Let $ A/S $ be a ring extension with $ S $ commutative. We prove that $ \omega{\otimes}_SA_A $ is a generalized tilting module if $ \omega_S $ is a generalized tilting module. In this case, we obtain that $ ^\bot \omega $-resol.dim$ _S(M) $ and $ ^\bot (\omega\otimes_SA) $-resol.dim$ _A(M) $ are identical for any $ A $-module $ M $. As an application, we show that $ S $ satisfies gorenstein symmetric Conjecture if and only if so does $ A $. Furthermore, we introduce the concept of $ ^\bot\omega $-Gorenstein projective modules, and we obtain that the relative Gorenstein projectivity is invariant under Frobenius extensions.
Citation: Dongxing Fu, Xiaowei Xu, Zhibing Zhao. Generalized tilting modules and Frobenius extensions[J]. Electronic Research Archive, 2022, 30(9): 3337-3350. doi: 10.3934/era.2022169
Let $ A/S $ be a ring extension with $ S $ commutative. We prove that $ \omega{\otimes}_SA_A $ is a generalized tilting module if $ \omega_S $ is a generalized tilting module. In this case, we obtain that $ ^\bot \omega $-resol.dim$ _S(M) $ and $ ^\bot (\omega\otimes_SA) $-resol.dim$ _A(M) $ are identical for any $ A $-module $ M $. As an application, we show that $ S $ satisfies gorenstein symmetric Conjecture if and only if so does $ A $. Furthermore, we introduce the concept of $ ^\bot\omega $-Gorenstein projective modules, and we obtain that the relative Gorenstein projectivity is invariant under Frobenius extensions.
[1] | T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra, 275 (2004), 3–39. https://doi.org/10.1016/j.jalgebra.2003.12.008 doi: 10.1016/j.jalgebra.2003.12.008 |
[2] | F. Mantese, I. Reiten, Wakamatsu tilting modules, J. Algebra, 278 (2004), 532–552. https://doi.org/10.1016/j.jalgebra.2004.03.023 doi: 10.1016/j.jalgebra.2004.03.023 |
[3] | A. Beligiannis, I. Reiten, Homological and Homotopical Aspects of Torsion Theories, Memoirs of the American Mathematical Society, 2007. https://doi.org/10.1090/memo/0883 |
[4] | Z. Y. Huang, Generalized tilting modules with finite injective dimension, J. Algebra, 31 (2007), 619–634. https://doi.org/10.1016/j.jalgebra.2006.11.025 doi: 10.1016/j.jalgebra.2006.11.025 |
[5] | Z. Y. Huang, Wakamatsu tilting modules, U-dominant dimension and $k$-Gorenstein modules, in Abelian Groups, Rings, Modules, and Homological Algebra, Chapman Hall/CRC, (2006), 183–202. |
[6] | Z. B. Zhao, X. N. Du, Generalized tilting modules with finite injective dimension, Adv. Math. (China), 43 (2014), 844–850. |
[7] | F. Kasch, Grundlagen einer theorie der Frobenius-Erweiterungen, Math. Ann., 127 (1954), 453–474. https://doi.org/10.1007/BF01361137 doi: 10.1007/BF01361137 |
[8] | J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511615443 |
[9] | L. Kadison, The jones polynomial and certain separable Frobenius extensions, J. Algebra, 186 (1996), 461–475. https://doi.org/10.1006/jabr.1996.0383 doi: 10.1006/jabr.1996.0383 |
[10] | L. Kadison, New Example of Frobenius Extension, University Lecture Series, 1999. https://doi.org/10.1090/ulect/014 |
[11] | C. C. Xi, S. J. Yin, Cellularity of centrosymmetric martrix algebras and Frobenius extensions, Linear Algebra Appl., 590 (2020), 317–329. https://doi.org/10.1016/j.laa.2020.01.002 doi: 10.1016/j.laa.2020.01.002 |
[12] | D. Fischman, S. Montgomery, H. J. Schneider, Frobenius extensions of subalgebras of Hopf algebras, Trans. Amer. Math. Soc., 349 (1997), 4857–4895. https://doi.org/10.1090/S0002-9947-97-01814-X doi: 10.1090/S0002-9947-97-01814-X |
[13] | H. J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra, 151 (1992), 289–312. https://doi.org/10.1016/0021-8693(92)90034-J doi: 10.1016/0021-8693(92)90034-J |
[14] | K. Hirata, K. Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan., 18 (1966), 360–373. https://doi.org/10.2969/jmsj/01840360 doi: 10.2969/jmsj/01840360 |
[15] | K. Sugano, Separable extensions and Frobenius extensions, Osaka J. Math., 7, (1970), 291–299. |
[16] | X. W. Chen, Totally reflexive extensions and modules, J. Algebra, 379 (2013), 322–332. https://doi.org/10.1016/j.jalgebra.2013.01.014 doi: 10.1016/j.jalgebra.2013.01.014 |
[17] | Z. Y. Huang, J. X. Sun, Invariant properties of represenations under excellent extensions, J. Algebra, 358 (2012), 87–101. https://doi.org/10.1016/j.jalgebra.2012.03.004 doi: 10.1016/j.jalgebra.2012.03.004 |
[18] | W. Ren, Gorenstein projective and injective dimensions over Frobenius extensions, Commun. Algebra, 46 (2018), 1–7. https://doi.org/10.1080/00927872.2017.1355714 doi: 10.1080/00927872.2017.1355714 |
[19] | C. C. Xi, Frobenius bimodules and flat-dominant dimensions, Sci. China Math., 64 (2020), 33–44. https://doi.org/10.1007/s11425-018-9519-2 doi: 10.1007/s11425-018-9519-2 |
[20] | Z. B. Zhao, Gorenstein homological invariant properties under Frobenius extensions, Sci. China Math., 62 (2019), 2487–2496. https://doi.org/10.1007/s11425-018-9432-2 doi: 10.1007/s11425-018-9432-2 |
[21] | R. S. Pierce, Projective modules over Artinian algebras, in Graduate Texts in Mathematics, Springer, (1982), 88–107. https://doi.org/10.1007/978-1-4757-0163-0_6 |
[22] | W. Ren, Gorenstein projective mdoules and Frobenius extensions, Sci. China Math., 61 (2018), 1175–1186. https://doi.org/10.1007/s11425-017-9138-y doi: 10.1007/s11425-017-9138-y |
[23] | M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, 1969. https://doi.org/10.1090/memo/0094 |
[24] | K. Morita, Adojint pairs of functors and Frobenius extension, Sci. Rep. T. K. D. Sect. A., 9 (1965), 40–71. |
[25] | T. Wakamatsu, On modules with trivial self-extensions, J. Algebra, 114 (1988), 106–114. https://doi.org/10.1016/0021-8693(88)90215-3 doi: 10.1016/0021-8693(88)90215-3 |
[26] | J. Wang, X. W. Xu, Z. B. Zhao, $\mathfrak{X}$-Gorenstein projective dimensions, preprint, arXiv: 1801.09127. |
[27] | T. Nakamaya, T. Tsuzuku, On frobenius extension I, Nagoya. Math. J., (1960), 89–110. https://doi.org/10.1017/S0027763000002075 doi: 10.1017/S0027763000002075 |