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Abstract: In this paper, we consider a class of nonlinear time-space fractional reaction-diffusion equa-
tions by transforming the time-space fractional reaction-diffusion equations into an abstract evolution
equations in a fractional Sobolev space. Based on operator semigroup theory, the local uniqueness
of mild solutions to the reaction-diffusion equations is obtained under the assumption that nonlinear
function is locally Lipschitz continuous. On this basis, a blowup alternative result for unique saturated
mild solutions is obtained. We further verify the Mittag-Leffler-Ulam-Hyers stability of the nonlinear
time-space fractional reaction-diffusion equations.
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1. Introduction and main results

Fractional derivatives are integro-differential operators which generalize integer-order differential
and integral calculus. They can describe the property of memory and heredity of various materials
and processes compared with integer-order derivatives. In recent years, many scholars are committed
to the research of time-fractional or space-fractional partial differential equations, see [1-7]. On the
other hand, fractional diffusion models are employed for some engineering problems [8,9] with power-
law memory in time and physical models considering memory effects [10—12]. There are numerous
works devoted to fractional diffusion equations. We only list several of the numerous papers on the
analysis for fractional diffusion equations. In [13], the author discussed well-posedness of semilinear
time-fractional diffusion equations using embedding relation among spaces. Eidelman and Kochubei
[14] constructed fundamental solutions of time fractional evolution equations. In [15], the author
established L" — L? estimates and weighted estimates of fundamental solutions, and obtained existence
and uniqueness of mild solutions of the Keller-Segel type time-space fractional diffusion equation.
In [16], Wang and Zhou introduced and discussed four types special data dependences for a class of
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fractional evolution equations.
In this paper, we focus on the following nonlinear time-space fractional reaction-diffusion equations
with fractional Laplacian

D2u(x, t) + (-APulx, 1) = f(x,t,u(x,1), x€Q, t>0,
ulx,) =0, xeoQ, t>0, (1.1)
u(x,0) = up(x), xeQ,

where Q ¢ R¥(N > 1) is a bounded open domain with smooth boundary dQ; a,f € (0, 1) and “D*- is
the Caputo time-fractional derivative of order « defined as

‘Diu(t) = ﬁ fo t—9)"%'(s)ds, t>0,

I'(-) is the Gamma function; The spectral fractional Laplacian could be defined as
(=AVu := Z/l/;ujgb‘,-, uj = Luqﬁj dx, jeN; (1.2)
=1

f 1 QX [0,00) x R — R is the nonlinear function and the continuous initial data u, : Q — R. We
obtain the local uniqueness of mild solutions, the blowup alternative result for saturated mild solutions
and Mittag-Leffler-Ulam-Hyers stability.

The main results of this paper are as following:

Theorem 1.1. Assume that nonlinear function f : Q X [0,00) X R — R is continuous and satisfies
locally Lipschitz condition about the third variable, then there exists a constant h > 0 such that Eq
(1.1) has a unique mild solution on Q x [0, h].

Theorem 1.2. Assume that all assumptions of Theorem 1.1 are satisfied, then the unique mild solution
can be extended to a large time interval [0, h*] for some h* > h such that Eq (1.1) has a unique mild
solution on Q X [0, h*].

Theorem 1.3. Assume that all assumptions of Theorem 1.1 are satisfied, then there exists a maximal ex-
istence interval [0, Ty.x) such that Eq (1.1) has a unique saturated mild solution u € C(QX[0, Thax), R).
Furthermore, if Tya.x < 00, then lim Sup,_r- le(Dllgs() = o0, where HA(Q) is Sobolev space introduced
in the following section.

Theorem 1.4. Assume that all assumptions of Theorem 1.1 are satisfied, then there exists a constant
h > 0 such that Eq (1.1) is Mittag-Leffler-Ulam-Hyers stable on Q) X [0, h].

2. Preliminaries

Throughout of this paper, we adopt spectral fractional Laplacian (=A)? defined by (1.2). For each
B € (0, 1), we define the fractional Sobolev space as

(o8]

HA(Q) = {u = Z uig; € LXQ) |l = Zﬂ‘juﬁ < oo}, u; = fguqu dx,
=1

J=1
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where A; are the eigenvalues of —A with zero Dirichlet boundary conditions on Q, ¢; are eigen-
functions with respect to 4;, (1;,¢;) is the eigen pair of —A, for the details one can see [17]. De-
note C([0, 00), H#(Q)) the Banach space of all continuous HF(Q)-value functions on [0, co) with norm
lullc := Sup,cio o) 1(D)lle() and APu = (=AY’u. We know from [18] that —A” generates a Feller semi-
group Ts(1)(t > 0).

We now define two operators 7, 3()(¢ > 0) and S, z(£)(t > 0) as follows

TapOu = f ho($)Tp(t" s)u ds, Sop(Hu = af sho($)T(t"s)u ds, ue HA(Q),
0 0

where h,(s) = = 3% (—s5)""! @ sin(nne) is a function of Wright type [19] defined on (0, co) which

@

satisfies h,(s) > 0, s € (0,00), [~ ho(s)ds = 1.

Lemma 2.1. The operators T, 5(t)(t > 0) and S, 5(t)(t > 0) have the following properties [18]:
(i) The operators T, 5(t)(t = 0) and S, g(t)(t > 0) are strongly continuous on HA(Q);

(1) [T o p(Dullgs ) < sy, 1Ses(0ulluso) < ﬁ”M”Hﬁ(g);

(iii) T o p(t) and S, (1) are compact operators for every t > 0.

Lemma 2.2. The Gamma function I'(z) = fooo e~*s" ' ds, z > 0 and Beta function B(p, q) = fol sPI(1 -
$)~Vds, p,q > 0 have the following equality [20]:

_ ().
T(p+q)
Lemma 2.3. (Stirling’s Formula) /2/] For x — oo we have

b
B(p, q) f (s—a)f ' (b-s5""ds=®-a)"""B(p,q), b>a.

T(x+1)= (g) V2rx(1 + o(1)),

Lemma 2.4. Suppose that a(t) is a nonnegative [16], nondecreasing function locally integrable
on [0, 0) and h(t) is a nonnegative, nondecreasing continuous function defined on [0, ), h(t) <
M(constant), and suppose u(t) is nonnegative and locally integrable on [0, o) with

u(t) < a(t) + h(t) f (t—9)""u(s) ds, tel0,o0).
0

k

Then u(t) < a(t)E[h(OT (a)t*], where E, is the Mittag-Leffer function defined by E,[z] = Yoy m’
zeC.

Let u(t) = u(-, 1), f(t,u(t)) = f(-,t,u(-, 1)), up = uo(-). Then the Eq (1.1) can be rewritten abstract
form of fractional evolution equation in C([0, o), H#(Q)) as

‘Dru(t) + APu(t) = f(t,u(r)), >0,
{ u(0) = ug. 2.1

If the nonlinear function f : Q X [0, 00) X R — R satisfies locally Lipschitz condition about the third
variable with Lipschitz constant L, one can derive

00 2 %
1f (@ u(@®) = f(&, vl < (Z ﬂ'?(jg;lf(f, u(®) = f&,v(0)le; dx) )
Jj=1
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o) 2 2
< (Zaﬁ( fg Llu(r) — v()\; dx) )

=
= Llju(t) — v(®)lzs)- (2.2)

3. Local existence and uniqueness, continuation and Blowup alternative results of solutions

Definition 3.1. A function u € C([0, 00), HA(Q)) is called a mild solution of (2.1) if it satisfies

u(t) = T op(Dug + f (1 = $)"7' Sap(t = 5)f (s, u(s)) ds.
0

Proof of Theorem 1.1. It follows discussions in Section 2 that Eq (1.1) can be transformed into the
abstract evolution Eq (2.1) in C([0, o0), H#(Q)). We now prove the local existence and uniqueness
of the mild solution to the evolution Eq (2.1). Assume that nonlinear function f is continuous in
O={(t,u) : 0 <1t <a,llul®)—ullgpq < b}fora > 0andb > 0, then there exists a unique mild solution
to the evolution Eq (2.1) on [0, 4], where

| (T@+ D)
b = 2||luollms@) + 1, h =min {Cl,( i ) }, M = sup ||f(, u(@®))|lasq)-
(t,u)e®

Define P : C([0, k], HA(Q)) — C([0, h], HA(QY)) as

Pu(t) = Top(ug + f(t - s)"_lS(,ﬁ(t — 85)f(s,u(s)) ds. 3.1
0

From Definition 3.1, the mild solution to (2.1) on [0, ] is equivalent to the fixed point of operator P
defined by (3.1). Set A = {u € C([0, h], HA(Q)) : ||u(t) — uollzs) < b, t € [0, h]} is a nonempty, convex
and closed subset in C([0, h], H#(Q)). Now we show the operator P has a fixed point in A by applying
power compression mapping principle.

Step . P: A — A.Forany u € A, t € [0,h], by (3.1) and Lemma 2.1 we have

[[Pu(t) — uollusy =

Tap(Ouo — ug + f (t — 8)*7 'S, 5t — 8)f(s, u(s)) ds
0

HA(Q)

!
< T s Otollsien + it + H f (= ) Suglt — $)f (s, u(s)) ds
0

Mt(l’
— <
I'la+1)

HA(Q)

< 2|uollppq) +

Then, we get that P : A — A.
Step II. P : A — A is a power compression mapping. For any u,v € A, by (2.2), (3.1) and Lemma
2.1, we get

IPU(t) - Pv(D)llascey = H f (= 9 St = Lf (s, u(s)) — fs, ()] ds
0

HA(Q)

1

< @ fo (t — )" I f (s, u(s)) = f(s, V()@ ds
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Lt
<
T(a+ 1)

llu = Vlic. (3.2)

By (2.2), (3.1), (3.2), Lemma 2.1 and Lemma 2.2, we get

IP2u(t) — P2v(0)|l () = H fo (t — $)* ' Sapt — )Lf (s, Pu(s)) — f(s,Pv(s))] ds .

< ﬁ fo (t = 9 f (5. Pu(s) — £(s. P(s)llwiey ds

L ! . Ls®
< — — 5" -
e fo (=) oy e = Ve ds
2 !
f(r—s>“ 's® dsllu — Vi
0

" T@l@+ 1)

1212
= mB(a + 1, )||lu —vlc
1212
= m”u —Vlc-
Suppose n = k — 1 we have
P u(®) — P10y < (L™ llu = Vil (3.3)

I'((k—Da+1)
Letn =k, by (2.2), (3.1), (3.3), Lemma 2.1 and Lemma 2.2, we get

IP“u(t) — Pyl =

1= )7 Sapt = ) (5, Phus)) — f(s, Pv(s))] ds
0

HA(Q)

1 !
< @) f (t — ) Cs, P uds)) — £, PF(8) s ds

~ el (Lsa)k—l ~
r(a)f =S G Das i~ Ve ds

a ls(k—l)a dS”I/t _ V”C

F(a)F((k -Da+1) f(t

thka
= mB((k —Da+1,0)|u-vlc
thka
= m”u = Ve
Therefore, we have .
1P — P < r((%:l)”” e (3.4)

for any n € N* and ¢ € [0, #] by mathematical induction. By Lemma 2.3 we get
na na
I'ha+1) = (—) V2rna(l + o(1)), n — oo,
e
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which implies
(whry _ whey

T(na +1) ()" VZrna

Hence, there exists m € N such that

-0 as n— oo.

(Lh®)"

Combining (3.4) and (3.5) we have
IP"u = P™lc < llu—vllc,

which means that the operator P is compressive and P is a power compression operator. Therefore P
has unique fixed point # € A by power compression mapping principle, the fixed point is the unique
mild solution of (2.1) on [0, #]. Hence, Eq (1.1) has unique mild solution u € C(Q X [0, h],R). This
completes the proof of Theorem 1.1. O

Definition 3.2. A function u* is a continuation mild solution of the unique mild solution u €
C([0, h], HA(Q)) to (2.1) on (0, h*] for some h* > h if it satisfies

u(t) =u(t), tel0,h],
u* € C([h, h*],BA(Q)) is a mild solution of (2.1) for all t € [h, h*].

Proof of Theorem 1.2. Let u € C([0, h], H#(Q)) be the unique mild solution of (2.1), A is the constant
defined in Theorem 1.1. Fix b* = 2ugllgsy + 2, M* = sup{|lf(t, u*()llwp) : lu®llgpo) < b, h <t <
h + a*} for a* > 0, we shall prove that u* : [0, h*] — HP(Q) is a mild solution of (2.1) for h* > h. Set
A* = {u* € C([0, h*], HP(Q)) : |lu(®) — ulh)llcqnizp@y) < b*, t € [h,h*];u*(t) = u(?), t € [0, h]}, where

o { ) (F(a+1))‘l’ (F(a+1))‘l’}
h* =min<a’, R .
M L

Define P : C([0, "], HA(Q)) — C([0,h*], HA(Q)) as (3.1). Now we show the operator P has a fixed
point in A* via Banach fixed point theorem.

Step L. P : A* — A*. Letu® € A*, if t € [0, h], from the proof of Theorem 1.1 we know equation
(2.1) has unique mild solution and u*(¢) = u(t). Thus Pu*(#) = Pu(t) = u(t) for all t € [0, h]. Now we
just consider ¢ € [h, h*], thus we have

t
IPu™ () — u'(Wllepo) < 1T ap®ito — Top(Wuolles) + ” f (t = ) Saplt = $)f(5,u"(s)) ds
0

h
- f (h— )" S, 5(h — ) f(s,u"(s)) ds
0
Mt M*h®
Ta+l) T@+)
QM1 .
Ta+1)

HA(Q)

< 2fuollms ) +

< 2fuollgpq) +
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Step 1. P is a compression on A*. Let u*,v* € A*, and we have that for ¢ € [0, h*],

P (1) = PV’ (Dl o = H fo (1 = )" Sap(t = [ f(s,u"(5)) = f(5,v" ()] ds .

< ﬁ fo (t = ) f (s () = f(5, V" (Sl ds

Lt” .,
< (o + 1)”” -V ”C([O,h*],Hﬂ(g))
Ly .,
T(a + 1)”” = Vllcqonm@)-

Then,

|Pu” — PV*”C([O,h*],Hﬁ(Q)) <|lu" - V*||C([0,h*],H/3(Q))-

This implies the operator P is compressive. By the Banach fixed point theorem it follows there exists
a unique fixed point u* of P in A*, which is a continuation of u. The fixed point is the unique mild
solution of Eq (2.1) on [0, 2*]. Therefore, Eq (1.1) has unique mild solution u on Q X [0, ~*]. This
completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Repeating the methods and steps in the proof of Theorem 1.2, one can obtain
that Eq (1.1) exists unique saturated mild solution on maximal interval Q X [0, T.x). Let Thax =
sup{h > 0 : the unique mild solution exits on (0, 4]} and uy € HP(Q). Assume that T, < oo and
for some by > 0, My = sup{||f(z, uD)llw) : @) < bo, 0 < t < Tha). Suppose there exists
a sequence {t,}uerr C [0, Trmax) such that 2, — Tpay and {u(t,)}enw € HP(Q). Let us demonstrate that
{u(t,)}nen is a Cauchy sequence in H#(Q). Indeed, for any € > 0, fix N € N such that for all n,m > N,
0<t, <ty < T, Wwe get

||u(tm) - M(tn)”Hﬁ(Q) < ||Taﬁ(trn)u0 - aﬁ(tn)MO”Hﬁ(Q)

+ f (tm = )" Soptn — 5)f (s, u(s)) ds
HA(Q)
+ f ((tn — — (ty = )" DSup(tn — $)f(s,u(s)) ds
HA(Q)
+ f (tn - S)a_](Sa',B(tm - S) - Sa,ﬁ(tn - S))f(S, M(S)) dS
0 HA(Q)

= ILllws) + 1 llmw) + 1llms@) + sl @)
We choose N := N(e) € N* with m > n > N such that 1, — £, small enough following the sequence

{t,} v+ 1s convergent. By Lemma 2.1,

€ M,
I < - I X t, —t Y < —
171 ][z ) 12] () < e )( n) 4

M, 2M, €
13m0y < ﬁ(i —ty + (ty — 1,)") < F(af—-i-ol)(tm —1,)" < 1
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Clearly see ||4llms) = 0 forz, = 0,0 < 1, < Tra. Forz, >0and 0 < € < 1,, by Lemma 2.1 we have

-
1 4llms 02y < f (t, — S)a_lllsa,ﬂ(tm —8) = Sty — Dllesy - I1f (s, u()lus) ds
0
i

+ (t, — S)a_lllsa,ﬂ(tm = 8) = Sty — ey - I1f (s, u()lus) ds

th—€

2Mye” €
< su Sos(tn —8) — Sup(t, — s My(® —€) + ——— < —.
xe[O,tF—e] l ,,B( ) ,ﬂ( ey Mo(t, ) Ta+1) 4

Therefore, for € > 0 there exists N € N such that |lu(t,,) — u(t,)|lzs) < € when m,n > N. We arrive
at that {u(t,)};,ev € HP(Q) is a Cauchy sequences and for any {f,},cv the lim, 7 u(®llppq < o
exists. From result of Theorem 1.2 we know that the unique mild solution can be extended to larger
interval. This means that u can be continued beyond 7T,,,,, and this contradict u € C([0, Tyay), HA(Q))
is a saturated mild solution. Therefore, we arrive at if Tp,,, < oo then lim sup,r- (@l = .
This complete the proof of Theorem 1.3. O

4. Mittag-Leffler-Ulam-Hyers stability

In this section, we consider the Mittag-Leffler-Ulam-Hyers stability of Eq (1.1). It follows dis-
cussions in Section 2 that Eq (1.1) can be transformed into the abstract evolution Eq (2.1) in
C([0, 0), HA(Q)), we now verify the stability of Eq (2.1) on [0, ], & is the constant defined in The-
orem 1.1. Let £ > 0, we consider the following inequation

DA v(t) + APv(t) — F(t, vy < &t € [0, A 4.1)

Definition 4.1. Eq (2.1) is Mittag-Leffler-Ulam-Hyers stable with respect to E,, if there exists a real
number 6 > 0 such that for each & > 0 and for each solution v € C'([0, h], H}(Q)) of inequation (4.1),
there exists a mild solution u € C([0, h], HA(Q)) of Eq (2.1) with ||v(t) — u®llgs) < 0€E,[t], t € [0, hl.

Remark 4.1. A function v € C'([0, h], H*(Q)) is a solution of inequation (4.1) if and only if there exists
a function w € C([0, h], HA(Q)) (which depend on v) such that

(Q) Iw®llgp) < & forallt € [0,h];

(ii) “DYu(r) + APu(t) = f(t, u(r)) + w(z), t € [0, Al.

Remark 4.2. If v € C'([0,h], H}(Q)) is a solution of inequation (4.1), then v is a solution of the
following integral inequation

(1) = T ap(H)v(0) — f (t = )" Sapt — 9)f(s,v(s)) ds <& f (t = )" ISap(t — 9l ds.
0 HA(Q) 0

Proof of Theorem 1.4. Let v € C!([0, h], H*(Q)) be a solution of the inequation (4.1) and denote by
u € C([0, h), H¥(Q)) the unique mild solution of the problem

‘Dru(t) + APu(t) = f(t,u(r)), te€[0,h],
u(0) = v(0).
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We have t
u(t) = Top(t)v(0) + f (r— s)“_lSa,ﬁ(t - ) f(s,u(s)) ds, tel0,h],
0

and by Remark 4.2 we get

V(1) = Tap(Ov(0) — f (t = ) Sapt = 5)f(s,9(5)) ds
0

HA(Q)

! ha’
< SL(I - S)a_lllsaﬂ(l‘ — S)”HB(Q) ds < 1"((1/—-1(-91) (42)
It follows from (2.2) and (4.2) that
[V(8) — u(®llms) =|[v(t) = Tap(®v(0) — f(f = 8)* ' Supt — 8)f (s, u(s)) ds
0 HA(Q)
a—1
<[lv(e) = T st (0) - fo (1 = 9" Saglt = )f(s. 0N ds,
+ ' f(f — 8)* ' Sapt — (s, v(s)) — f(s,u(s))] ds
0 HA(Q)
he L [
<t f 5 o fo (t = )" v(s) — u(s)|lrcey ds. 4.3)

Applying Lemma 2.4 to inequality (4.3), we get

a

E,[Lt“].

[v(®) — u(®)llgp@) < Ta+D

Hence, Eq (2.1) is Mittag-Lefller-Ulam-Hyers stable. This completes the proof of Theorem 1.4.00
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