The purpose of this paper is to study nonabelian embedding tensors on 3-Lie algebras, and to explore the fundamental algebraic structures, cohomology and deformations associated with them. First, we introduce the concept of nonabelian embedding tensors on 3-Lie algebras. Then, we present the concept of a 3-Leibniz-Lie algebra, which constitutes the fundamental algebraic framework for a nonabelian embedding tensor on a 3-Lie algebra. Additionally, we examine the 3-Leibniz-Lie algebras that are derived from Leibniz-Lie algebras. Finally, we develop the cohomology of nonabelian embedding tensors on 3-Lie algebras and utilize the first cohomology group to characterize infinitesimal deformations.
Citation: Wen Teng, Xiansheng Dai. Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras[J]. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
The purpose of this paper is to study nonabelian embedding tensors on 3-Lie algebras, and to explore the fundamental algebraic structures, cohomology and deformations associated with them. First, we introduce the concept of nonabelian embedding tensors on 3-Lie algebras. Then, we present the concept of a 3-Leibniz-Lie algebra, which constitutes the fundamental algebraic framework for a nonabelian embedding tensor on a 3-Lie algebra. Additionally, we examine the 3-Leibniz-Lie algebras that are derived from Leibniz-Lie algebras. Finally, we develop the cohomology of nonabelian embedding tensors on 3-Lie algebras and utilize the first cohomology group to characterize infinitesimal deformations.
[1] |
H. Nicolai, H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett., 86 (2001), 1686. https://doi.org/10.1103/PhysRevLett.86.1686 doi: 10.1103/PhysRevLett.86.1686
![]() |
[2] |
E. A. Bergshoeff, M. de Roo, O. Hohm, Multiple M2-branes and the embedding tensor, Classical Quantum Gravity, 25 (2008), 142001. https://doi.org/10.1088/0264-9381/25/14/142001 doi: 10.1088/0264-9381/25/14/142001
![]() |
[3] |
R. Bonezzi, O. Hohm, Leibniz gauge theories and infinity structures, Commun. Math. Phys., 377 (2020), 2027–2077. https://doi.org/10.1007/s00220-020-03785-2 doi: 10.1007/s00220-020-03785-2
![]() |
[4] |
B. de Wit, H. Nicolai, H. Samtleben, Gauged supergravities, tensor hierarchies, and M-theory, J. High Energy Phys., 2008 (2008), 044. https://doi.org/10.1088/1126-6708/2008/02/044 doi: 10.1088/1126-6708/2008/02/044
![]() |
[5] |
B. de Wit, H. Samtleben, Gauged maximal supergravities and hierarchies of nonabelian vector-tensor systems, Fortschr. Phys., 53 (2005), 442–449. https://doi.org/10.1002/prop.200510202 doi: 10.1002/prop.200510202
![]() |
[6] |
A. Kotov, T. Strobl, The embedding tensor, Leibniz-Loday algebras and their higher gauge theories, Commun. Math. Phys., 376 (2020), 235–258. https://doi.org/10.1007/s00220-019-03569-3 doi: 10.1007/s00220-019-03569-3
![]() |
[7] |
Y. Sheng, R. Tang, C. Zhu, The controlling L$_{\infty}$-algebra, cohomology and homotopy of embedding tensors and Lie-Leibniz triples, Commun. Math. Phys., 386 (2021), 269–304. https://doi.org/10.1007/s00220-021-04032-y doi: 10.1007/s00220-021-04032-y
![]() |
[8] |
M. Hu, S. Hou, L. Song, Y. Zhou, Deformations and cohomologies of embedding tensors on 3-Lie algebras, Commun. Algebra, 51 (2023), 4622–4639. https://doi.org/10.1080/00927872.2023.2214215 doi: 10.1080/00927872.2023.2214215
![]() |
[9] |
R. Tang, Y. Sheng, Nonabelian embedding tensors, Lett. Math. Physics, 113 (2023), 14. https://doi.org/10.1007/s11005-023-01637-3 doi: 10.1007/s11005-023-01637-3
![]() |
[10] | J. Pei, C. Bai, L. Guo, X. Ni, Replicating of binary operads, Koszul duality, Manin products and average operators, preprint, arXiv: 1212.0177. |
[11] | A. Das, R. Mandal, Averaging algebras of any nonzero weight, preprint, arXiv: 2304.12593. |
[12] |
W. Teng, J. Jin, Y. Zhang, Cohomology of nonabelian embedding tensors on Hom-Lie algebras, AIMS Math., 8 (2023), 21176–21190. https://doi.org/10.3934/math.20231079 doi: 10.3934/math.20231079
![]() |
[13] |
V. T. Filippov, n-Lie algebras, Sib. Math. J., 26 (1985), 879–891. https://doi.org/10.1007/BF00969110 doi: 10.1007/BF00969110
![]() |
[14] |
Y. Nambu, Generalized hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405. https://doi.org/10.1103/PhysRevD.7.2405 doi: 10.1103/PhysRevD.7.2405
![]() |
[15] |
J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D, 77 (2008), 065008. https://doi.org/10.1103/PhysRevD.77.065008 doi: 10.1103/PhysRevD.77.065008
![]() |
[16] |
A. Gustavsson, Algebraic structures on parallel M2-branes, Nuclear Phys. B, 811 (2009), 66–76. https://doi.org/10.1016/j.nuclphysb.2008.11.014 doi: 10.1016/j.nuclphysb.2008.11.014
![]() |
[17] |
R. Bai, C. Bai, J. Wang, Realizatons of 3-Lie algebras, J. Math. Phys., 51 (2010), 0633505. https://doi.org/10.1063/1.3436555 doi: 10.1063/1.3436555
![]() |
[18] |
S. Guo, Y. Qin, K. Wang, G. Zhou, Deformations and cohomology theory of Rota-Baxter 3-Lie algebras of arbitrary weights, J. Geom. Phys., 183 (2023), 104704. https://doi.org/10.1016/j.geomphys.2022.104704 doi: 10.1016/j.geomphys.2022.104704
![]() |
[19] |
S. Hou, Y. Sheng, Y. Zhou, 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras, J. Algebra, 615 (2023), 103–129. https://doi.org/10.1016/j.jalgebra.2022.10.016 doi: 10.1016/j.jalgebra.2022.10.016
![]() |
[20] |
S. M. Kasymov, Theory of n-Lie algebras, Algebra Logic, 26 (1987), 155–166. https://doi.org/10.1007/BF02009328 doi: 10.1007/BF02009328
![]() |
[21] |
J. M. Casas, J. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math., 14 (2002), 189–207. https://doi.org/10.1515/form.2002.009 doi: 10.1515/form.2002.009
![]() |
[22] |
J. M. Casas, Homology with trivial coefcients of Leibniz n-algebras, Commun. Algebra, 31 (2003), 1377–1386. https://doi.org/10.1081/AGB-120017771 doi: 10.1081/AGB-120017771
![]() |
[23] |
Y. L. Daletskii, L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39 (1997), 127–141. https://doi.org/10.1023/A:1007316732705 doi: 10.1023/A:1007316732705
![]() |
[24] | L. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras, Algebra Anal., 6 (1994), 262–272. |