Research article

Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras

  • Received: 21 November 2024 Revised: 20 February 2025 Accepted: 28 February 2025 Published: 10 March 2025
  • The purpose of this paper is to study nonabelian embedding tensors on 3-Lie algebras, and to explore the fundamental algebraic structures, cohomology and deformations associated with them. First, we introduce the concept of nonabelian embedding tensors on 3-Lie algebras. Then, we present the concept of a 3-Leibniz-Lie algebra, which constitutes the fundamental algebraic framework for a nonabelian embedding tensor on a 3-Lie algebra. Additionally, we examine the 3-Leibniz-Lie algebras that are derived from Leibniz-Lie algebras. Finally, we develop the cohomology of nonabelian embedding tensors on 3-Lie algebras and utilize the first cohomology group to characterize infinitesimal deformations.

    Citation: Wen Teng, Xiansheng Dai. Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras[J]. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063

    Related Papers:

  • The purpose of this paper is to study nonabelian embedding tensors on 3-Lie algebras, and to explore the fundamental algebraic structures, cohomology and deformations associated with them. First, we introduce the concept of nonabelian embedding tensors on 3-Lie algebras. Then, we present the concept of a 3-Leibniz-Lie algebra, which constitutes the fundamental algebraic framework for a nonabelian embedding tensor on a 3-Lie algebra. Additionally, we examine the 3-Leibniz-Lie algebras that are derived from Leibniz-Lie algebras. Finally, we develop the cohomology of nonabelian embedding tensors on 3-Lie algebras and utilize the first cohomology group to characterize infinitesimal deformations.



    加载中


    [1] H. Nicolai, H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett., 86 (2001), 1686. https://doi.org/10.1103/PhysRevLett.86.1686 doi: 10.1103/PhysRevLett.86.1686
    [2] E. A. Bergshoeff, M. de Roo, O. Hohm, Multiple M2-branes and the embedding tensor, Classical Quantum Gravity, 25 (2008), 142001. https://doi.org/10.1088/0264-9381/25/14/142001 doi: 10.1088/0264-9381/25/14/142001
    [3] R. Bonezzi, O. Hohm, Leibniz gauge theories and infinity structures, Commun. Math. Phys., 377 (2020), 2027–2077. https://doi.org/10.1007/s00220-020-03785-2 doi: 10.1007/s00220-020-03785-2
    [4] B. de Wit, H. Nicolai, H. Samtleben, Gauged supergravities, tensor hierarchies, and M-theory, J. High Energy Phys., 2008 (2008), 044. https://doi.org/10.1088/1126-6708/2008/02/044 doi: 10.1088/1126-6708/2008/02/044
    [5] B. de Wit, H. Samtleben, Gauged maximal supergravities and hierarchies of nonabelian vector-tensor systems, Fortschr. Phys., 53 (2005), 442–449. https://doi.org/10.1002/prop.200510202 doi: 10.1002/prop.200510202
    [6] A. Kotov, T. Strobl, The embedding tensor, Leibniz-Loday algebras and their higher gauge theories, Commun. Math. Phys., 376 (2020), 235–258. https://doi.org/10.1007/s00220-019-03569-3 doi: 10.1007/s00220-019-03569-3
    [7] Y. Sheng, R. Tang, C. Zhu, The controlling L$_{\infty}$-algebra, cohomology and homotopy of embedding tensors and Lie-Leibniz triples, Commun. Math. Phys., 386 (2021), 269–304. https://doi.org/10.1007/s00220-021-04032-y doi: 10.1007/s00220-021-04032-y
    [8] M. Hu, S. Hou, L. Song, Y. Zhou, Deformations and cohomologies of embedding tensors on 3-Lie algebras, Commun. Algebra, 51 (2023), 4622–4639. https://doi.org/10.1080/00927872.2023.2214215 doi: 10.1080/00927872.2023.2214215
    [9] R. Tang, Y. Sheng, Nonabelian embedding tensors, Lett. Math. Physics, 113 (2023), 14. https://doi.org/10.1007/s11005-023-01637-3 doi: 10.1007/s11005-023-01637-3
    [10] J. Pei, C. Bai, L. Guo, X. Ni, Replicating of binary operads, Koszul duality, Manin products and average operators, preprint, arXiv: 1212.0177.
    [11] A. Das, R. Mandal, Averaging algebras of any nonzero weight, preprint, arXiv: 2304.12593.
    [12] W. Teng, J. Jin, Y. Zhang, Cohomology of nonabelian embedding tensors on Hom-Lie algebras, AIMS Math., 8 (2023), 21176–21190. https://doi.org/10.3934/math.20231079 doi: 10.3934/math.20231079
    [13] V. T. Filippov, n-Lie algebras, Sib. Math. J., 26 (1985), 879–891. https://doi.org/10.1007/BF00969110 doi: 10.1007/BF00969110
    [14] Y. Nambu, Generalized hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405. https://doi.org/10.1103/PhysRevD.7.2405 doi: 10.1103/PhysRevD.7.2405
    [15] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D, 77 (2008), 065008. https://doi.org/10.1103/PhysRevD.77.065008 doi: 10.1103/PhysRevD.77.065008
    [16] A. Gustavsson, Algebraic structures on parallel M2-branes, Nuclear Phys. B, 811 (2009), 66–76. https://doi.org/10.1016/j.nuclphysb.2008.11.014 doi: 10.1016/j.nuclphysb.2008.11.014
    [17] R. Bai, C. Bai, J. Wang, Realizatons of 3-Lie algebras, J. Math. Phys., 51 (2010), 0633505. https://doi.org/10.1063/1.3436555 doi: 10.1063/1.3436555
    [18] S. Guo, Y. Qin, K. Wang, G. Zhou, Deformations and cohomology theory of Rota-Baxter 3-Lie algebras of arbitrary weights, J. Geom. Phys., 183 (2023), 104704. https://doi.org/10.1016/j.geomphys.2022.104704 doi: 10.1016/j.geomphys.2022.104704
    [19] S. Hou, Y. Sheng, Y. Zhou, 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras, J. Algebra, 615 (2023), 103–129. https://doi.org/10.1016/j.jalgebra.2022.10.016 doi: 10.1016/j.jalgebra.2022.10.016
    [20] S. M. Kasymov, Theory of n-Lie algebras, Algebra Logic, 26 (1987), 155–166. https://doi.org/10.1007/BF02009328 doi: 10.1007/BF02009328
    [21] J. M. Casas, J. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math., 14 (2002), 189–207. https://doi.org/10.1515/form.2002.009 doi: 10.1515/form.2002.009
    [22] J. M. Casas, Homology with trivial coefcients of Leibniz n-algebras, Commun. Algebra, 31 (2003), 1377–1386. https://doi.org/10.1081/AGB-120017771 doi: 10.1081/AGB-120017771
    [23] Y. L. Daletskii, L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39 (1997), 127–141. https://doi.org/10.1023/A:1007316732705 doi: 10.1023/A:1007316732705
    [24] L. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras, Algebra Anal., 6 (1994), 262–272.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(232) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog