In this article, our interest is the quaternion matrix equation $ (AXB, DXE) = (C, F) $, and we study its minimal norm centrohermitian least squares solution and skew centrohermitian least squares solution. By applying of the real representation matrices of quaternion matrices and relative properties, we convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables, and then we obtain the solutions of corresponding problems. The final results can be expressed only by real matrices and vectors, and thus the corresponding algorithms only involves real operations and avoid complex quaternion operations. Therefore, they are portable and convenient. In the end, we give two examples to verify the effectiveness of the purposed algorithms.
Citation: Fengxia Zhang, Ying Li, Jianli Zhao. A real representation method for special least squares solutions of the quaternion matrix equation $ (AXB, DXE) = (C, F) $[J]. AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803
In this article, our interest is the quaternion matrix equation $ (AXB, DXE) = (C, F) $, and we study its minimal norm centrohermitian least squares solution and skew centrohermitian least squares solution. By applying of the real representation matrices of quaternion matrices and relative properties, we convert the quaternion least squares problems with constrained variables into the corresponding real least squares problems with free variables, and then we obtain the solutions of corresponding problems. The final results can be expressed only by real matrices and vectors, and thus the corresponding algorithms only involves real operations and avoid complex quaternion operations. Therefore, they are portable and convenient. In the end, we give two examples to verify the effectiveness of the purposed algorithms.
[1] | M. Hajarian, Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 39 (2015), 6073–6084. https://doi.org/10.1016/j.apm.2015.01.026 doi: 10.1016/j.apm.2015.01.026 |
[2] | B. H. Huang, C. F. Ma, On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 74 (2017), 532–555. https://doi.org/10.1016/j.camwa.2017.04.035 doi: 10.1016/j.camwa.2017.04.035 |
[3] | L. S. Liu, Q. W. Wang, J. F. Chen, Y. Z. Xie, An exact solution to a quaternion matrix equation with an application, Symmetry, 14 (2022), 375. https://doi.org/10.3390/sym14020375 doi: 10.3390/sym14020375 |
[4] | X. Liu, Q. W. Wang, The least squares Hermitian (anti)reflexive solution with the least norm to matrix equation $ AXB = C $, Math. Probl. Eng., 2017 (2017), 9756035. https://doi.org/10.1155/2017/9756035 doi: 10.1155/2017/9756035 |
[5] | M. S. Mehany, Q. W. Wang, Three symmetrical systems of coupled Sylvester-like quaternion matrix equations, Symmetry, 14 (2022), 550. https://doi.org/10.3390/sym14030550 doi: 10.3390/sym14030550 |
[6] | Y. X. Peng, X. Y. Hu, L. Zhang, An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation $ AXB = C $, Appl. Math. Comput., 160 (2005), 763–777. https://doi.org/10.1016/j.amc.2003.11.030 doi: 10.1016/j.amc.2003.11.030 |
[7] | M. A. Ramadan, T. S. El-danaf, N. M. El-shazly, Iterative positive definite solutions of the two nonlinear matrix equations $ X\pm A^TX^{-2}A = I $, Appl. Math. Comput., 164 (2005), 189–200. https://doi.org/10.1016/j.amc.2004.04.080 doi: 10.1016/j.amc.2004.04.080 |
[8] | Q. W. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49 (2005), 641–650. https://doi.org/10.1016/j.camwa.2005.01.014 doi: 10.1016/j.camwa.2005.01.014 |
[9] | Q. W. Wang, C. K. Li, Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430 (2009), 1626–1640. https://doi.org/10.1016/j.laa.2008.05.031 doi: 10.1016/j.laa.2008.05.031 |
[10] | F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, Special least squares solutions of the quaternion matrix equation $ AX = B $ with applications, Appl. Math. Comput., 270 (2015), 425–433. http://dx.doi.org/10.1016/j.amc.2015.08.046 doi: 10.1016/j.amc.2015.08.046 |
[11] | F. X. Zhang, W. S. Mu, Y. Li, J. L. Zhao, Special least squares solutions of the quaternion matrix equation $ AXB+CXD = E $, Comput. Math. Appl., 72 (2016), 1426–1435. http://dx.doi.org/10.1016/j.camwa.2016.07.019 doi: 10.1016/j.camwa.2016.07.019 |
[12] | Z. G. Jia, M. K. Ng, Structure preserving quaternion generalized minimal residual method, SIAM J. Matrix Anal. A., 42 (2021), 616–634. https://doi.org/10.1137/20M133751X doi: 10.1137/20M133751X |
[13] | R. R. Ma, Z. G. Jia, Z. J. Bai, A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems, Comput. Math. Appl., 75 (2018), 809–820. https://doi.org/10.1016/j.camwa.2017.10.009 doi: 10.1016/j.camwa.2017.10.009 |
[14] | B. Zhou, Solutions to linear bimatrix equations with applications to pole assignment of complex-valued linear systems, J. Franklin I., 355 (2018), 7246–7280. https://doi.org/10.1016/j.jfranklin.2018.07.015 doi: 10.1016/j.jfranklin.2018.07.015 |
[15] | N. Otsuka, Disturbance decoupling via measurement feedback for switched linear systems, Syst. Control Lett., 82 (2015), 99–107. https://doi.org/10.1016/j.sysconle.2015.05.009 doi: 10.1016/j.sysconle.2015.05.009 |
[16] | S. K. Mitra, A pair of simultaneous linear matrix equations $ A_{1}XB_{1} = C_{1} $, $ A_{2}XB_{2} = C_{2} $ and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107–123. https://doi.org/10.1016/0024-3795(90)90377-O doi: 10.1016/0024-3795(90)90377-O |
[17] | A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations $ A_{1}XB_{1} = C_{1} $ and $ A_{2}XB_{2} = C_{2} $ with applications, Comput. Math. Appl., 41 (2001), 929–935. https://doi.org/10.1016/S0898-1221(00)00330-8 doi: 10.1016/S0898-1221(00)00330-8 |
[18] | A. P. Liao, Y. Lei, Least-squares solution with the minimum-norm for the matrix equation $ (AXB, GXH) = (C, D) $, Comput. Math. Appl., 50 (2005), 539–549. https://doi.org/10.1016/j.camwa.2005.02.011 doi: 10.1016/j.camwa.2005.02.011 |
[19] | S. F. Yuan, A. P. Liao, Y. Lei, Least squares Hermitian solution of the matrix equation $ (AXB, CXD) = (E, F) $ with the least norm over the skew field of quaternions, Math. Comput. Model., 48 (2008), 91–100. https://doi.org/10.1016/j.mcm.2007.08.009 doi: 10.1016/j.mcm.2007.08.009 |
[20] | S. F. Yuan, A. P. Liao, P. Wang, Least squares $ \eta $ -bi-Hermitian problems of the quaternion matrix equation $ (AXB, CXD) = (E, F) $, Linear Multilinear A., 63 (2015), 1849–1863. https://doi.org/10.1080/03081087.2014.977279 doi: 10.1080/03081087.2014.977279 |
[21] | P. Wang, S. F. Yuan, X. Y. Xie, Least-squres Hermitian problem of complex matrix equation $ (AXB, CXD) = (E, F) $, J. Inequal. Appl., 2016 (2016), 296. https://doi.org/10.1186/s13660-016-1231-9 doi: 10.1186/s13660-016-1231-9 |
[22] | F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient method for special least squares solution of the complex matrix equation $ (AXB, CXD) = (E, F) $, Comput. Math. Appl., 76 (2018), 2001–2010. https://doi.org/10.1016/j.camwa.2018.07.044 doi: 10.1016/j.camwa.2018.07.044 |
[23] | S. Şimşek, M. Sarduvan, H. Özdemir, Centrohermitian and skew-centrohermitian solutions to the minimum residualand matrix nearness problems of the quaternion matrix equation $ (AXB, DXE) = (C, F) $, Adv. Appl. Clifford Algebras, 27 (2017), 2201–2214. https://doi.org/10.1007/s00006-016-0688-4 doi: 10.1007/s00006-016-0688-4 |
[24] | G. H. Golub, C. F. Van Loan, Matrix computations, 4 Eds., Baltimore: The Johns Hopkins University Press, 2013. |
[25] | F. Z. Zhou, X. Y. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices, Linear Algebra Appl., 364 (2003), 147–160. https://doi.org/10.1016/S0024-3795(02)00550-5 doi: 10.1016/S0024-3795(02)00550-5 |
[26] | F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient real representation method for least squares problem of the quaternion constrained matrix equation $ AXB+CYD = E $, Int. J. Comput. Math., 98 (2021), 1408–1419. https://doi.org/10.1080/00207160.2020.1821001 doi: 10.1080/00207160.2020.1821001 |
[27] | M. H. Wang, M. S. Wei, Y. Feng, An iterative algorithm for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., 179 (2008), 203–207. https://doi.org/10.1016/j.cpc.2008.02.016 doi: 10.1016/j.cpc.2008.02.016 |