In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.
Citation: Yizheng Li, Dingguo Wang. Lie algebras with differential operators of any weights[J]. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.
[1] | V. E. Coll, M. Gerstenhaber, A. Giaquinto, An explicit deformation formula with noncommuting derivations, Israel Math. Conf. Proc., 1 (1989), 396–403. |
[2] | A. R. Magid, Lectures on Differential Galois Theory, American Mathematical Society, 1994. |
[3] | T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202 (2005), 133–153. https://doi.org/10.1016/j.jpaa.2005.01.010 doi: 10.1016/j.jpaa.2005.01.010 |
[4] | V. Ayala, E. Kizil, I. de Azevedo Tribuzy, On an algorithm for finding derivations of Lie algebras, Proyecciones, 31 (2012), 81–90. https://doi.org/10.4067/S0716-09172012000100008 doi: 10.4067/S0716-09172012000100008 |
[5] | V. Ayala, J. Tirao, Linear control systems on Lie groups and controllability, in Differential Geometry and Control, 64 (1999), 47–64. |
[6] | I. A. Batalin, G. A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B, 102 (1981), 27–31. https://doi.org/10.1016/0370-2693(81)90205-7 doi: 10.1016/0370-2693(81)90205-7 |
[7] | L. J. Loday, On the operad of associative algebras with derivation, Georgian Math. J., 17 (2010), 347–372. https://doi.org/10.1515/GMJ.2010.010 doi: 10.1515/GMJ.2010.010 |
[8] | R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra, 534 (2019), 65–99. https://doi.org/10.1016/j.jalgebra.2019.06.007 doi: 10.1016/j.jalgebra.2019.06.007 |
[9] | A. Das, Leibniz algebras with derivations, J. Homotopy Relat. Struct., 16 (2021), 245–274. https://doi.org/10.1007/s40062-021-00280-w doi: 10.1007/s40062-021-00280-w |
[10] | X. Wu, Y. Ma, B. Sun, L. Chen, Cohomology of Leibniz triple systems with derivations, J. Geom. Phys., 179 (2022), 104594. https://doi.org/10.1016/j.geomphys.2022.104594 doi: 10.1016/j.geomphys.2022.104594 |
[11] | R. Bai, L. Guo, J. Li, Y. Wu, Rota-Baxter $3$-Lie algebras, J. Math. Phys., 54 (2013), 063504. https://doi.org/10.1063/1.4808053 doi: 10.1063/1.4808053 |
[12] | L. Guo, Y. Li, Y. Sheng, G. Zhou. Cohomology, extensions and deformations of differential algebras with any weights, arXiv preprint, (2022), arXiv: 2003.03899. https://doi.org/10.48550/arXiv.2003.03899 |
[13] | K. Wang, G. Zhou, Deformations and homotopy theory of Rota-Baxter algebras of any weight, arXiv preprint, (2021), arXiv: 2108.06744. https://doi.org/10.48550/arXiv.2108.06744 |
[14] | A. Das, Cohomology and deformations of weighted Rota-Baxter operators, J. Math. Phys., 63 (2022), 091703. https://doi.org/10.1063/5.0093066 doi: 10.1063/5.0093066 |
[15] | A. Das, Cohomology of weighted Rota-Baxter Lie algebras and Rota-Baxter paired operators, arXiv preprint, (2021), arXiv: 2109.01972. https://doi.org/10.48550/arXiv.2109.01972 |
[16] | S. Guo, Y. Qin, K. Wang, G. Zhou, Deformations and cohomology theory of Rota-Baxter $3$-Lie algebras of arbitrary weights, J. Geom. Phys., 183 (2023), 104704. https://doi.org/10.1016/j.geomphys.2022.104704 doi: 10.1016/j.geomphys.2022.104704 |
[17] | S. Guo, Y. Qin, K. Wang, G. Zhou, Cohomology theory of Rota-Baxter pre-Lie algebras of arbitrary weights, arXiv preprint, (2022), arXiv: 2204.13518. https://doi.org/10.48550/arXiv.2204.13518 |
[18] | S. Hou, Y. Sheng, Y. Zhou, 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras, J. Algebra, 615 (2023), 103–129. https://doi.org/10.1016/j.jalgebra.2022.10.016 doi: 10.1016/j.jalgebra.2022.10.016 |
[19] | A. Lue, Crossed homomorphisms of Lie algebras, Math. Proc. Cambridge Philos. Soc., 62 (1966), 577–581. https://doi.org/10.1017/S030500410004024X doi: 10.1017/S030500410004024X |
[20] | Y. Pei, Y. Sheng, R. Tang, K. Zhao, Actions of monoidal categories and representations of Cartan type Lie algebras. J. Inst. Math. Jussieu, 2022 (2022), 1–36. https://doi.org/10.1017/S147474802200007X doi: 10.1017/S147474802200007X |
[21] | L. Guo, W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522–540. https://doi.org/10.1016/j.jpaa.2007.06.008 doi: 10.1016/j.jpaa.2007.06.008 |
[22] | L. Guo, G. Regensburger, M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra, 218 (2014), 456–473. https://doi.org/10.1016/j.jpaa.2013.06.015 doi: 10.1016/j.jpaa.2013.06.015 |
[23] | J. Jiang, Y. Sheng, Deformations, cohomologies and integrations of relative difference Lie algebras, J. Algerba, 614 (2023), 535–563. https://doi.org/10.1016/j.jalgebra.2022.10.007 doi: 10.1016/j.jalgebra.2022.10.007 |
[24] | J. C. Baez, A. S. Crans, Higher-dimensional algebra VI: Lie 2-algebras, arXiv preprint, (2010), arXiv: math/0307263. https://doi.org/10.48550/arXiv.math/0307263 |