The main purpose of this paper is to provide a full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. This new type of cohomology exploits strongly the Hom-type structure and fits perfectly with simultaneous deformations of the multiplication and the homomorphism defining a Hom-pre-Lie algebra. Moreover, we show that its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a representation.
Citation: Shanshan Liu, Abdenacer Makhlouf, Lina Song. The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras[J]. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
The main purpose of this paper is to provide a full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. This new type of cohomology exploits strongly the Hom-type structure and fits perfectly with simultaneous deformations of the multiplication and the homomorphism defining a Hom-pre-Lie algebra. Moreover, we show that its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a representation.
[1] | M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267–288. https://doi.org/10.2307/1970343 doi: 10.2307/1970343 |
[2] | E. B. Vinberg, The theory of homogeneous convex cones, Transl. Moscow Math. Soc., 12 (1963), 340–403. |
[3] | D. Burde, Left-symmetric algebras and pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323–357. https://doi.org/10.2478/s11533-006-0014-9 doi: 10.2478/s11533-006-0014-9 |
[4] | C. Bai, Left-symmetric Bialgebras and Analogue of the Classical Yang-Baxter Equation, Commun. Contemp. Math., 10 (2008), 221–260. https://doi.org/10.1142/S0219199708002752 doi: 10.1142/S0219199708002752 |
[5] | C. Bai, An introduction to pre-Lie algebras, in Algebra and Applications 1, coordinated by A. Makhlouf, 243–273, ISTE-Wiley, 2020. |
[6] | A. Connes, D. Kreimer, Hopf algebras, Renormalization and Noncommutative Geometry, Comm. Math. Phys., 199 (1998), 203–242. |
[7] | J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[8] | D. Larsson, S. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032 |
[9] | A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. https: //doi.org/10.4303/jglta/S070206 |
[10] | L. Cai, Y. Sheng, Purely Hom-Lie bialgebras, Sci. China Math., 61 (2018), 1553–1566. https://doi.org/10.1007/s11425-016-9102-y doi: 10.1007/s11425-016-9102-y |
[11] | Y. Sheng, C. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 299 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046 |
[12] | Y. Sheng, D. Chen, Hom-Lie 2-algebras, J. Algebra, 376 (2013), 174–195. https://doi.org/10.1016/j.jalgebra.2012.11.032 doi: 10.1016/j.jalgebra.2012.11.032 |
[13] | S. Liu, L. Song, R. Tang, Representations and cohomologies of regular Hom-pre-Lie algebras, J. Algebra Appl., 19 (2020), 2050149. https://doi.org/10.1142/S0219498820501492 doi: 10.1142/S0219498820501492 |
[14] | Q. Zhang, H. Yu, C. Wang, Hom-Lie algebroids and hom-left-symmetric algebroids, J. Geom. Phys., 116 (2017), 187–203. https://doi.org/10.1016/j.geomphys.2017.01.029 doi: 10.1016/j.geomphys.2017.01.029 |
[15] | B. Sun, L. Chen, X. Zhou, On universal $\alpha$-central extensions of Hom-pre-Lie algebras, arXiv: 1810.09848. |
[16] | S. Liu, A. Makhlouf, L. Song, On Hom-pre-Lie bialgebras, J. Lie Theory, 31 (2021), 149–168. |
[17] | Q. Sun, H. Li, On parakähler hom-Lie algebras and hom-left-symmetric bialgebras, Comm. Algebra, 45 (2017), 105–120. https://doi.org/10.1080/00927872.2016.1175453 doi: 10.1080/00927872.2016.1175453 |
[18] | H. An, C. Bai, From Rota-Baxter algebras to pre-Lie algebras, J. Phys. A: Math. Theor., 41 (2008), 015201. https://doi.org/10.1088/1751-8113/41/1/015201 doi: 10.1088/1751-8113/41/1/015201 |
[19] | A. Das, Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras, J. Math. Phys., 62 (2021), 091701. https://doi.org/10.1063/5.0051142 doi: 10.1063/5.0051142 |
[20] | K. Ebrahimi-Fard, L. Guo, Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 2 (2008), 320–339. https://doi.org/10.1016/j.jpaa.2007.05.025 doi: 10.1016/j.jpaa.2007.05.025 |
[21] | X. Li, D. Hou, C. Bai, Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys., 14 (2007), 269–289. https://doi.org/10.2991/jnmp.2007.14.2.9 doi: 10.2991/jnmp.2007.14.2.9 |
[22] | K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, Lett. Math. Phys., 85 (2008), 91–109. https://doi.org/10.1007/s11005-008-0259-2 doi: 10.1007/s11005-008-0259-2 |
[23] | A. Dzhumadil'daev, Cohomologies and deformations of right-symmetric algebras, J. Math. Sci., 93 (1999), 836–876. |
[24] | B. Hurle, A. Makhlouf, $\alpha$-type Hochschild cohomology of Hom-associative algebras and Hom-bialgebras, J. Korean Math. Soc., 56 (2019), 1655–1687. |
[25] | B. Hurle, A. Makhlouf, $\alpha$-type Chevalley-Eilenberg cohomology of Hom-Lie algebras and bialgebras, Glasg. Math. J., 62 (2020), S108–S127. https://doi.org/10.1017/S0017089519000296 doi: 10.1017/S0017089519000296 |
[26] | F. Ammar, Z. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836. |
[27] | A. Makhlouf, S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/forum.2010.040 doi: 10.1515/forum.2010.040 |
[28] | L. Song, R. Tang, Derivation Hom-Lie 2-algebras and non-abelian extensions of regular Hom-Lie algebras, J. Algebra Appl., 17 (2018), 1850081. https://doi.org/10.1142/S0219498818500810 doi: 10.1142/S0219498818500810 |
[29] | Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8 |