Research article Special Issues

Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential

  • Received: 02 December 2024 Revised: 03 January 2025 Accepted: 10 January 2025 Published: 24 January 2025
  • We have presented a maximum principle preserving the unconditionally stable scheme for the Allen–Cahn (AC) equation with a high-order polynomial potential. The proposed method ensures the preservation of the maximum principle, a critical characteristic for accurately modeling phase transitions and maintaining physical consistency in simulations. The proposed method uses an operator splitting technique, a numerical approach that decomposes a complex problem into simpler subproblems, solved sequentially, to improve computational efficiency and stability. The operator splitting method applied to the AC equation yields one nonlinear equation and several linear equations. To solve the nonlinear equation, we applied the frozen coefficient method, which approximates variable coefficients in differential equations by treating them as constants within small regions, simplifies the problem, and enables more efficient numerical solutions. For several linear equations, which are diffusion equations, we applied a fully implicit finite difference scheme to obtain unconditional stability. By using these methods, we achieved unconditional stability for the AC equation. To validate the superior performance of the developed algorithm, we performed computational tests. Computational experiments demonstrated its unconditional stability, particularly in handling high-order polynomial potentials. Furthermore, we highlighted a distinctive feature of the AC equation in modeling phase separation under noisy data conditions.

    Citation: Junseok Kim. Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential[J]. Electronic Research Archive, 2025, 33(1): 433-446. doi: 10.3934/era.2025021

    Related Papers:

  • We have presented a maximum principle preserving the unconditionally stable scheme for the Allen–Cahn (AC) equation with a high-order polynomial potential. The proposed method ensures the preservation of the maximum principle, a critical characteristic for accurately modeling phase transitions and maintaining physical consistency in simulations. The proposed method uses an operator splitting technique, a numerical approach that decomposes a complex problem into simpler subproblems, solved sequentially, to improve computational efficiency and stability. The operator splitting method applied to the AC equation yields one nonlinear equation and several linear equations. To solve the nonlinear equation, we applied the frozen coefficient method, which approximates variable coefficients in differential equations by treating them as constants within small regions, simplifies the problem, and enables more efficient numerical solutions. For several linear equations, which are diffusion equations, we applied a fully implicit finite difference scheme to obtain unconditional stability. By using these methods, we achieved unconditional stability for the AC equation. To validate the superior performance of the developed algorithm, we performed computational tests. Computational experiments demonstrated its unconditional stability, particularly in handling high-order polynomial potentials. Furthermore, we highlighted a distinctive feature of the AC equation in modeling phase separation under noisy data conditions.



    加载中


    [1] S. Lee, S. Yoon, J. Kim, A linear convex splitting scheme for the Cahn–Hilliard equation with a high‐order polynomial free energy, Int. J. Numer. Methods Eng., 124 (2023), 3586–3602. https://doi.org/10.1002/nme.7288 doi: 10.1002/nme.7288
    [2] Y. Hwang, I. Kim, S. Kwak, S. Ham, S. Kim, J. Kim, Unconditionally stable Monte Carlo simulation for solving the multi-dimensional Allen–Cahn equation, Electron. Res. Arch., 31 (2023), 5104–5123. https://doi.org/10.3934/era.2023261 doi: 10.3934/era.2023261
    [3] S. Koohy, G. Yao, K. Rubasinghe, Numerical solutions to low and high-dimensional Allen–Cahn equations using stochastic differential equations and neural networks, Partial Differ. Equations Appl. Math., 7 (2023), 100499. https://doi.org/10.1016/j.padiff.2023.100499 doi: 10.1016/j.padiff.2023.100499
    [4] M. Sohaib, K. M. Furati, A. Shah, Space fractional Allen–Cahn equation and its applications in phase separation: A numerical study, Commun. Nonlinear Sci. Numer. Simul., 137 (2024), 108173. https://doi.org/10.1016/j.cnsns.2024.108173 doi: 10.1016/j.cnsns.2024.108173
    [5] C. Liu, Z. Qiao, Q. Zhang, Multi-phase image segmentation by the Allen–Cahn Chan–Vese model, Comput. Math. Appl., 141 (2023), 207–220. https://doi.org/10.1016/j.camwa.2022.12.020 doi: 10.1016/j.camwa.2022.12.020
    [6] B. Xia, R. Yu, X. Song, X. Zhang, J. Kim, An efficient data assimilation algorithm using the Allen–Cahn equation, Eng. Anal. Boundary Elem., 155 (2023), 511–517. https://doi.org/10.1016/j.enganabound.2023.06.029 doi: 10.1016/j.enganabound.2023.06.029
    [7] Y. Li, Q. Yu, S. Ham, S. Kwak, C. Lee, J. Kim, A phase-field model without artificial curvature effect for the crystal growth simulation, Int. J. Heat Mass Transfer, 203 (2023), 123847. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123847 doi: 10.1016/j.ijheatmasstransfer.2023.123847
    [8] Q. Yu, Y. Li, A second-order unconditionally energy stable scheme for phase-field based multimaterial topology optimization, Comput. Methods Appl. Mech. Eng., 405 (2023), 115876. https://doi.org/10.1016/j.cma.2022.115876 doi: 10.1016/j.cma.2022.115876
    [9] Q. Xia, J. Yang, Y. Li, On the conservative phase-field method with the N-component incompressible flows, Phys. Fluids, 35 (2023), 012120. https://doi.org/10.1063/5.0135490 doi: 10.1063/5.0135490
    [10] Y. Wang, X. Xiao, X. Feng, Numerical simulation for the conserved Allen–Cahn phase field model of two-phase incompressible flows by an efficient dimension splitting method, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107874. https://doi.org/10.1016/j.cnsns.2024.107874 doi: 10.1016/j.cnsns.2024.107874
    [11] Z. Gao, H. Zhang, X. Qian, S. Song, High-order unconditionally maximum-principle-preserving parametric integrating factor Runge-Kutta schemes for the nonlocal Allen–Cahn equation, Appl. Numer. Math., 194 (2023), 97–114. https://doi.org/10.1016/j.apnum.2023.08.010 doi: 10.1016/j.apnum.2023.08.010
    [12] H. Li, Z. Song, F. Zhang, A reduced-order modified finite difference method preserving unconditional energy-stability for the Allen–Cahn equation, Numer. Methods Partial Differ. Equations, 37 (2021), 1869–1885. https://doi.org/10.1002/num.22619 doi: 10.1002/num.22619
    [13] K. Poochinapan, B. Wongsaijai, Numerical analysis for solving Allen–Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme, Appl. Math. Comput., 434 (2022), 127374. https://doi.org/10.1016/j.amc.2022.127374 doi: 10.1016/j.amc.2022.127374
    [14] Y. Choi, J. Kim, Maximum principle preserving and unconditionally stable scheme for a conservative Allen–Cahn equation, Eng. Anal. Boundary Elem., 150 (2023), 111–119. https://doi.org/10.1016/j.enganabound.2023.02.016 doi: 10.1016/j.enganabound.2023.02.016
    [15] Y. Guo, M. Azaïez, C. Xu, Error analysis of a reduced order method for the Allen–Cahn equation, Appl. Numer. Math., 203 (2024), 186–201. https://doi.org/10.1016/j.apnum.2024.03.021 doi: 10.1016/j.apnum.2024.03.021
    [16] X. Wang, J. Kou, H. Gao, Linear energy stable and maximum principle preserving semi-implicit scheme for Allen–Cahn equation with double well potential, Commun. Nonlinear Sci. Numer. Simul., 98 (2021), 105766. https://doi.org/10.1016/j.cnsns.2021.105766 doi: 10.1016/j.cnsns.2021.105766
    [17] H. Zhang, J. Yan, X. Qian, X. Gu, S. Song, On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen–Cahn equation, Numer. Algorithms, 88 (2021), 1309–1336. https://doi.org/10.1007/s11075-021-01077-x doi: 10.1007/s11075-021-01077-x
    [18] X. Yang, W. Zhao, W. Zhao, Optimal error estimates of a discontinuous Galerkin method for stochastic Allen-Cahn equation driven by multiplicative noise, Commun. Comput. Phys., 36 (2024), 133–159. https://doi.org/10.4208/cicp.OA-2023-0280 doi: 10.4208/cicp.OA-2023-0280
    [19] D. Kong, H. Rui, W. Zhao, Optimal switching time control constrained by immiscible two-phase porous media flow based on the discontinuous Galerkin method, J. Sci. Comput., 99 (2024), 72. https://doi.org/10.1007/s10915-024-02538-w doi: 10.1007/s10915-024-02538-w
    [20] Q. Guan, X. Guo, W. Zhao, Efficient numerical method for shape optimization problem constrained by stochastic elliptic interface equation, Commun. Anal. Comput., 1 (2023), 321–346. https://doi.org/10.3934/cac.2023016 doi: 10.3934/cac.2023016
    [21] J. Wang, Z. Han, W. Jiang, J. Kim, A novel classification method combining phase-field and DNN, Pattern Recognit., 142 (2023), 109723. https://doi.org/10.1016/j.patcog.2023.109723 doi: 10.1016/j.patcog.2023.109723
    [22] Q. Xia, G. Sun, Q. Yu, J. Kim, Y. Li, Thermal-fluid topology optimization with unconditional energy stability and second-order accuracy via phase-field model, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106782. https://doi.org/10.1016/j.cnsns.2022.106782 doi: 10.1016/j.cnsns.2022.106782
    [23] J. Yang, Z. Tan, J. Wang, J. Kim, Modified diffuse interface fluid model and its consistent energy-stable computation in arbitrary domains, J. Comput. Phys., 488 (2023), 112216. https://doi.org/10.1016/j.jcp.2023.112216 doi: 10.1016/j.jcp.2023.112216
    [24] M. Emamjomeh, M. Nabati, A. Dinmohammadi, Numerical study of two operator splitting localized radial basis function method for Allen–Cahn problem, Eng. Anal. Boundary Elem., 163 (2024), 126–137. https://doi.org/10.1016/j.enganabound.2024.02.016 doi: 10.1016/j.enganabound.2024.02.016
    [25] S. Kwak, H. G. Lee, Y. Li, J. Yang, C. Lee, H. Kim, et al., Motion by mean curvature with constraints using a modified Allen–Cahn equation, J. Sci. Comput., 92 (2022), 16. https://doi.org/10.1007/s10915-022-01862-3 doi: 10.1007/s10915-022-01862-3
    [26] J. Kim, S. Kwak, H. G. Lee, Y. Hwang, S. Ham, A maximum principle of the Fourier spectral method for diffusion equations, Electron. Res. Arch., 31 (2023), 5396–5405. https://doi.org/10.3934/era.2023273 doi: 10.3934/era.2023273
    [27] J. Feng, Y. Zhou, T. Hou, A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen–Cahn equations, Appl. Math. Lett., 118 (2021), 107179. https://doi.org/10.1016/j.aml.2021.107179 doi: 10.1016/j.aml.2021.107179
    [28] F. Dell'Accio, F. Di Tommaso, A. Guessab, F. Nudo, A unified enrichment approach of the standard three-node triangular element, Appl. Numer. Math., 187 (2023), 1–23. https://doi.org/10.1016/j.apnum.2023.02.001 doi: 10.1016/j.apnum.2023.02.001
    [29] F. Nudo, A general quadratic enrichment of the Crouzeix–Raviart finite element, J. Comput. Appl. Math., 451 (2024), 116112. https://doi.org/10.1016/j.cam.2024.116112 doi: 10.1016/j.cam.2024.116112
    [30] C. Lee, S. Kim, S. Kwak, Y. Hwang, S. Ham, S. Kang, et al., Semi-automatic fingerprint image restoration algorithm using a partial differential equation, AIMS Math., 8 (2023), 27528–27541. https://doi.org/10.3934/math.20231408 doi: 10.3934/math.20231408
    [31] J. Yang, Y. Li, J. Kim, Modified multi-phase diffuse-interface model for compound droplets in contact with solid, J. Comput. Phys., 491 (2023), 112345. https://doi.org/10.1016/j.jcp.2023.112345 doi: 10.1016/j.jcp.2023.112345
    [32] J. Wang, W. Jiang, Surface reconstruction algorithm using a modified Allen–Cahn equation, Mod. Phys. Lett. B, 36 (2022), 2250147. https://doi.org/10.1142/S0217984922501470 doi: 10.1142/S0217984922501470
    [33] M. Sohaib, A. Shah, K. M. Furati, H. Khaliq, A numerical scheme for time-fractional Allen–Cahn equation with application in phase separation, Int. J. Comput. Math., 2024 (2024), 1–16. https://doi.org/10.1080/00207160.2024.2420681 doi: 10.1080/00207160.2024.2420681
    [34] C. Liu, Z. Qiao, Q. Zhang, Two-phase segmentation for intensity inhomogeneous images by the Allen–Cahn local binary fitting model, SIAM J. Sci. Comput., 44 (2022), B177–B196. https://doi.org/10.1137/21M1421830 doi: 10.1137/21M1421830
    [35] C. Wu, X. Feng, Y. He, L. Qian, A second-order Strang splitting scheme with exponential integrating factor for the Allen–Cahn equation with logarithmic Flory–Huggins potential, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106983. https://doi.org/10.1016/j.cnsns.2022.106983 doi: 10.1016/j.cnsns.2022.106983
    [36] F. Dell'Accio, A. Guessab, F. Nudo, New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite element, Comput. Math. Appl., 170 (2024), 204–212. https://doi.org/10.1016/j.camwa.2024.06.019 doi: 10.1016/j.camwa.2024.06.019
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(198) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog