by the algorithm in [23], thus our purposed algorithms are more effective.
In this article, we study the minimal norm centrohermitian least squares solution and skew centrohermitian least squares solution of quaternion matrix equation (AXB,DXE)=(C,F) by using of the real representation matrices of quaternion matrices, and give the corresponding algorithms. This method is effective and convenient to analyze the problems of solution with special structures of quaternion matrix equation.
The authors would like to thank the handling editor and three anonymous referees for their valuable comments and suggestions. The study is supported by the Natural Science Foundation of Shandong Province of China (No. ZR2020MA053), and the Scientifc Research Foundation of Liaocheng University (No. 318011921).
The authors declare that there is no conflict of interest.
[1] |
M. Hajarian, Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 39 (2015), 6073–6084. https://doi.org/10.1016/j.apm.2015.01.026 doi: 10.1016/j.apm.2015.01.026
![]() |
[2] |
B. H. Huang, C. F. Ma, On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 74 (2017), 532–555. https://doi.org/10.1016/j.camwa.2017.04.035 doi: 10.1016/j.camwa.2017.04.035
![]() |
[3] |
L. S. Liu, Q. W. Wang, J. F. Chen, Y. Z. Xie, An exact solution to a quaternion matrix equation with an application, Symmetry, 14 (2022), 375. https://doi.org/10.3390/sym14020375 doi: 10.3390/sym14020375
![]() |
[4] |
X. Liu, Q. W. Wang, The least squares Hermitian (anti)reflexive solution with the least norm to matrix equation AXB=C, Math. Probl. Eng., 2017 (2017), 9756035. https://doi.org/10.1155/2017/9756035 doi: 10.1155/2017/9756035
![]() |
[5] |
M. S. Mehany, Q. W. Wang, Three symmetrical systems of coupled Sylvester-like quaternion matrix equations, Symmetry, 14 (2022), 550. https://doi.org/10.3390/sym14030550 doi: 10.3390/sym14030550
![]() |
[6] |
Y. X. Peng, X. Y. Hu, L. Zhang, An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C, Appl. Math. Comput., 160 (2005), 763–777. https://doi.org/10.1016/j.amc.2003.11.030 doi: 10.1016/j.amc.2003.11.030
![]() |
[7] |
M. A. Ramadan, T. S. El-danaf, N. M. El-shazly, Iterative positive definite solutions of the two nonlinear matrix equations X±ATX−2A=I, Appl. Math. Comput., 164 (2005), 189–200. https://doi.org/10.1016/j.amc.2004.04.080 doi: 10.1016/j.amc.2004.04.080
![]() |
[8] |
Q. W. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49 (2005), 641–650. https://doi.org/10.1016/j.camwa.2005.01.014 doi: 10.1016/j.camwa.2005.01.014
![]() |
[9] |
Q. W. Wang, C. K. Li, Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430 (2009), 1626–1640. https://doi.org/10.1016/j.laa.2008.05.031 doi: 10.1016/j.laa.2008.05.031
![]() |
[10] |
F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, Special least squares solutions of the quaternion matrix equation AX=B with applications, Appl. Math. Comput., 270 (2015), 425–433. http://dx.doi.org/10.1016/j.amc.2015.08.046 doi: 10.1016/j.amc.2015.08.046
![]() |
[11] |
F. X. Zhang, W. S. Mu, Y. Li, J. L. Zhao, Special least squares solutions of the quaternion matrix equation AXB+CXD=E, Comput. Math. Appl., 72 (2016), 1426–1435. http://dx.doi.org/10.1016/j.camwa.2016.07.019 doi: 10.1016/j.camwa.2016.07.019
![]() |
[12] |
Z. G. Jia, M. K. Ng, Structure preserving quaternion generalized minimal residual method, SIAM J. Matrix Anal. A., 42 (2021), 616–634. https://doi.org/10.1137/20M133751X doi: 10.1137/20M133751X
![]() |
[13] |
R. R. Ma, Z. G. Jia, Z. J. Bai, A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems, Comput. Math. Appl., 75 (2018), 809–820. https://doi.org/10.1016/j.camwa.2017.10.009 doi: 10.1016/j.camwa.2017.10.009
![]() |
[14] |
B. Zhou, Solutions to linear bimatrix equations with applications to pole assignment of complex-valued linear systems, J. Franklin I., 355 (2018), 7246–7280. https://doi.org/10.1016/j.jfranklin.2018.07.015 doi: 10.1016/j.jfranklin.2018.07.015
![]() |
[15] |
N. Otsuka, Disturbance decoupling via measurement feedback for switched linear systems, Syst. Control Lett., 82 (2015), 99–107. https://doi.org/10.1016/j.sysconle.2015.05.009 doi: 10.1016/j.sysconle.2015.05.009
![]() |
[16] |
S. K. Mitra, A pair of simultaneous linear matrix equations A1XB1=C1, A2XB2=C2 and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107–123. https://doi.org/10.1016/0024-3795(90)90377-O doi: 10.1016/0024-3795(90)90377-O
![]() |
[17] |
A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations A1XB1=C1 and A2XB2=C2 with applications, Comput. Math. Appl., 41 (2001), 929–935. https://doi.org/10.1016/S0898-1221(00)00330-8 doi: 10.1016/S0898-1221(00)00330-8
![]() |
[18] |
A. P. Liao, Y. Lei, Least-squares solution with the minimum-norm for the matrix equation (AXB,GXH)=(C,D), Comput. Math. Appl., 50 (2005), 539–549. https://doi.org/10.1016/j.camwa.2005.02.011 doi: 10.1016/j.camwa.2005.02.011
![]() |
[19] |
S. F. Yuan, A. P. Liao, Y. Lei, Least squares Hermitian solution of the matrix equation (AXB,CXD)=(E,F) with the least norm over the skew field of quaternions, Math. Comput. Model., 48 (2008), 91–100. https://doi.org/10.1016/j.mcm.2007.08.009 doi: 10.1016/j.mcm.2007.08.009
![]() |
[20] |
S. F. Yuan, A. P. Liao, P. Wang, Least squares η -bi-Hermitian problems of the quaternion matrix equation (AXB,CXD)=(E,F), Linear Multilinear A., 63 (2015), 1849–1863. https://doi.org/10.1080/03081087.2014.977279 doi: 10.1080/03081087.2014.977279
![]() |
[21] |
P. Wang, S. F. Yuan, X. Y. Xie, Least-squres Hermitian problem of complex matrix equation (AXB,CXD)=(E,F), J. Inequal. Appl., 2016 (2016), 296. https://doi.org/10.1186/s13660-016-1231-9 doi: 10.1186/s13660-016-1231-9
![]() |
[22] |
F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient method for special least squares solution of the complex matrix equation (AXB,CXD)=(E,F), Comput. Math. Appl., 76 (2018), 2001–2010. https://doi.org/10.1016/j.camwa.2018.07.044 doi: 10.1016/j.camwa.2018.07.044
![]() |
[23] |
S. Şimşek, M. Sarduvan, H. Özdemir, Centrohermitian and skew-centrohermitian solutions to the minimum residualand matrix nearness problems of the quaternion matrix equation (AXB,DXE)=(C,F), Adv. Appl. Clifford Algebras, 27 (2017), 2201–2214. https://doi.org/10.1007/s00006-016-0688-4 doi: 10.1007/s00006-016-0688-4
![]() |
[24] | G. H. Golub, C. F. Van Loan, Matrix computations, 4 Eds., Baltimore: The Johns Hopkins University Press, 2013. |
[25] |
F. Z. Zhou, X. Y. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices, Linear Algebra Appl., 364 (2003), 147–160. https://doi.org/10.1016/S0024-3795(02)00550-5 doi: 10.1016/S0024-3795(02)00550-5
![]() |
[26] |
F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient real representation method for least squares problem of the quaternion constrained matrix equation AXB+CYD=E, Int. J. Comput. Math., 98 (2021), 1408–1419. https://doi.org/10.1080/00207160.2020.1821001 doi: 10.1080/00207160.2020.1821001
![]() |
[27] |
M. H. Wang, M. S. Wei, Y. Feng, An iterative algorithm for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., 179 (2008), 203–207. https://doi.org/10.1016/j.cpc.2008.02.016 doi: 10.1016/j.cpc.2008.02.016
![]() |
1. | Fengxia Zhang, Ying Li, Jianli Zhao, The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation, 2022, 8, 2473-6988, 5200, 10.3934/math.2023261 | |
2. | Xueling Fan, Ying Li, Jianhua Sun, Jianli Zhao, Solving quaternion linear system AXB=E based on semi-tensor product of quaternion matrices, 2023, 17, 2662-2033, 10.1007/s43037-023-00251-8 | |
3. | Yang Zhang, Xiaoda Zhang, Ali Jaballah, Research on Least‐Square η‐Hermitian Solutions of Split Quaternion Matrix Equations, 2024, 2024, 2314-4629, 10.1155/2024/9713495 | |
4. | Sujia Han, Caiqin Song, Three minimal norm Hermitian solutions of the reduced biquaternion matrix equation EM+M˜F=GEM+˜MF=G, 2024, 0170-4214, 10.1002/mma.10424 |