On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras
-
1.
School of Mathematics, Changchun Normal University, Changchun 130032, China
-
2.
School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
-
3.
Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China
-
Received:
01 October 2020
Revised:
01 November 2020
Published:
01 September 2021
-
-
Primary: 17A30; Secondary: 16E40
-
-
We study Hom-actions, semidirect product and describe the relation between semi-direct product extensions and split extensions of Hom-preLie algebras. We obtain the functorial properties of the universal $ \alpha $-central extensions of $ \alpha $-perfect Hom-preLie algebras. We give that a derivation or an automorphism can be lifted in an $ \alpha $-cover with certain constraints. We provide some necessary and sufficient conditions about the universal $ \alpha $-central extension of the semi-direct product of two $ \alpha $-perfect Hom-preLie algebras.
Citation: Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras[J]. Electronic Research Archive, 2021, 29(4): 2619-2636. doi: 10.3934/era.2021004
-
Abstract
We study Hom-actions, semidirect product and describe the relation between semi-direct product extensions and split extensions of Hom-preLie algebras. We obtain the functorial properties of the universal $ \alpha $-central extensions of $ \alpha $-perfect Hom-preLie algebras. We give that a derivation or an automorphism can be lifted in an $ \alpha $-cover with certain constraints. We provide some necessary and sufficient conditions about the universal $ \alpha $-central extension of the semi-direct product of two $ \alpha $-perfect Hom-preLie algebras.
References
[1]
|
Casas J. M., Corral N. (2009) On universal central extensions of Leibniz algebras. Comm. Algebra 37: 2104-2120.
|
[2]
|
Casas J. M., Ladra M. (2002) Stem extensions and stem covers of Leibniz algebras. Georgian Math. J. 9: 659-669. |
[3]
|
Casas J. M., Ladra M. (2007) Computing low dimensional Leibniz homology of some perfect Leibniz algebras. Southeast Asian Bull. Math. 31: 683-690. |
[4]
|
J. M. Casas, M. A. Insua and N. P. Rego, On universal central extensions of Hom-Leibniz algebras, J. Algebra Appl., 13 (2014), 1450053, 22pp.
10.1142/S0219498814500534
MR3225120
|
[5]
|
J. M. Casas and N. P. Rego, On the universal $\alpha$-central extension of the semi-direct product of Hom-Leibniz algebras, Bull. Malays. Math. Sci. Soc., 39 (2016), 1579-1602.
10.1007/s40840-015-0254-6
MR3549981
|
[6]
|
Casas J. M., Vieites A. M. (2002) Central extensions of perfect of Leibniz algebras. Recent Advances in Lie Theory 25: 189-196. |
[7]
|
García-Martínez X., Khmaladze E., Ladra M. (2015) Non-abelian tensor product and homology of Lie superalgebras. J. Algebra 440: 464-488.
|
[8]
|
Gnedbaye A. V. (1999) Third homology groups of universal central extensions of a Lie algebra. Afrika Mat. 10: 46-63. |
[9]
|
Gnedbaye A. V. (1999) A non-abelian tensor product of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 49: 1149-1177.
|
[10]
|
Kurdiani R., Pirashvili T. (2002) A Leibniz algebra structure on the second tensor power. J. Lie Theory 12: 583-596. |
[11]
|
Makhlouf A., Silvestrov S. D. (2008) Hom-algebra structures. J. Gen. Lie Theory Appl. 2: 51-64. |
[12]
|
Sheng Y. (2012) Representations of hom-Lie algebras. Algebr. Represent. Theory 15: 1081-1098.
|
[13]
|
B. Sun, L. Y. Chen and X. Zhou, On universal $\alpha$-central extensions of Hom-preLie algebras, arXiv: 1810.09848.
|
[14]
|
D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202, 20 pp.
10.1088/1751-8113/44/8/085202
MR2770370
|
-
-
-
-