In this paper we study the positivity analysis problems for discrete fractional operators with exponential kernel, namely the discrete Caputo-Fabrizio operators. The results are applied to a discrete Caputo-Fabrizio-Caputo fractional operator of order $ \omega $ of another discrete Caputo-Fabrizio-Riemann fractional operator of order $ \beta $. Furthermore, the results are obtained for these operators with having the same orders. The conditions for the discrete fractional operators with respect to negative lower bound conditions are expressed in terms of a positive epsilon.
Citation: Sarkhel Akbar Mahmood, Pshtiwan Othman Mohammed, Dumitru Baleanu, Hassen Aydi, Yasser S. Hamed. Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness[J]. AIMS Mathematics, 2022, 7(6): 10387-10399. doi: 10.3934/math.2022579
In this paper we study the positivity analysis problems for discrete fractional operators with exponential kernel, namely the discrete Caputo-Fabrizio operators. The results are applied to a discrete Caputo-Fabrizio-Caputo fractional operator of order $ \omega $ of another discrete Caputo-Fabrizio-Riemann fractional operator of order $ \beta $. Furthermore, the results are obtained for these operators with having the same orders. The conditions for the discrete fractional operators with respect to negative lower bound conditions are expressed in terms of a positive epsilon.
[1] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, New York: Springer, 2015. https://doi.org/10.1007/978-3-319-25562-0 |
[2] | P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020, 1–26. https://doi.org/10.1002/mma.7083 |
[3] | D. Mozyrska, D. F. M. Torres, M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32 (2019), 168–176. https://doi.org/10.1016/j.nahs.2018.12.001 doi: 10.1016/j.nahs.2018.12.001 |
[4] | T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$-sums, Chaos Solit. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022 |
[5] | F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494 |
[6] | F. M. Atici, N. Nguyen, K. Dadashova, S. E. Pedersen, G. Koch, Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time, Comput. Math. Biophys., 8 (2020), 114–125. https://doi.org/10.1515/cmb-2020-0105 doi: 10.1515/cmb-2020-0105 |
[7] | C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022 |
[8] | Z. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique, Front. Inf. Technol. Electron. Eng., 21 (2020), 880–883. https://doi.org/10.1631/FITEE.2000133 doi: 10.1631/FITEE.2000133 |
[9] | K. Ahrendt, L. Castle, M. Holm, K. Yochman, Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula, Commun. Appl. Anal., 16 (2012), 317–347. |
[10] | C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022 |
[11] | H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, Y. S. Hamed, Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations, DCDS-S, 15 (2021), 427–440. https://doi.org/10.3934/dcdss.2021083 doi: 10.3934/dcdss.2021083 |
[12] | H. M. Srivastava, P. O. Mohammed, A correlation between solutions of uncertain fractional forward difference equations and their paths, Front. Phys., 8 (2020), 280. https://doi.org/10.3389/fphy.2020.00280 doi: 10.3389/fphy.2020.00280 |
[13] | H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497 |
[14] | R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x |
[15] | F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discr. Math., 9 (2015), 139–149. https://doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A |
[16] | I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for $h$-discrete fractional operators and application, Adv. Differ. Equ., 2018 (2018), 207. https://doi.org/10.1186/s13662-018-1660-5 doi: 10.1186/s13662-018-1660-5 |
[17] | R. Dahal, C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351 |
[18] | B. Jia, L. Erbe, A. Peterson, Convexity for nabla and delta fractional differences, J. Differ. Equ. Appl., 21 (2015), 360–373. https://doi.org/10.1080/10236198.2015.1011630 doi: 10.1080/10236198.2015.1011630 |
[19] | T. Abdeljawad, B. Abdallaa, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities, Filomat, 31 (2017), 3671–3683. https://doi.org/10.2298/FIL1712671A doi: 10.2298/FIL1712671A |
[20] | P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303 |
[21] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1 |
[22] | T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solition Fract., 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006 |
[23] | P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116 |
[24] | P. O. Mohammed, C. S. Goodrich, A. B. Brzo, D. Baleanu Y. S. Hamed, New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel, Math. Biosci. Eng., 19 (2022), 4062–4074. https://doi.org/10.3934/mbe.2022186 doi: 10.3934/mbe.2022186 |
[25] | I. Suwan, T. Abdeljawad, F. Jarad, Monotonicity analysis for nabla $h$-discrete fractional Atangana-Baleanu differences, Chaos Solition Fract., 117 (2018), 50–59. https://doi.org/10.1016/j.chaos.2018.10.010 doi: 10.1016/j.chaos.2018.10.010 |
[26] | P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2021 (2021), 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2 |
[27] | F. Du, B. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional $(q, h)$-differences, J. Differ. Equ. Appl., 22 (2016), 1224–1243. https://doi.org/10.1080/10236198.2016.1188089 doi: 10.1080/10236198.2016.1188089 |
[28] | R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104 |
[29] | C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. |
[30] | C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2 |
[31] | C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Meth. Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247 |
[32] | P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055 |
[33] | C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011 |
[34] | C. S. Goodrich, B. Lyons, M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pure Appl. Anal., 20 (2021), 339–358. https://doi.org/10.3934/cpaa.2020269 doi: 10.3934/cpaa.2020269 |