Research article Special Issues

Blowup and MLUH stability of time-space fractional reaction-diffusion equations


  • Received: 01 May 2022 Revised: 02 July 2022 Accepted: 05 July 2022 Published: 14 July 2022
  • In this paper, we consider a class of nonlinear time-space fractional reaction-diffusion equations by transforming the time-space fractional reaction-diffusion equations into an abstract evolution equations in a fractional Sobolev space. Based on operator semigroup theory, the local uniqueness of mild solutions to the reaction-diffusion equations is obtained under the assumption that nonlinear function is locally Lipschitz continuous. On this basis, a blowup alternative result for unique saturated mild solutions is obtained. We further verify the Mittag-Leffler-Ulam-Hyers stability of the nonlinear time-space fractional reaction-diffusion equations.

    Citation: Peng Gao, Pengyu Chen. Blowup and MLUH stability of time-space fractional reaction-diffusion equations[J]. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170

    Related Papers:

  • In this paper, we consider a class of nonlinear time-space fractional reaction-diffusion equations by transforming the time-space fractional reaction-diffusion equations into an abstract evolution equations in a fractional Sobolev space. Based on operator semigroup theory, the local uniqueness of mild solutions to the reaction-diffusion equations is obtained under the assumption that nonlinear function is locally Lipschitz continuous. On this basis, a blowup alternative result for unique saturated mild solutions is obtained. We further verify the Mittag-Leffler-Ulam-Hyers stability of the nonlinear time-space fractional reaction-diffusion equations.



    加载中


    [1] P. Y. Chen, Y. X. Li, X. P. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1531–1547. https://doi.org/10.3934/dcdsb.2020171 doi: 10.3934/dcdsb.2020171
    [2] P. Y. Chen, R. H. Wang, X. P. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 173 (2021), 103071. https://doi.org/10.1016/j.bulsci.2021.103071 doi: 10.1016/j.bulsci.2021.103071
    [3] P. Y. Chen, X. H. Zhang, X. P. Zhang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on $\mathbb{R}^n$, J. Dyn. Differ. Equations, (2021). https://doi.org/10.1007/s10884-021-10076-4 doi: 10.1007/s10884-021-10076-4
    [4] R. H. Wang, Y. R. Li, B. X. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091–4126. https://doi.org/10.3934/dcds.2019165 doi: 10.3934/dcds.2019165
    [5] R. H. Wang, L. Shi, B. X. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524–4556. https://doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7
    [6] R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048
    [7] Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Meth. Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781
    [8] B. de Andrade, A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 59. http://doi.org/10.1007/s00033-017-0801-0 doi: 10.1007/s00033-017-0801-0
    [9] P. Clément, J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514–535. https://doi.org/10.1137/0512045 doi: 10.1137/0512045
    [10] D. del-Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11 (2004), 3854–3864. https://doi.org/10.1063/1.1767097 doi: 10.1063/1.1767097
    [11] J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Phys. World, 18 (2005), 29–32.
    [12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon Linghorne, 1993.
    [13] B. de Andrade, V. V. Au, D. O'Regan, N. H. Tuan, Well-posedness results for a class of semilinear time-fractional diffusion equations, Z. Angew. Math. Phys., 71 (2020), 24. https://doi.org/10.1007/s00033-020-01348-y doi: 10.1007/s00033-020-01348-y
    [14] S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211–255. https://doi.org/10.1016/j.jde.2003.12.002 doi: 10.1016/j.jde.2003.12.002
    [15] L. Li, J. G. Liu, L. Z Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equations, 265 (2018), 1044–1096. https://doi.org/10.1016/j.jde.2018.03.025 doi: 10.1016/j.jde.2018.03.025
    [16] J. R. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 25 (2012), 723–728. https://doi.org/10.1016/j.aml.2011.10.009 doi: 10.1016/j.aml.2011.10.009
    [17] H. Antil, J. Pfefferer, S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization, Commun. Math. Sci., 16 (2018), 1395–1426. https://doi.org/10.4310/CMS.2018.v16.n5.a11 doi: 10.4310/CMS.2018.v16.n5.a11
    [18] J. L. Padgett, The quenching of solutions to time-space fractional kawarada problems, Comput. Math. Appl., 76 (2018), 1583–1592. https://doi.org/10.1016/j.camwa.2018.07.009 doi: 10.1016/j.camwa.2018.07.009
    [19] Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2016.
    [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [21] K. Diethelm, The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo type, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1282) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog