Research article

A new method to construct model structures from left Frobenius pairs in extriangulated categories

  • Received: 25 July 2021 Revised: 12 March 2022 Accepted: 20 March 2022 Published: 23 May 2022
  • Extriangulated categories were introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. In this paper, we first introduce the concept of left Frobenius pairs on an extriangulated category $ \mathcal{C} $, and then establish a bijective correspondence between left Frobenius pairs and certain cotorsion pairs in $ \mathcal{C} $. As an application, some new admissible model structures are established from left Frobenius pairs under certain conditions, which generalizes a result of Hu et al. (J. Algebra 551 (2020) 23–60).

    Citation: Yajun Ma, Haiyu Liu, Yuxian Geng. A new method to construct model structures from left Frobenius pairs in extriangulated categories[J]. Electronic Research Archive, 2022, 30(8): 2774-2787. doi: 10.3934/era.2022142

    Related Papers:

  • Extriangulated categories were introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. In this paper, we first introduce the concept of left Frobenius pairs on an extriangulated category $ \mathcal{C} $, and then establish a bijective correspondence between left Frobenius pairs and certain cotorsion pairs in $ \mathcal{C} $. As an application, some new admissible model structures are established from left Frobenius pairs under certain conditions, which generalizes a result of Hu et al. (J. Algebra 551 (2020) 23–60).



    加载中


    [1] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég., 60 (2019), 117–193.
    [2] J. Gillespie, Model structures on exact categories, J. Pure Appl. Algebra, 215 (2011), 2892–2902. https://doi.org/10.1016/j.jpaa.2011.04.010 doi: 10.1016/j.jpaa.2011.04.010
    [3] M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z., 241 (2002), 553–592. https://doi.org/10.1007/s00209-002-0431-9 doi: 10.1007/s00209-002-0431-9
    [4] X. Y. Yang, Model structures on triangulated categories, Glasg. Math. J., 57 (2015), 263–284. https://doi.org/10.1017/S0017089514000299 doi: 10.1017/S0017089514000299
    [5] J. S. Hu, D. D. Zhang, P. Y. Zhou, Proper classes and Gorensteinness in extriangulated categories, J. Algebra, 551 (2020), 23–60. https://doi.org/10.1016/j.jalgebra.2019.12.028 doi: 10.1016/j.jalgebra.2019.12.028
    [6] P. Y. Zhou, B. Zhu, Triangulated quotient categories revisited, J. Algebra, 502 (2018), 196–232. https://doi.org/10.1016/j.jalgebra.2018.01.031 doi: 10.1016/j.jalgebra.2018.01.031
    [7] V. Becerril, O. Mendoza, M. A. P$\mathrm{\acute{e}}$rez, V. Santiago, Frobenius pairs in abelian categories: Correspondences with cotorsions pairs, exact model categories, and Auslander-Buchweitz contexts, J. Homotopy Relat. Struct., 14 (2019), 1–50.
    [8] Z. X. Di, Z. K. Liu, J. P. Wang, J. Q. Wei, An Auslander-Buchweitz approximation approach to (pre)silting subcategories in triangulated categories, J. Algebra, 525 (2019), 42–63. https://doi.org/10.1016/j.jalgebra.2019.01.021 doi: 10.1016/j.jalgebra.2019.01.021
    [9] O. Mendoza Hern$\acute{\mathrm{a}}$ndez, E. S$\acute{\mathrm{a}}$enz, V. Santiago Vargas, M. Souto Salorio, Auslander-Buchweitz approximation theory for triangulated categories, Appl. Categ. Structures, 21 (2013a), 119–139. https://doi.org/10.1007/s10485-011-9261-4 doi: 10.1007/s10485-011-9261-4
    [10] O. Mendoza Hern$\acute{\mathrm{a}}$ndez, E. S$\acute{\mathrm{a}}$enz, V. Santiago Vargas, M. Souto Salorio, Auslander-Buchweitz context and co-t-structures, Appl. Categ. Structures, 21 (2013b), 417–440. https://doi.org/10.1007/s10485-011-9271-2 doi: 10.1007/s10485-011-9271-2
    [11] B. Zhu, X. Zhuang, Tilting subcategories in extriangulated categories, Front. Math. China, 15 (2020), 225–253. https://doi.org/10.1007/s11464-020-0811-7 doi: 10.1007/s11464-020-0811-7
    [12] Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005
    [13] M. Auslander, R. O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mem. Soc. Math. France, 38 (1989), 5–37. https://doi.org/10.24033/msmf.339 doi: 10.24033/msmf.339
    [14] Y. J. Ma, N. Q. Ding, Y. F. Zhang, J. S. Hu, A new characterization of silting subcategories in the stable category of a Frobenius extriangulated category, arXiv preprint, arXiv: 2012. 03779v2.
    [15] J. Asadollahi, S. Salarian, Gorenstein objects in triangulated categories, J. Algebra, 281 (2004), 264–286. https://doi.org/10.1016/j.jalgebra.2004.07.027 doi: 10.1016/j.jalgebra.2004.07.027
    [16] O. Iyama, D. Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc., 370 (2018), 7861–7898. https://doi.org/10.1090/tran/7213 doi: 10.1090/tran/7213
    [17] W. J. Chen, Z. K. Liu, X. Y. Yang, A new method to construct model structures from a cotorsion pair, Comm. Algebra, 47 (2017), 4420–4431.
    [18] H. Holm, D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47 (2007), 781–808. https://doi.org/10.1215/kjm/1250692289 doi: 10.1215/kjm/1250692289
    [19] H. Holm, P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205 (2006), 423–445. https://doi.org/10.1016/j.jpaa.2005.07.010 doi: 10.1016/j.jpaa.2005.07.010
    [20] Y. X. Geng, N. Q. Ding, $\mathcal{W}$-Gorenstein modules, J. Algebra, 325 (2011), 132–146.
    [21] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc., 77 (2008), 481–502. https://doi.org/10.1112/jlms/jdm124 doi: 10.1112/jlms/jdm124
    [22] T. Bühler, Exact categories, Expo. Math., 28 (2010), 1–69. https://doi.org/10.1016/j.exmath.2009.04.004 doi: 10.1016/j.exmath.2009.04.004
    [23] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, New York, 2000. https://doi.org/10.1515/9783110803662
    [24] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. https://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1384) PDF downloads(84) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog