Research article

Integrated decision-making methods based on 2-tuple linguistic $ m $-polar fuzzy information

  • Received: 02 April 2022 Revised: 26 May 2022 Accepted: 27 May 2022 Published: 07 June 2022
  • MSC : 03E72, 20F10

  • The 2-tuple linguistic $ m $-polar fuzzy sets (2TL$ m $FSs) are acknowledged to represent the multi-polar information owing to the practical structure of $ m $-polar fuzzy sets with the help of linguistic terms. The TOPSIS and ELECTRE series are efficient and widely used methods for solving multi-attribute decision-making problems. This paper aim to augment the literature on multi-attribute group decision making focusing on the the strategic approaches of TOPSIS and ELECTRE-I methods for the 2TL$ m $FSs. In the 2TL$ m $F-TOPSIS method, the relative closeness index is used to rank the alternatives. For the construction of concordance and discordance sets, the superiority and inferiority of alternatives over each other are accessed by using the score and accuracy functions. In the 2TL$ m $F ELECTRE-I, selection of the best alternative is made by the means of an outranking decision graph. At the final step of the 2TL$ m $F ELECTRE-I method, a supplementary approach is developed for the linear ranking of alternatives based on the concordance and discordance outranking indices. The structure of the proposed techniques are illustrated by using a system flow diagram. Finally, two case studies are used to demonstrate the correctness, transparency, and effectiveness of the proposed methods for selecting highway construction project manager and the best textile industry.

    Citation: Muhammad Akram, Uzma Noreen, Mohammed M. Ali Al-Shamiri, Dragan Pamucar. Integrated decision-making methods based on 2-tuple linguistic $ m $-polar fuzzy information[J]. AIMS Mathematics, 2022, 7(8): 14557-14594. doi: 10.3934/math.2022802

    Related Papers:

  • The 2-tuple linguistic $ m $-polar fuzzy sets (2TL$ m $FSs) are acknowledged to represent the multi-polar information owing to the practical structure of $ m $-polar fuzzy sets with the help of linguistic terms. The TOPSIS and ELECTRE series are efficient and widely used methods for solving multi-attribute decision-making problems. This paper aim to augment the literature on multi-attribute group decision making focusing on the the strategic approaches of TOPSIS and ELECTRE-I methods for the 2TL$ m $FSs. In the 2TL$ m $F-TOPSIS method, the relative closeness index is used to rank the alternatives. For the construction of concordance and discordance sets, the superiority and inferiority of alternatives over each other are accessed by using the score and accuracy functions. In the 2TL$ m $F ELECTRE-I, selection of the best alternative is made by the means of an outranking decision graph. At the final step of the 2TL$ m $F ELECTRE-I method, a supplementary approach is developed for the linear ranking of alternatives based on the concordance and discordance outranking indices. The structure of the proposed techniques are illustrated by using a system flow diagram. Finally, two case studies are used to demonstrate the correctness, transparency, and effectiveness of the proposed methods for selecting highway construction project manager and the best textile industry.



    加载中


    [1] C. L. Hwang, K. Yoon, Multiple attribute decision making, Lecture Notes in Economics and Mathematical Systems, Springer, 1981. https://doi.org/10.1007/978-3-642-48318-9
    [2] R. Benayoun, B. Roy, N. Sussman, Manual de reference du programme electre, Note de Synthese et Formation, Direction Scientifique SEMA, 25 (1966), 79.
    [3] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [4] C. T. Chen, Extension of the TOPSIS for group decision-making under fuzzy enviroment, Fuzzy Sets Syst., 114 (2000), 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1 doi: 10.1016/S0165-0114(97)00377-1
    [5] L. Shen, L. Olfat, K. Govindan, R. Khodaverdi, A. Diabat, A fuzzy multi criteria approach for evaluating green suppliers performance in green supply chain with linguistic preferences, Resour. Conserv. Recy., 74 (2013), 170–179. https://doi.org/10.1016/j.resconrec.2012.09.006 doi: 10.1016/j.resconrec.2012.09.006
    [6] M. P. Amiri, Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods, Expert Syst. Appl., 37 (2010), 6218–6224. https://doi.org/10.1016/j.eswa.2010.02.103 doi: 10.1016/j.eswa.2010.02.103
    [7] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 1986 (20), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [8] F. E. Boran, S. Genç, M. Kurt, D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Syst. Appl., 36 (2009), 11363–11368. https://doi.org/10.1016/j.eswa.2009.03.039 doi: 10.1016/j.eswa.2009.03.039
    [9] D. Aloini, R. Dulmin, V. Mininno, A peer IF-TOPSIS based decision support system for packaging machine selection, Expert Syst. Appl., 41 (2014), 2157–2165. https://doi.org/10.1016/j.eswa.2013.09.014 doi: 10.1016/j.eswa.2013.09.014
    [10] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [11] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [12] X. Zhang, Z. Xu, Extension of TOPSIS model to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [13] M. Akram, W. A. Dudek, F. Ilyas, Group decision-making based on Pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. https://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [14] M. Yucesan, M. Gul, Hospital service quality evaluation: An integrated model based on Pythagorean fuzzy AHP and fuzzy TOPSIS, Soft Comput., 24 (2020), 3237–3255. https://doi.org/10.1007/s00500-019-04084-2 doi: 10.1007/s00500-019-04084-2
    [15] J. Chen, S. Li, S. Ma, X. Wang, $m$-polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 416530. https://doi.org/10.1155/2014/416530
    [16] C. Jana, M. Pal, Some $m$-polar fuzzy operators and their application in multiple-attribute decision-making process, Sadhana, 46 (2021), 1–15. https://doi.org/10.1007/s12046-021-01599-z doi: 10.1007/s12046-021-01599-z
    [17] M. Akram, $m$-polar fuzzy graphs, In: Studies in fuzziness and soft computing, Vol. 371, Springer, 2019.
    [18] A. Adeel, M. Akram, A. N. A. Koam, Group decision-making based on $m$-polar fuzzy linguistic TOPSIS method, Symmetry, 11 (2019), 735. https://doi.org/10.3390/sym11060735 doi: 10.3390/sym11060735
    [19] M. Akram, A. Adeel, Novel TOPSIS method for group decision making based on hesitant $m$-polar fuzzy model, J. Intell. Fuzzy Syst., 37 (2019), 8077–8096. https://doi.org/10.3233/JIFS-190551 doi: 10.3233/JIFS-190551
    [20] P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic $q$-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cyber., 13 (2022), 883–906. https://doi.org/10.1007/s13042-021-01425-2 doi: 10.1007/s13042-021-01425-2
    [21] M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under linguistic $q$-rung orthopair fuzzy Einstein models, Soft Comput., 25 (2021), 10309–10334. https://doi.org/10.1007/s00500-021-05771-9 doi: 10.1007/s00500-021-05771-9
    [22] Y. Xu, S. Zhu, X. Liu, J. Huang, E. Herrera-Viedma, Additive consistency exploration of linguistic preference relations with self-confidence, Artif. Intell. Rev., 2022, 1–29. https://doi.org/10.1007/s10462-022-10172-x
    [23] S. Zhu, J. Huang, Y. Xu, A consensus model for group decision making with self-confident linguistic preference relations, Int. J. Intell. Syst., 36 (2021), 6360–6386. https://doi.org/10.1002/int.22553 doi: 10.1002/int.22553
    [24] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [25] F. Herrera, E. Herrera-Viedma, Choice functions and mechanisms for linguistic preference relations, Eur. J. Oper. Res., 120 (2000), 144–161. https://doi.org/10.1016/S0377-2217(98)00383-X doi: 10.1016/S0377-2217(98)00383-X
    [26] F. Herrera, E. Herrera-Viedma, L. Martinez, A fuzzy linguistic methodology to deal with unbalanced linguistic term sets, IEEE Trans. Fuzzy Syst., 16 (2008), 354–370. https://doi.org/10.1109/TFUZZ.2007.896353 doi: 10.1109/TFUZZ.2007.896353
    [27] S. Naz, M. Akram, M. M. A. Al-Shamiri, M. M. Khalaf, A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators, Math. Biosci. Eng., 19 (2022), 3843–3878. https://doi.org/10.3934/mbe.2022177 doi: 10.3934/mbe.2022177
    [28] M. Akram, U. Noreen, M. M. A. Al-Shamiri, Decision analysis approach based on 2-tuple linguistic $m$-polar fuzzy Hamacher aggregation operators, Discrete Dyn. Nat. Soc., 2022, 6269115.
    [29] G. W. Wei, Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information, Knowl. Inf. Syst., 25 (2010), 623–634. https://doi.org/10.1007/s10115-009-0258-3 doi: 10.1007/s10115-009-0258-3
    [30] J. Figueira, V. Mousseau, B. Roy, Electre methods, In: Multiple criteria decision analysis: State of the art surveys, Vol. 78, New York: Springer, 2005,133–153. https://doi.org/10.1007/0-387-23081-5_4
    [31] A. Hatami-Marbini, M. Tavana, An extension of the Electre I method for group decision-making under a fuzzy environment, Omega, 39 (2011), 373–386. https://doi.org/10.1016/j.omega.2010.09.001 doi: 10.1016/j.omega.2010.09.001
    [32] B. D. Rouyendegh, T. E. Erkan, An application of the fuzzy ELECTRE method for academic staff selection, Hum. Factors Ergon. Manuf. Serv. Ind., 23 (2013), 107–115. https://doi.org/10.1002/hfm.20301 doi: 10.1002/hfm.20301
    [33] F. Asghari, A. A. Amidian, J. Muhammadi, H. Rabiee, A fuzzy ELECTRE approach for evaluating mobile payment business models, In: 2010 International Conference on Management of e-Commerce and e-Government, IEEE, 2010,351–355. https://doi.org/10.1109/ICMeCG.2010.78
    [34] A. S. Kheirkhah, A. Dehghani, The group fuzzy ELECTRE method to evaluate the quality of public transportation service, Int. J. Eng. Math. Comput. Sci., 1 (2013).
    [35] M. C. Wu, T. Y. Chen, The ELECTRE multicriteria analysis approach based on Atanassov's intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 12318–12327. https://doi.org/10.1016/j.eswa.2011.04.010 doi: 10.1016/j.eswa.2011.04.010
    [36] M. Akram, F. Ilyas, H. Garg, Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information, Soft Comput., 24 (2020), 3425–3453. https://doi.org/10.1007/s00500-019-04105-0 doi: 10.1007/s00500-019-04105-0
    [37] M. Akram, N. Waseem, P. Liu, Novel approach in decision-making with $m$-polar fuzzy ELECTRE-I, Int. J. Fuzzy Syst., 21 (2019), 1117–1129. https://doi.org/10.1007/s40815-019-00608-y doi: 10.1007/s40815-019-00608-y
    [38] A. Adeel, M. Akram, A. N. A. Koam, Multi-criteria decision-making under $m$HF ELECTRE-I and H$m$F ELECTRE-I, Energies, 12 (2019), 1661. https://doi.org/10.3390/en12091661 doi: 10.3390/en12091661
    [39] A. Adeel, M. Akram, I. Ahmed, K. Nazar, Novel $m$-polar fuzzy linguistic ELECTRE-I method for group decision-making, Symmetry, 11 (2019), 471. https://doi.org/10.3390/sym11040471 doi: 10.3390/sym11040471
    [40] Y. Lu, Y. Xu, J. Huang, J. Wei, E. Herrera-Viedma, Social network clustering and consensus-based distrust behaviors management for large-scale group decision-making with incomplete hesitant fuzzy preference relations, Appl. Soft Comput., 117 (2022), 108373. https://doi.org/10.1016/j.asoc.2021.108373 doi: 10.1016/j.asoc.2021.108373
    [41] Y. Lu, Y. Xu, E. Herrera-Viedma, Y. Han, Consensus of large-scale group decision making in social network: The minimum cost model based on robust optimization, Inf. Sci., 547 (2021), 910–930. https://doi.org/10.1016/j.ins.2020.08.022 doi: 10.1016/j.ins.2020.08.022
    [42] N. Wu, Y. Xu, X. Liu, H. Wang, E. Herrera-Viedma, Water-Energy-Food nexus evaluation with a social network group decision making approach based on hesitant fuzzy preference relations, Appl. Soft Comput., 93 (2020), 106363. https://doi.org/10.1016/j.asoc.2020.106363 doi: 10.1016/j.asoc.2020.106363
    [43] M. Akram, N. Ramzan, F. Feng, Extending COPRAS method with linguistic Fermatean fuzzy sets and Hamy mean operators, J. Math., 2022 (2022), 8239263, https://doi.org/10.1155/2022/8239263 doi: 10.1155/2022/8239263
    [44] M. Akram, C. Kahraman, K. Zahid, Extension of TOPSIS model to the decision-making under complex spherical fuzzy information, Soft Comput., 25 (2021), 10771–10795. https://doi.org/10.1007/s00500-021-05945-5 doi: 10.1007/s00500-021-05945-5
    [45] M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020), 147–164.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1721) PDF downloads(69) Cited by(12)

Article outline

Figures and Tables

Figures(8)  /  Tables(37)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog