Citation: Annika Bihs, Mike Long, Steinar Nordal. Geotechnical characterization of Halsen-Stjørdal silt, Norway[J]. AIMS Geosciences, 2020, 6(3): 355-377. doi: 10.3934/geosci.2020020
[1] | Senneset K, Sandven R, Janbu N (1989) Evaluation of soil parameters from piezocone tests. Transp Res Rec, 24-37. |
[2] | Long M, Gudjonsson G, Donohue S, et al. (2010) Engineering characterisation of Norwegian glaciomarine silt. Eng Geol 110: 51-65. doi: 10.1016/j.enggeo.2009.11.002 |
[3] | Blaker Ø , Carroll R, Paniagua P, et al. (2019) Halden research site: geotechnical characterization of a post glacial silt. AIMS Geosci 5: 184-234. doi: 10.3934/geosci.2019.2.184 |
[4] | Lunne T, Berre T, Strandvik S (1997) Sample disturbance effects in soft low plastic Norwegian clay. In: Recent Developments in Soil and Pavement Mechanics. Rio de Janeiro, Brazil: Balkema, 81-102. |
[5] | Andresen A, Kolstad P (1979) The NGI 54 mm sampler for undisturbed sampling of clays and representative sampling of coarse materials. In: International Symposium on soil sampling. Singapore, 13-21. |
[6] | DeJong JT, Krage CP, Albin BM, et al. (2018) Work-Based Framework for Sample Quality Evaluation of Low Plasticity Soils. J Geotech Geoenviron Eng 144: 04018074. doi: 10.1061/(ASCE)GT.1943-5606.0001941 |
[7] | Janbu N (1963) Soil compressibility as determined by odometer and triaxial tests. In: 3rd European Conference on Soil Mechanics and Foundation Engineering. Wiesbaden, Germany, 19-25. |
[8] | Becker DE, Crooks JHA, Been K, et al. (1987) Work as a criterion for determining in situ and yield stresses in clays. Can Geotech J 24: 549-564. doi: 10.1139/t87-070 |
[9] | Brandon TL, Rose AT, Duncan JM (2006) Drained and Undrained Strength Interpretation for Low-Plasticity Silts. J Geotech Geoenviron Eng 132: 250-257. doi: 10.1061/(ASCE)1090-0241(2006)132:2(250) |
[10] | Schneider J, Randolph M, Mayne P, et al. (2008) Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters. J Geotech Geoenviron Eng 134: 1569-1586. doi: 10.1061/(ASCE)1090-0241(2008)134:11(1569) |
[11] | Robertson P (1990) Soil classification using the cone penetration test. Can Geotech J 27: 151-158. doi: 10.1139/t90-014 |
[12] | Sveian H (1995) Sandsletten blir til: Stjø rdal fra fjordbunn til strandsted. Trondheim: Norges Geologiske Undersø kelse (NGU). |
[13] | NGU (2020) Superficial deposits—National Database, Geological Survey of Norway (NGU). Available from: http://geo.ngu.no/kart/losmasse_mobil/?lang=eng. |
[14] | Sandven R (2003) Geotechnical properties of a natural silt deposit obtained from field and laboratory tests. In: International Workshop on characterization and engineering properties of natural soils. Singapore: Balkema, 1121-1148. |
[15] | Lunne T, Robertson PK, Powell JJM (1997) Cone Penetration Testing in Geotechnical Practice: Blackie Academic and Professional. |
[16] | Amundsen HA, Thakur V (2018) Storage Duration Effects on Soft Clay Samples. Geotech Test J 42: 1031-1054. |
[17] | NGU (2020) Arealinformasjon—Norge og Svalbard med havområ der, Geological Survey of Norway (NGU). Available from: http://geo.ngu.no/kart/arealis_mobil/?extent=296823,7044369,297380,7044631. |
[18] | ISO (2012) Geotechnical investigation and testing—Field testing. Part I: Electrical cone and piezocone penetration test. Geneva, Switzerland: International Organization for Standardization (ISO). |
[19] | Senneset K, Janbu N (1985) Shear strength parameters obtained from static cone penetration tests. In: ASTM Speciality Conference, Strength Testing of Marine Sediments, Laboratory and In Situ Measurements. San Diego, 41-54. |
[20] | Robertson P, Campanella RG, Gillespie D, et al. (1986) Use of piezometer cone data. In: ASCE Speciality Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering. Blacksburg, 1263-1280. |
[21] | Nazarian S, Stokoe KH (1984) In situ shear wave velocities from spectral analysis of surface waves. 8th World Conference on Earthquake Engineering. San Francisco, 31-38. |
[22] | Park CB, Miller DM, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64: 800-808. doi: 10.1190/1.1444590 |
[23] | Heisey JS, Stokoe KH, Meyer AH (1982) Moduli of pavement systems for spectral analysis of surface waves. In: 61st Annual Meeting of the Transportation Research Boad. Washington, D.C., 22-31. |
[24] | NIBS (2003) National Earthquake Hazard Reduction Program (NEHRP)—Recommended provisions for seismic regulations for new buildings and other structures (FEMA 450) Part 1: Provisions. Building Seismic Safety Council of the National Instiute of Building Sciences (NIBS). Washington, D.C. |
[25] | Lunne T, Long M, Forsberg CF (2003) Characterization and engineering properties of Holmen, Drammen sand. Characterisation and Engineering Properties of Natural Soils. Singapore, 1121-1148. |
[26] | NGF (2013) Melding 11: Veiledning for prø vetaking (in Norwegian). Oslo, Norway: Norwegian Geotechnical Society (NGF). |
[27] | Terzaghi K, Peck RB, Mesri G (1996) Soil Mechanics in Engineering Practice. John Wiley and Sons. |
[28] | Lunne T, Berre T, Andersen KH, et al. (2006) Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Can Geotech J 43: 726-750. doi: 10.1139/t06-040 |
[29] | Long M, Sandven R, Gudjonsson GT (2005) Parameterbestemmelser for siltige materialer. Delrapport C (in Norwegian). Statens Vegvesen. |
[30] | Carroll R, Long M (2017) Sample Disturbance Effects in Silt. J Geotech Geoenviron Eng 143: 04017061. doi: 10.1061/(ASCE)GT.1943-5606.0001749 |
[31] | Donohue S, Long M (2010) Assessment of sample quality in soft clay using shear wave velocity and suction measurements. Géotechnique 60: 883-889. doi: 10.1680/geot.8.T.007.3741 |
[32] | Donohue S, Long M (2007) Rapid Determination of Soil Sample Quality Using Shear Wave Velocity And Suction Measurements. In: 6th International Offshore Site Investigation and Geotechnics Conference: Society for Underwater Technology, 63-72. |
[33] | Krage C, Albin B, Dejong JT, et al. (2016) The Influence of In-situ Effective Stress on Sample Quality for Intermediate Soils. In: Geotechnical and Geophysical Site Characterization 5-ISC5. Gold Coast, Australia, 565-570. |
[34] | Amundsen HA (2018) Storage duration effects on Norwegian low-plasticity sensitive clay samples. Trondheim: Norwegian University of Science and Technology (NTNU). |
[35] | NGF (2011) Melding 2: Veiledning for symboler og definisjoner i geoteknikk—identifisering og klassifisering av jord (in Norwegian): Norwegian Geotechnical Society (NGF). |
[36] | Bihs A, Nordal S, Long M, et al. (2018) Effect of piezocone penetration rate on the classification of Norwegian silt. In: Cone Penetration Testing 2018 (CPT'18), CRC Press/Balkema. |
[37] | Sandbaekken G, Berre T, Lacasse S (1986) Oedometer Testing at the Norwegian Geotechnical Institute. In: Yong RN, Townsend FC, editors, Consolidation of Soils: Testing and Evaluation. West Conshohocken, PA: ASTM, 329-353. |
[38] | Boone SJ (2010) A critical reappraisal of "preconsolidation pressure" interpretations using the oedometer test. Can Geotech J 47: 281-296. doi: 10.1139/T09-093 |
[39] | Cola S, Simonini P (2002) Mechanical behavior of silty soils of the Venice lagoon as a function of their grading characteristics. Can Geotech J 39: 879-893. doi: 10.1139/t02-037 |
[40] | Shipton B, Coop MR (2012) On the compression behaviour of reconstituted soils. Soils Found 52: 668-681. doi: 10.1016/j.sandf.2012.07.008 |
[41] | Janbu N (1985) 25th Rankine Lecture: Soil models in offshore engineering. Géotechnique 35: 241-281. doi: 10.1680/geot.1985.35.3.241 |
[42] | Senneset K, Sandven R, Lunne T, et al. (1988) Piezocone tests in silty soils. ISOPT-1. Orlando: Balkema, 955-966. |
[43] | Sandven R (1990) Strength and deformation properties of fine grained soils obtained from piezocone tests. Trondheim, Norway: Norwegian University of Science and Technology (NTNU). |
[44] | Casagrande A (1936) The determination of pre-consolidation load and it's practical significance. In: 1st International Soil Mechanics and Foundation Engineering Conference. Cambridge, Massachusetts, 60-64. |
[45] | Grozic JLH, Lunne T, Pande S (2003) An oedometer test study on the preconsolidation stress of glaciomarine clays. Can Geotech J 40: 857-872. doi: 10.1139/t03-043 |
[46] | Wang JL, Vivatrat V, Rusher JR (1982) Geotechnical Properties of Alaska OCS Silts. In: Offshore Technology Conference. Houston, Texas, 20. |
[47] | Berre T (1982) Triaxial Testing at the Norwegian Geotechnical Institute. Geotech Test J 5: 3-17. doi: 10.1520/GTJ10794J |
[48] | Wijewickreme D, Sanin M (2006) New Sample Holder for the Preparation of Undisturbed Fine-Grained Soil Specimens for Laboratory Element Testing. Geotech Test J 29: 242-249. |
[49] | Ladd CC (1991) Stability evaluation during staged construction. J Geotech Eng 117: 540-615. doi: 10.1061/(ASCE)0733-9410(1991)117:4(540) |