Extriangulated categories were introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. In this paper, we first introduce the concept of left Frobenius pairs on an extriangulated category $ \mathcal{C} $, and then establish a bijective correspondence between left Frobenius pairs and certain cotorsion pairs in $ \mathcal{C} $. As an application, some new admissible model structures are established from left Frobenius pairs under certain conditions, which generalizes a result of Hu et al. (J. Algebra 551 (2020) 23–60).
Citation: Yajun Ma, Haiyu Liu, Yuxian Geng. A new method to construct model structures from left Frobenius pairs in extriangulated categories[J]. Electronic Research Archive, 2022, 30(8): 2774-2787. doi: 10.3934/era.2022142
Extriangulated categories were introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. In this paper, we first introduce the concept of left Frobenius pairs on an extriangulated category $ \mathcal{C} $, and then establish a bijective correspondence between left Frobenius pairs and certain cotorsion pairs in $ \mathcal{C} $. As an application, some new admissible model structures are established from left Frobenius pairs under certain conditions, which generalizes a result of Hu et al. (J. Algebra 551 (2020) 23–60).
[1] | H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég., 60 (2019), 117–193. |
[2] | J. Gillespie, Model structures on exact categories, J. Pure Appl. Algebra, 215 (2011), 2892–2902. https://doi.org/10.1016/j.jpaa.2011.04.010 doi: 10.1016/j.jpaa.2011.04.010 |
[3] | M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z., 241 (2002), 553–592. https://doi.org/10.1007/s00209-002-0431-9 doi: 10.1007/s00209-002-0431-9 |
[4] | X. Y. Yang, Model structures on triangulated categories, Glasg. Math. J., 57 (2015), 263–284. https://doi.org/10.1017/S0017089514000299 doi: 10.1017/S0017089514000299 |
[5] | J. S. Hu, D. D. Zhang, P. Y. Zhou, Proper classes and Gorensteinness in extriangulated categories, J. Algebra, 551 (2020), 23–60. https://doi.org/10.1016/j.jalgebra.2019.12.028 doi: 10.1016/j.jalgebra.2019.12.028 |
[6] | P. Y. Zhou, B. Zhu, Triangulated quotient categories revisited, J. Algebra, 502 (2018), 196–232. https://doi.org/10.1016/j.jalgebra.2018.01.031 doi: 10.1016/j.jalgebra.2018.01.031 |
[7] | V. Becerril, O. Mendoza, M. A. P$\mathrm{\acute{e}}$rez, V. Santiago, Frobenius pairs in abelian categories: Correspondences with cotorsions pairs, exact model categories, and Auslander-Buchweitz contexts, J. Homotopy Relat. Struct., 14 (2019), 1–50. |
[8] | Z. X. Di, Z. K. Liu, J. P. Wang, J. Q. Wei, An Auslander-Buchweitz approximation approach to (pre)silting subcategories in triangulated categories, J. Algebra, 525 (2019), 42–63. https://doi.org/10.1016/j.jalgebra.2019.01.021 doi: 10.1016/j.jalgebra.2019.01.021 |
[9] | O. Mendoza Hern$\acute{\mathrm{a}}$ndez, E. S$\acute{\mathrm{a}}$enz, V. Santiago Vargas, M. Souto Salorio, Auslander-Buchweitz approximation theory for triangulated categories, Appl. Categ. Structures, 21 (2013a), 119–139. https://doi.org/10.1007/s10485-011-9261-4 doi: 10.1007/s10485-011-9261-4 |
[10] | O. Mendoza Hern$\acute{\mathrm{a}}$ndez, E. S$\acute{\mathrm{a}}$enz, V. Santiago Vargas, M. Souto Salorio, Auslander-Buchweitz context and co-t-structures, Appl. Categ. Structures, 21 (2013b), 417–440. https://doi.org/10.1007/s10485-011-9271-2 doi: 10.1007/s10485-011-9271-2 |
[11] | B. Zhu, X. Zhuang, Tilting subcategories in extriangulated categories, Front. Math. China, 15 (2020), 225–253. https://doi.org/10.1007/s11464-020-0811-7 doi: 10.1007/s11464-020-0811-7 |
[12] | Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005 |
[13] | M. Auslander, R. O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mem. Soc. Math. France, 38 (1989), 5–37. https://doi.org/10.24033/msmf.339 doi: 10.24033/msmf.339 |
[14] | Y. J. Ma, N. Q. Ding, Y. F. Zhang, J. S. Hu, A new characterization of silting subcategories in the stable category of a Frobenius extriangulated category, arXiv preprint, arXiv: 2012. 03779v2. |
[15] | J. Asadollahi, S. Salarian, Gorenstein objects in triangulated categories, J. Algebra, 281 (2004), 264–286. https://doi.org/10.1016/j.jalgebra.2004.07.027 doi: 10.1016/j.jalgebra.2004.07.027 |
[16] | O. Iyama, D. Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc., 370 (2018), 7861–7898. https://doi.org/10.1090/tran/7213 doi: 10.1090/tran/7213 |
[17] | W. J. Chen, Z. K. Liu, X. Y. Yang, A new method to construct model structures from a cotorsion pair, Comm. Algebra, 47 (2017), 4420–4431. |
[18] | H. Holm, D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47 (2007), 781–808. https://doi.org/10.1215/kjm/1250692289 doi: 10.1215/kjm/1250692289 |
[19] | H. Holm, P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205 (2006), 423–445. https://doi.org/10.1016/j.jpaa.2005.07.010 doi: 10.1016/j.jpaa.2005.07.010 |
[20] | Y. X. Geng, N. Q. Ding, $\mathcal{W}$-Gorenstein modules, J. Algebra, 325 (2011), 132–146. |
[21] | S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc., 77 (2008), 481–502. https://doi.org/10.1112/jlms/jdm124 doi: 10.1112/jlms/jdm124 |
[22] | T. Bühler, Exact categories, Expo. Math., 28 (2010), 1–69. https://doi.org/10.1016/j.exmath.2009.04.004 doi: 10.1016/j.exmath.2009.04.004 |
[23] | E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, New York, 2000. https://doi.org/10.1515/9783110803662 |
[24] | H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. https://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007 |