Review

A review on the Cahn–Hilliard equation: classical results and recent advances in dynamic boundary conditions

  • Received: 20 November 2021 Revised: 31 March 2022 Accepted: 31 March 2022 Published: 23 May 2022
  • The Cahn–Hilliard equation is a fundamental model that describes the phase separation process in multi-component mixtures. It has been successfully extended to different contexts in various scientific fields. In this survey article, we briefly review the derivation, structure as well as some analytical issues for the Cahn–Hilliard equation and its variants. Our focus will be placed on the well-posedness as well as long-time behavior of global solutions for the Cahn–Hilliard equation in the classical setting and recent progresses on the dynamic boundary conditions that describe non-trivial boundary effects.

    Citation: Hao Wu. A review on the Cahn–Hilliard equation: classical results and recent advances in dynamic boundary conditions[J]. Electronic Research Archive, 2022, 30(8): 2788-2832. doi: 10.3934/era.2022143

    Related Papers:

  • The Cahn–Hilliard equation is a fundamental model that describes the phase separation process in multi-component mixtures. It has been successfully extended to different contexts in various scientific fields. In this survey article, we briefly review the derivation, structure as well as some analytical issues for the Cahn–Hilliard equation and its variants. Our focus will be placed on the well-posedness as well as long-time behavior of global solutions for the Cahn–Hilliard equation in the classical setting and recent progresses on the dynamic boundary conditions that describe non-trivial boundary effects.



    加载中


    [1] J. W. Cahn, On spinodal decomposition, Acta Metallurgica, 9 (1961), 795–801. https://doi.org/10.1016/0001-6160(61)90182-1 doi: 10.1016/0001-6160(61)90182-1
    [2] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [3] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅲ. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688–699. https://doi.org/10.1063/1.1730447 doi: 10.1063/1.1730447
    [4] A. Novick-Cohen, The Cahn–Hilliard equation, in Evolutionary Equations (eds. C. M. Dafermos and M. Pokorný), Handb. Differ. Equ., vol. 4, Elsevier/North-Holland, Amsterdam, (2008), 201–228. https://doi.org/10.1016/S1874-5717(08)00004-2
    [5] P. Bates, P. Fife, The dynamics of nucleation for the Cahn–Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990–1008. https://doi.org/10.1137/0153049 doi: 10.1137/0153049
    [6] Q. Du, X.-B. Feng, Chapter 5 – The phase field method for geometric moving interfaces and their numerical approximations, in Handbook of Numerical Analysis, Vol. 21, (eds. A. Bonito and R. H. Nochetto), Elsevier, (2020), 425–508. https://doi.org/10.1016/bs.hna.2019.05.001
    [7] D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1997), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139
    [8] J. Kim, S. Lee, Y. Choi, S. Lee, D. Jeong, Basic principles and practical applications of the Cahn–Hilliard equation, Math. Probl. Eng., (2016), Art. ID 9532608, 11 pp. https://doi.org/10.1155/2016/9532608
    [9] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632. https://doi.org/10.1021/ma00164a028 doi: 10.1021/ma00164a028
    [10] A. L. Bertozzi, S. Esedoglu, A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Image Process., 16 (2007), 285–291. https://doi.org/10.1109/TIP.2006.887728 doi: 10.1109/TIP.2006.887728
    [11] A. L. Bertozzi, S. Esedoglu, A. Gillette, Analysis of a two-scale Cahn–Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913–936. https://doi.org/10.1137/060660631 doi: 10.1137/060660631
    [12] H. Garcke, K.-F. Lam, E. Sitka, V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095–1148. https://doi.org/10.1142/S0218202516500263 doi: 10.1142/S0218202516500263
    [13] J. T. Oden, A. Hawkins-Daarud, S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477–517. https://doi.org/10.1142/S0218202510004313 doi: 10.1142/S0218202510004313
    [14] E. Khain, L. M. Sander, Generalized Cahn–Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129. https://doi.org/10.1103/PhysRevE.77.051129 doi: 10.1103/PhysRevE.77.051129
    [15] M. Gurtin, D. Polignone, J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815–831. https://doi.org/10.1142/S0218202596000341 doi: 10.1142/S0218202596000341
    [16] P. C. Hohenberg, B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modem Phys., 49 (1977), 435–479. https://doi.org/10.1103/RevModPhys.49.435 doi: 10.1103/RevModPhys.49.435
    [17] K.-F. Lam, H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, Eur. J. Appl. Math., 29 (2018), 595–644. https://doi.org/10.1017/S0956792517000298 doi: 10.1017/S0956792517000298
    [18] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013. https://doi.org/10.1142/S0218202511500138 doi: 10.1142/S0218202511500138
    [19] D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000), 57–88. https://doi.org/10.1017/S0022112099006874 doi: 10.1017/S0022112099006874
    [20] T.-Z. Qian, X.-P. Wang, P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333–360. https://doi.org/10.1017/S0022112006001935 doi: 10.1017/S0022112006001935
    [21] C. M. Elliott, The Cahn–Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems (editor J. F. Rodrigues), Internat. Ser. Numer. Math., 88, Birkhäuser, Basel, (1989), 35–73. https://doi.org/10.1007/978-3-0348-9148-6_3
    [22] J. F. Blowey, C. M. Elliott, The Cahn–Hilliard gradient theory for phase separation with nonsmooth free energy. Ⅰ. Mathematical analysis, Eur. J. Appl. Math., 2 (1991), 233–280. https://doi.org/10.1017/S095679250000053X doi: 10.1017/S095679250000053X
    [23] A. Novick-Cohen, L. A. Segel, Nonlinear aspects of the Cahn–Hilliard equation, Phys. D, 10 (1984), 277–298. https://doi.org/10.1016/0167-2789(84)90180-5 doi: 10.1016/0167-2789(84)90180-5
    [24] A. Debussche, L. Dettori, On the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491–1514. https://doi.org/10.1016/0362-546X(94)00205-V doi: 10.1016/0362-546X(94)00205-V
    [25] P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differ. Equ., (2000), No. 48, 26 pp. https://ejde.math.txstate.edu/Volumes/2000/48/fife.pdf
    [26] J. D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20 (1979), 200–244. https://doi.org/10.1007/BF01011514 doi: 10.1007/BF01011514
    [27] A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479–544. https://doi.org/10.3934/Math.2017.2.479 doi: 10.3934/Math.2017.2.479
    [28] D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation, Comput. Mat. Sci., 81 (2014), 216–225. https://doi.org/10.1016/j.commatsci.2013.08.027 doi: 10.1016/j.commatsci.2013.08.027
    [29] F. Otto, The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differ. Equ., 26 (2001), 101–174. https://doi.org/10.1081/PDE-100002243 doi: 10.1081/PDE-100002243
    [30] S. Lisini, D. Matthes, G. Savaré, Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics, J. Differ. Equ., 253 (2012), 814–850. https://doi.org/10.1016/j.jde.2012.04.004 doi: 10.1016/j.jde.2012.04.004
    [31] J. Rubinstein, P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249–264. https://doi.org/10.1093/imamat/48.3.249 doi: 10.1093/imamat/48.3.249
    [32] L. Onsager, Reciprocal relations in irreversible processes. Ⅰ., Phys. Rev., 37 (1931), 405–426. https://doi.org/10.1103/PhysRev.37.405 doi: 10.1103/PhysRev.37.405
    [33] L. Onsager, Reciprocal relations in irreversible processes. Ⅱ., Phys. Rev., 38 (1931), 2265–2279. https://doi.org/10.1103/PhysRev.38.2265 doi: 10.1103/PhysRev.38.2265
    [34] J. W. Strutt (Lord Rayleigh), Some general theorems relating to vibrations, Proc. London Math. Soc., 4 (1873), 357–368. https://doi.org/10.1112/plms/s1-4.1.357
    [35] B. Eisenberg, Y. Hyon, C. Liu, Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104. https://doi.org/10.1063/1.3476262 doi: 10.1063/1.3476262
    [36] Y. Hyon, D.-Y. Kwak, C. Liu, Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst., 26 (2010), 1291–1304. https://doi.org/10.3934/dcds.2010.26.1291 doi: 10.3934/dcds.2010.26.1291
    [37] C. Liu, H. Wu, An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis, Arch. Ration. Mech. Anal., 233 (2019), 167–247. https://doi.org/10.1007/s00205-019-01356-x doi: 10.1007/s00205-019-01356-x
    [38] A. M. Sonnet, E. G. Virga, Dissipative Ordered Fluids Theories for Liquid Crystals, Springer-Verlag, New York, 2012. https://doi.org/10.1007/978-0-387-87815-7
    [39] H. Wu, X. Xu, C. Liu, On the general Ericksen–Leslie system: Parodi's relation, well-posedness and stability, Arch. Ration. Mech. Anal., 208 (2013), 59–107. https://doi.org/10.1007/s00205-012-0588-2 doi: 10.1007/s00205-012-0588-2
    [40] S. Allen, J. W. Cahn, A microscopic theory for antiphase boundwy motion and its application to antiphase domain coarsing, Acta Metallurgica, 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [41] A. Miranville, The Cahn–Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 95., SIAM, Philadelphia, 2019. https://doi.org/10.1137/1.9781611975925
    [42] B. Nicolaenko, B. Scheurer, Low-dimensional behavior of the pattern formation Cahn–Hilliard equation, North-Holland Math. Stud., 110 (1985), 323–336. https://doi.org/10.1016/S0304-0208(08)72727-0 doi: 10.1016/S0304-0208(08)72727-0
    [43] C. M. Elliott, A. M. Stuart, Viscous Cahn–Hilliard equation, Ⅱ. Analysis, J. Differ. Equ., 128 (1996), 387–414. https://doi.org/10.1006/jdeq.1996.0101 doi: 10.1006/jdeq.1996.0101
    [44] B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differ. Equ., 14 (1989), 245–297. https://doi.org/10.1080/03605308908820597 doi: 10.1080/03605308908820597
    [45] V. K. Kalantarov, Global behavior of the solutions of certain fourth-order nonlinear equations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 163 (1987), 66–75; translation in J. Soviet Math., 49 (1990), 1160–1166. https://doi.org/10.1007/BF02208712
    [46] A. Novick-Cohen, On the viscous Cahn–Hilliard equation, in Material Instabilities in Continuum Mechanics and Related Mathematical Problems (editor J. M. Ball), Oxford Univ. Press, Oxford, (1988), 329–342.
    [47] M. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178–192. https://doi.org/10.1016/0167-2789(95)00173-5 doi: 10.1016/0167-2789(95)00173-5
    [48] F. Bai, C. M. Elliott, A. Gardiner, A. Spence, A. M. Stuart, The viscous Cahn–Hilliard equation, I. Computations, Nonlinearity, 8 (1995), 131–160. https://doi.org/10.1088/0951-7715/8/2/002 doi: 10.1088/0951-7715/8/2/002
    [49] J.-X. Yin, On the existence of nonnegative continuous solutions of the Cahn–Hilliard equation, J. Differ. Equ., 97 (1992), 310–327. https://doi.org/10.1016/0022-0396(92)90075-X doi: 10.1016/0022-0396(92)90075-X
    [50] C. M. Elliott, H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404–423. https://doi.org/10.1137/S0036141094267662 doi: 10.1137/S0036141094267662
    [51] S.-B. Dai, Q. Du, Weak solutions for the Cahn–Hilliard equation with degenerate mobility, Arch. Rational Mech. Anal., 219 (2016), 1161–1184. https://doi.org/10.1007/s00205-015-0918-2 doi: 10.1007/s00205-015-0918-2
    [52] C. M. Elliott, S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy, IMA preprint series, No. 887, Retrieved from the University of Minnesota Digital Conservancy, 1991. https://conservancy.umn.edu/handle/11299/1733
    [53] Y. Oono, S. Puri, Computionally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836–839. https://doi.org/10.1103/PhysRevLett.58.836 doi: 10.1103/PhysRevLett.58.836
    [54] A. Miranville, Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comput., 1 (2011), 523–536. https://doi.org/10.11948/2011036 doi: 10.11948/2011036
    [55] A. Giorgini, M. Grasselli, A. Miranville, The Cahn–Hilliard–Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), 2485–2510. https://doi.org/10.1142/S0218202517500506 doi: 10.1142/S0218202517500506
    [56] N. Kenmochi, M. Niezgódka, I. Pawłow, Subdifferential operator approach to the Cahn–Hilliard equation with constraint, J. Differ. Equ., 117 (1995), 320–354. https://doi.org/10.1006/jdeq.1995.1056 doi: 10.1006/jdeq.1995.1056
    [57] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, in: Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997. http://dx.doi.org/10.1090/surv/049
    [58] L. Cherfils, A. Miranville, S. Zelik, The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561–596. https://doi.org/10.1007/s00032-011-0165-4 doi: 10.1007/s00032-011-0165-4
    [59] A. Miranville, S. Zelik, Robust exponential attractors for Cahn–Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545–582. https://doi.org/10.1002/mma.464 doi: 10.1002/mma.464
    [60] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. http://www.math.sci.kobe-u.ac.jp/HOME/fe/xml/mr1610709.xml
    [61] A. Giorgini, M. Grasselli, H. Wu, The Cahn–Hilliard–Hele–Shaw system with singular potential, Ann. Inst. H. Poincaré Anal. Non Lineaire, 35 (2018), 1079–1118. https://doi.org/10.1016/j.anihpc.2017.10.002 doi: 10.1016/j.anihpc.2017.10.002
    [62] A. Giorgini, A. Miranville, R. Temam, Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system, SIAM J. Math. Anal., 51 (2019), 2535–2574. https://doi.org/10.1137/18M1223459 doi: 10.1137/18M1223459
    [63] J.-N. He, H. Wu, Global well-posedness of a Navier–Stokes–Cahn–Hilliard system with chemotaxis and singular potential in 2D, J. Differ. Equ., 297 (2021), 47–81. https://doi.org/10.1016/j.jde.2021.06.022 doi: 10.1016/j.jde.2021.06.022
    [64] G. Schimperna, H. Wu, On a class of sixth-order Cahn–Hilliard-type equations with logarithmic potential, SIAM J. Math. Anal., 52 (2020), 5155–5195. https://doi.org/10.1137/19M1290541 doi: 10.1137/19M1290541
    [65] H. Abels, M. Wilke, Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176–3193. https://doi.org/10.1016/j.na.2006.10.002 doi: 10.1016/j.na.2006.10.002
    [66] K. Binder, H. L. Frisch, Dynamics of surface enrichment: a theory based on the Kawasaki spin-exchange model in the presence of a wall, Z. Phys. B, 84 (1991), 403–418. https://doi.org/10.1007/BF01314015 doi: 10.1007/BF01314015
    [67] J. W. Cahn, C. M. Elliott, A. Novick-Cohen, The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math., 7 (1996), 287–301. https://doi.org/10.1017/S0956792500002369 doi: 10.1017/S0956792500002369
    [68] J. W. Cahn, J. E. Taylor, Surface motion by surface diffusion, Acta Metallurgica, 42 (1994), 1045–1063. https://doi.org/10.1016/0956-7151(94)90123-6 doi: 10.1016/0956-7151(94)90123-6
    [69] L. Calatroni, P. Colli, Global solution to the Allen–Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12–27. https://doi.org/10.1016/j.na.2012.11.010 doi: 10.1016/j.na.2012.11.010
    [70] C. Cavaterra, C. G. Gal, M. Grasselli, Cahn–Hilliard equations with memory and dynamic boundary conditions, Asymptot. Anal., 71 (2011), 123–162. https://doi.org/10.3233/ASY-2010-1019 doi: 10.3233/ASY-2010-1019
    [71] C. Cavaterra, M. Grasselli, H. Wu, Non-isothermal viscous Cahn–Hilliard equation with inertial term and dynamic boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 1855–1890. https://doi.org/10.3934/cpaa.2014.13.1855 doi: 10.3934/cpaa.2014.13.1855
    [72] X.-F. Chen, M. Kowalczyk, Existence of equilibria for the Cahn–Hilliard equation via local minimizers of the perimeter, Comm. Partial Differ. Equ., 21 (1996), 1207–1233. https://doi.org/10.1080/03605309608821223 doi: 10.1080/03605309608821223
    [73] X.-F. Chen, X.-P. Wang, X.-M. Xu, Analysis of the Cahn–Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Rational Mech. Anal., 213 (2014), 1–24. https://doi.org/10.1007/s00205-013-0713-x doi: 10.1007/s00205-013-0713-x
    [74] L. Cherfils, S. Gatti, A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials, J. Math. Anal. Appl., 343 (2008), 557–566. https://doi.org/10.1016/j.jmaa.2008.01.077 With Corrigendum: J. Math. Anal. Appl., 348 (2008), 1029–1030. https://doi.org/10.1016/j.jmaa.2008.01.077
    [75] L. Cherfils, S. Gatti, A. Miranville, A variational approach to a Cahn–Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.), 189 (2012), 604–636. https://doi.org/10.1007/s10958-013-1211-2 doi: 10.1007/s10958-013-1211-2
    [76] L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89–115. https://doi.org/10.1007/s10492-009-0008-6 doi: 10.1007/s10492-009-0008-6
    [77] R. Chill, On the Łojasiewicz–Simon gradient inequality, J. Funct. Anal., 201 (2003), 572–601. https://doi.org/10.1016/S0022-1236(02)00102-7 doi: 10.1016/S0022-1236(02)00102-7
    [78] R. Chill, E. Fašangová, J. Prüss, Convergence to steady states of solutions of the Cahn–Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448–1462. https://doi.org/10.1002/mana.200410431 doi: 10.1002/mana.200410431
    [79] P. Colli, T. Fukao, Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429 (2015), 1190–1213. https://doi.org/10.1016/j.jmaa.2015.04.057 doi: 10.1016/j.jmaa.2015.04.057
    [80] P. Colli, T. Fukao, Equation and dynamic boundary condition of Cahn–Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413–433. https://doi.org/10.1016/j.na.2015.07.011 doi: 10.1016/j.na.2015.07.011
    [81] P. Colli, T. Fukao, Cahn–Hilliard equation on the boundary with bulk condition of Allen–Cahn type, Adv. Nonlinear Anal., 9 (2020), 16–38. https://doi.org/10.1515/anona-2018-0055 doi: 10.1515/anona-2018-0055
    [82] P. Colli, T. Fukao, Vanishing diffusion in a dynamic boundary condition for the Cahn–Hilliard equation, NoDEA Nonlinear Differ. Equ. Appl., 27 (2020), Paper No. 53, 27 pp. https://doi.org/10.1007/s00030-020-00654-8 doi: 10.1007/s00030-020-00654-8
    [83] P. Colli, T. Fukao, K.-F. Lam, On a coupled bulk-surface Allen–Cahn system with an affine linear transmission condition and its approximation by a Robin boundary condition, Nonlinear Anal., 184 (2019), 116–147. https://doi.org/10.1016/j.na.2018.10.018 doi: 10.1016/j.na.2018.10.018
    [84] P. Colli, T. Fukao, H. Wu, On a transmission problem for equation and dynamic boundary condition of Cahn–Hilliard type with nonsmooth potentials, Math. Nachr., 293 (2020), 2051–2081. https://doi.org/10.1002/mana.201900361 doi: 10.1002/mana.201900361
    [85] P. Colli, G. Gilardi, J. Sprekels, On the Cahn–Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), 972–994. https://doi.org/10.1016/j.jmaa.2014.05.008 doi: 10.1016/j.jmaa.2014.05.008
    [86] P. Colli, G. Gilardi, J. Sprekels, Global existence for a nonstandard viscous Cahn–Hilliard system with dynamic boundary condition, SIAM J. Math. Anal., 49 (2017), 1732–1760. https://doi.org/10.1137/16M1087539 doi: 10.1137/16M1087539
    [87] P. Colli, G. Gilardi, J. Sprekels, On a Cahn–Hilliard system with convection and dynamic boundary conditions, Ann. Mat. Pura Appl., 197 (2018), 1445–1475. https://doi.org/10.1007/s10231-018-0732-1 doi: 10.1007/s10231-018-0732-1
    [88] P. Colli, G. Gilardi, J. Sprekels, On the longtime behavior of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions, J. Elliptic Parabol. Equ., 4 (2018), 327–347. https://doi.org/10.1007/s41808-018-0021-6 doi: 10.1007/s41808-018-0021-6
    [89] P. Colli, A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differ. Equ., 15 (1990), 737–756. https://doi.org/10.1080/03605309908820706 doi: 10.1080/03605309908820706
    [90] R. Denk, J. Prüss, R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149–3187. https://doi.org/10.1016/j.jfa.2008.07.012 doi: 10.1016/j.jfa.2008.07.012
    [91] C. M. Elliott, S.-M. Zheng, On the Cahn–Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339–357. https://doi.org/10.1007/BF00251803 doi: 10.1007/BF00251803
    [92] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differ. Equ., 18 (1993), 1309–1364. https://doi.org/10.1080/03605309308820976 doi: 10.1080/03605309308820976
    [93] A. Favini, G. R. Goldstein, J. A. Goldstein, S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1–19. https://doi.org/10.1007/s00028-002-8077-y doi: 10.1007/s00028-002-8077-y
    [94] E. Feireisl, F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynam. Differ. Equ., 12 (2000), 647–673. https://doi.org/10.1023/A:1026467729263 doi: 10.1023/A:1026467729263
    [95] H. P. Fischer, P. Maass, W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893–896. https://doi.org/10.1103/PhysRevLett.79.893 doi: 10.1103/PhysRevLett.79.893
    [96] T. Fukao, H. Wu, Separation property and convergence to equilibrium for the equation and dynamic boundary condition of Cahn–Hilliard type with singular potential, Asymptot. Anal., 124 (2021), 303–341. https://doi.org/10.3233/ASY-201646 doi: 10.3233/ASY-201646
    [97] H. Gajewski, J. Griepentrog, A descent method for the free energy of multicomponent systems, Discrete Contin. Dyn. Syst., 15 (2006), 505–528. https://doi.org/10.3934/dcds.2006.15.505 doi: 10.3934/dcds.2006.15.505
    [98] C. G. Gal, A Cahn–Hilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci., 29 (2006), 2009–2036. https://doi.org/10.1002/mma.757 doi: 10.1002/mma.757
    [99] C. G. Gal, Exponential attractors for a Cahn–Hilliard model in bounded domains with permeable walls, Electron. J. Differ. Equ., (2006), No. 143, 23 pp. https://ejde.math.txstate.edu/Volumes/2006/143/gal.pdf
    [100] C. G. Gal, Global well-posedness for the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions, Adv. Differ. Equ., 12 (2007), 1241–1274. https://projecteuclid.org/journals/advances-in-differential-equations/volume-12/issue-11/Global-well-posedness-for-the-non-isothermal-Cahn-Hilliard-equation/ade/1355867414.full
    [101] C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation with dynamic boundary conditions, Dyn. Partial Differ. Equ., 5 (2008), 39–67. https://dx.doi.org/10.4310/DPDE.2008.v5.n1.a2 doi: 10.4310/DPDE.2008.v5.n1.a2
    [102] C. G. Gal, Robust exponential attractors for a conserved Cahn–Hillard model with singularly perturbed boundary conditions, Commun. Pure Appl. Anal., 7 (2008), 819–836. https://doi.org/10.3934/cpaa.2008.7.819 doi: 10.3934/cpaa.2008.7.819
    [103] C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand? Milan J. Math., 83 (2015), 237–278. https://doi.org/10.1007/s00032-015-0242-1 doi: 10.1007/s00032-015-0242-1
    [104] C. G. Gal, Nonlocal Cahn–Hilliard equations with fractional dynamic boundary conditions, Eur. J. Appl. Math., 28 (2017), 736–788. https://doi.org/10.1017/S0956792516000504 doi: 10.1017/S0956792516000504
    [105] C. G. Gal, M. Grasselli, On the asymptotic behavior of the Caginalp system with dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 689–710. https://doi.org/10.3934/cpaa.2009.8.689 doi: 10.3934/cpaa.2009.8.689
    [106] C. G. Gal, M. Grasselli, A. Miranville, Cahn–Hilliard–Navier–Stokes systems with moving contact lines, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 50, 47 pp. https://doi.org/10.1007/s00526-016-0992-9 doi: 10.1007/s00526-016-0992-9
    [107] C. Gal, M. Grasselli, H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Rational Mech. Anal., 234 (2019), 1–56. https://doi.org/10.1007/s00205-019-01383-8 doi: 10.1007/s00205-019-01383-8
    [108] C. G. Gal, A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738–1766. https://doi.org/10.1016/j.nonrwa.2008.02.013 doi: 10.1016/j.nonrwa.2008.02.013
    [109] C. G. Gal, A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn–Hilliard equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113–147. https://doi.org/10.3934/dcdss.2009.2.113 doi: 10.3934/dcdss.2009.2.113
    [110] C. G. Gal, H. Wu, Asymptotic behavior of a Cahn–Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst., 22 (2008), 1041–1063. https://doi.org/10.3934/dcds.2008.22.1041 doi: 10.3934/dcds.2008.22.1041
    [111] H. Garcke, P. Knopf, Weak solutions of the Cahn–Hilliard system with dynamic boundary conditions: a gradient flow approach, SIAM J. Math. Anal., 52 (2020), 340–369. https://doi.org/10.1137/19M1258840 doi: 10.1137/19M1258840
    [112] H. Garcke, P. Knopf, S. Yayla, Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions, Nonlinear Anal., 215 (2022), Paper No. 112619. https://doi.org/10.1016/j.na.2021.112619 doi: 10.1016/j.na.2021.112619
    [113] G. Gilardi, A. Miranville, G. Schimperna, On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881–912. 10.3934/cpaa.2009.8.881 doi: 10.3934/cpaa.2009.8.881
    [114] G. Gilardi, A. Miranville, G. Schimperna, Long time behavior of the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679–712. https://doi.org/10.1007/s11401-010-0602-7 doi: 10.1007/s11401-010-0602-7
    [115] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differ. Equ., 11 (2006), 457–480. https://projecteuclid.org/journals/advances-in-differential-equations/volume-11/issue-4/Derivation-and-physical-interpretation-of-general-boundary-conditions/ade/1355867704.full
    [116] G. R. Goldstein, A. Miranville, G. Schimperna, A Cahn–Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754–766. https://doi.org/10.1016/j.physd.2010.12.007 doi: 10.1016/j.physd.2010.12.007
    [117] M. Grasselli, A. Miranville, G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67–98. https://doi.org/10.3934/dcds.2010.28.67 doi: 10.3934/dcds.2010.28.67
    [118] M. Grinfeld, A. Novick-Cohen, Counting stationary solutions of the Cahn–Hilliard equation by transversality argument, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351–370. https://doi.org/10.1017/S0308210500028079 doi: 10.1017/S0308210500028079
    [119] A. Haraux, M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptotic Anal., 26 (2001), 21–36. https://content.iospress.com/articles/asymptotic-analysis/asy437
    [120] S.-Z. Huang, Gradient Inequalities, with Applications to Asymptotic Behavior and Stability of Gradient-like Systems, Mathematical Surveys and Monographs, 126, AMS, 2006. http://dx.doi.org/10.1090/surv/126
    [121] M. A. Jendoubi, A simple unified approach to some convergence theorem of L. Simon, J. Funct. Anal., 153 (1998), 187–202. https://doi.org/10.1006/jfan.1997.3174 doi: 10.1006/jfan.1997.3174
    [122] N. Kajiwara, Global well-posedness for a Cahn–Hilliard equation on bounded domains with permeable and non-permeable walls in maximal regularity spaces, Adv. Math. Sci. Appl., 27 (2018), 277–298. https://mcm-www.jwu.ac.jp/aikit/AMSA/pdf/abstract/2018/014_2018_top.pdf
    [123] R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, W. Dieterich, Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139–157. https://doi.org/10.1016/S0010-4655(00)00159-4 doi: 10.1016/S0010-4655(00)00159-4
    [124] P. Knopf, K.-F. Lam, Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary conditions, Nonlinearity, 33 (2020), 4191–4235. https://doi.org/10.1088/1361-6544/ab8351 doi: 10.1088/1361-6544/ab8351
    [125] P. Knopf, K.-F. Lam, C. Liu, S. Metzger, Phase-field dynamics with transfer of materials: the Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 55 (2021), 229–282. https://doi.org/10.1051/m2an/2020090 doi: 10.1051/m2an/2020090
    [126] K.-F. Lam, H. Wu, Convergence to equilibrium for a bulk-surface Allen–Cahn system coupled through a nonlinear Robin boundary condition, Discrete Contin. Dyn. Syst., 40 (2020), 1847–1878. https://doi.org/10.3934/dcds.2020096 doi: 10.3934/dcds.2020096
    [127] S. O. Londen, H. Petzeltová, Regularity and separation from potential barriers for the Cahn–Hilliard equation with singular potential, J. Evol. Equ., 18 (2018), 1381–1393. https://doi.org/10.1007/s00028-018-0446-2 doi: 10.1007/s00028-018-0446-2
    [128] A. Miranville, H. Wu, Long-time behavior of the Cahn–Hilliard equation with dynamic boundary condition, J. Elliptic Parabol. Equ., 6 (2020), 283–309. https://doi.org/10.1007/s41808-020-00072-y doi: 10.1007/s41808-020-00072-y
    [129] A. Miranville, S. Zelik, Exponential attractors for the Cahn–Hilliard equation with dynamical boundary conditions, Math. Meth. Appl. Sci., 28 (2005), 709–735. https://doi.org/10.1002/mma.590 doi: 10.1002/mma.590
    [130] A. Miranville, S. Zelik, The Cahn–Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275–310. https://doi.org/10.3934/dcds.2010.28.275 doi: 10.3934/dcds.2010.28.275
    [131] P. Polačik, F. Simondon, Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains, J. Differ. Equ., 186 (2002), 586–610. https://doi.org/10.1016/S0022-0396(02)00014-1 doi: 10.1016/S0022-0396(02)00014-1
    [132] J. Prüss, R. Racke, S.-M. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl., 185 (2006), 627–648. https://doi.org/10.1007/s10231-005-0175-3 doi: 10.1007/s10231-005-0175-3
    [133] J. Prüss, M. Wilke, Maximal $L_p$-regularity and long-time behaviour of the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions, in Partial Differential Equations and Functional Analysis, Oper. Theory Adv. Appl., 168, Birkhäuser, Basel, (2006), 209–236. https://doi.org/10.1007/3-7643-7601-5_13
    [134] R. Racke, S.-M. Zheng, The Cahn–Hilliard equation with dynamical boundary conditions, Adv. Differ. Equ., 8 (2003), 83–110. https://projecteuclid.org/journals/advances-in-differential-equations/volume-8/issue-1/The-Cahn-Hilliard-equation-with-dynamic-boundary-conditions/ade/1355926869.full
    [135] P. Rybka, K. H. Hoffmann, Convergence of solutions to Cahn–Hilliard equation, Comm. Partial Differ. Equ., 24 (1999), 1055–1077. https://doi.org/10.1080/03605309908821458 doi: 10.1080/03605309908821458
    [136] G. Schimperna, Global attractors for Cahn–Hilliard equations with nonconstant mobility, Nonlinearity, 20 (2007), 2365–2387. https://doi.org/10.1088/0951-7715/20/10/006 doi: 10.1088/0951-7715/20/10/006
    [137] W.-X. Shen, S.-M. Zheng, On the coupled Cahn–Hilliard equations, Comm. Partial Differ. Equ., 18 (1993), 701–727. https://doi.org/10.1080/03605309308820946 doi: 10.1080/03605309308820946
    [138] W.-X. Shen, S.-M. Zheng, Maximal attractor for the coupled Cahn–Hilliard equations, Nonlinear Anal., 49 (2002), 21–34. https://doi.org/10.1016/S0362-546X(00)00246-7 doi: 10.1016/S0362-546X(00)00246-7
    [139] L. Simon, Asymptotics for a class of nonlinear evolution equation with applications to geometric problems, Ann. Math., 118 (1983), 525–571. https://doi.org/10.2307/2006981 doi: 10.2307/2006981
    [140] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988. https://doi.org/10.1007/978-1-4612-0645-3
    [141] J.-C. Wei, M. Winter, Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré, 15 (1998), 459–492. https://doi.org/10.1016/S0294-1449(98)80031-0 doi: 10.1016/S0294-1449(98)80031-0
    [142] H. Wu, Convergence to equilibrium for a Cahn–Hilliard model with the Wentzell boundary condition, Asymptot. Anal., 54 (2007), 71–92. https://content.iospress.com/articles/asymptotic-analysis/asy839
    [143] H. Wu, M. Grasselli, S.-M. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with dynamical boundary condition, J. Math. Anal. Appl., 329 (2007), 948–976. https://doi.org/10.1016/j.jmaa.2006.07.011 doi: 10.1016/j.jmaa.2006.07.011
    [144] H. Wu, S.-M. Zheng, Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary condition, J. Differ. Equ., 204 (2004), 511–531. https://doi.org/10.1016/j.jde.2004.05.004 doi: 10.1016/j.jde.2004.05.004
    [145] S.-M. Zheng, Asymptotic behavior of solution to the Cahn–Hillard equation, Appl. Anal., 23 (1986), 165–184. https://doi.org/10.1080/00036818608839639 doi: 10.1080/00036818608839639
    [146] S.-M. Zheng, Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, Florida, 2004. https://doi.org/10.1201/9780203492222
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9111) PDF downloads(1339) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog