In real life, there are a lot of uncertainties in engineering structure design, and the potential uncertainties will have an important impact on the structural performance responses. Therefore, it is of great significance to consider the uncertainty in the initial stage of structural design to improve product performance. The consensus can be reached that the mechanical structure obtained by the reliability and robustness design optimization method considering uncertainty not only has low failure risk but also has highly stable performance. As a large mechanical system, the uncertainty design optimization of key vehicle structural performances is particularly important. This survey mainly discusses the current situation of the uncertain design optimization framework of automobile structures, and successively summarizes the uncertain design optimization of key automobile structures, uncertainty analysis methods, and multi-objective iterative optimization models. The uncertainty analysis method in the design optimization framework needs to consider the existing limited knowledge and limited test data. The importance of the interval model as a non-probabilistic model in the uncertainty analysis and optimization process is discussed. However, it should be noted that the interval model ignores the actual uncertainty distribution rule, which makes the design scheme still have some limitations. With the further improvement of design requirements, the efficiency, accuracy, and calculation cost of the entire design optimization framework of automobile structures need to be further improved iteratively. This survey will provide useful theoretical guidance for engineers and researchers in the automotive engineering field at the early stage of product development.
Citation: Xiang Xu, Chuanqiang Huang, Chongchong Li, Gang Zhao, Xiaojie Li, Chao Ma. Uncertain design optimization of automobile structures: A survey[J]. Electronic Research Archive, 2023, 31(3): 1212-1239. doi: 10.3934/era.2023062
In real life, there are a lot of uncertainties in engineering structure design, and the potential uncertainties will have an important impact on the structural performance responses. Therefore, it is of great significance to consider the uncertainty in the initial stage of structural design to improve product performance. The consensus can be reached that the mechanical structure obtained by the reliability and robustness design optimization method considering uncertainty not only has low failure risk but also has highly stable performance. As a large mechanical system, the uncertainty design optimization of key vehicle structural performances is particularly important. This survey mainly discusses the current situation of the uncertain design optimization framework of automobile structures, and successively summarizes the uncertain design optimization of key automobile structures, uncertainty analysis methods, and multi-objective iterative optimization models. The uncertainty analysis method in the design optimization framework needs to consider the existing limited knowledge and limited test data. The importance of the interval model as a non-probabilistic model in the uncertainty analysis and optimization process is discussed. However, it should be noted that the interval model ignores the actual uncertainty distribution rule, which makes the design scheme still have some limitations. With the further improvement of design requirements, the efficiency, accuracy, and calculation cost of the entire design optimization framework of automobile structures need to be further improved iteratively. This survey will provide useful theoretical guidance for engineers and researchers in the automotive engineering field at the early stage of product development.
[1] | Z. Zhang, X. Jia, T. Yang, Y. Gu, W. Wang, L. Chen, Multi-objective optimization of lubricant volume in an ELSD considering thermal effects, Int. J. Therm. Sci., 164 (2021), 106884. https://doi.org/10.1016/j.ijthermalsci.2021.106884 doi: 10.1016/j.ijthermalsci.2021.106884 |
[2] | C. Yu, J. Liu, J. Zhang, K. Xue, S. Zhang, J. Liao, et al., Design and optimization and experimental verification of a segmented double-helix blade roller for straw returning cultivators, J. Chin. Inst. Eng., 44 (2021), 379–387. https://doi.org/10.1080/02533839.2021.1903342 doi: 10.1080/02533839.2021.1903342 |
[3] | Y. Cao, J. Yao, J. Li, X. Chen, J. Wu, Optimization of microbial oils production from kitchen garbage by response surface methodology, J. Renew. Sustain. Ener., 5 (2013), 053105. https://doi.org/10.1063/1.4821218 doi: 10.1063/1.4821218 |
[4] | K. Cao, Z. Li, Y. Gu, L. Zhang, L. Chen, The control design of transverse interconnected electronic control air suspension based on seeker optimization algorithm, P. I. Mech. Eng. D-J. Aut., 235 (2021), 2200–2211. https://doi.org/10.1177/0954407020984667 doi: 10.1177/0954407020984667 |
[5] | G. Wang, H. Yuan, Stability and critical spinning speed of a flexible liquid-filled rotor in thermal environment with nonlinear variable-temperature, Appl. Math. Model., 95 (2021), 143–158. https://doi.org/10.1016/j.apm.2021.01.056 doi: 10.1016/j.apm.2021.01.056 |
[6] | G. Wang, H. Yuan, Dynamics and stability analysis of an axially functionally graded hollow rotor partially filled with liquid, Compos. Struct., 266 (2021), 113821. https://doi.org/10.1016/j.compstruct.2021.113821 doi: 10.1016/j.compstruct.2021.113821 |
[7] | G. Wang, W. Yang, H. Yuan, Dynamics and stability analysis of a flexible liquid-filled rotor in a constant thermal environment, J. Vib. Control, 28 (2021), 2913–2924. https://doi.org/10.1177/10775463211022489 doi: 10.1177/10775463211022489 |
[8] | D. Zhang, N. Zhang, N. Ye, J. Fang, X. Han, Hybrid learning algorithm of radial basis function networks for reliability analysis, IEEE Trans. Reliab., 70 (2021), 887–900. https://doi.org/10.1109/TR.2020.3001232 doi: 10.1109/TR.2020.3001232 |
[9] | X. Du, H. Xu, F. Zhu, A data mining method for structure design with uncertainty in design variables, Comput. Struct., 244 (2021), 106457. https://doi.org/10.1016/j.compstruc.2020.106457 doi: 10.1016/j.compstruc.2020.106457 |
[10] | E. Acar, G. Bayrak, Y. Jung, I. Lee, P. Ramu, S. S. Ravichandran, Modeling, analysis and optimization under uncertainties: A review, Struct. Multidiscip. Optimiz., 64 (2021), 2909–2945. https://doi.org/10.1007/s00158-021-03026-7 doi: 10.1007/s00158-021-03026-7 |
[11] | M. Zimmermann, S. Königs, C. Niemeyer, J. Fender, C. Zeherbauer, R. Vitale, et al., On the design of large systems subject to uncertainty, J. Eng. Design, 28 (2017), 233–254. https://doi.org/10.1080/09544828.2017.1303664 doi: 10.1080/09544828.2017.1303664 |
[12] | Y. Noh, K. K. Choi, I. Lee, Reduction of ordering effect in reliability-based design optimizatioin using dimension reduction method, AIAA J. 47 (2009), 994–1004. https://doi.org/10.2514/1.40224 |
[13] | U. Lee, N. Kang, I. Lee, Selection of optimal target reliability in RBDO through reliability-based design for market systems (RBDMS) and application to electric vehicle design, Struct. Multidiscip. Optimiz., 60 (2019), 949–963. https://doi.org/10.1007/s00158-019-02245-3 doi: 10.1007/s00158-019-02245-3 |
[14] | K. Wang, P. Wang, X. Chen, L. T. Zhao, Multiobjective optimization design of toll plaza, Math. Probl. Eng., 2020 (2020), 2324894. https://doi.org/10.1155/2020/2324894 doi: 10.1155/2020/2324894 |
[15] | C. Yu, D. Zhu, Y. Gao, K. Xue, S. Zhang, J. Liao, et al., Optimization and experiment of counter-rotating straw returning cultivator based on discrete element method, J. Adv. Mech. Des. Syst., 14 (2020). https://doi.org/10.1299/jamdsm.2020jamdsm0097 |
[16] | S. Liu, J. Sun, H. Zhou, F. Wei, M. Lu, M. Lei, Experimental and numerical study on fatigue performance for TIG welding and EB welding of RAFM steel plate, Fusion Eng. Des., 146 (2019), 2663–2666. https://doi.org/10.1016/j.fusengdes.2019.04.076 doi: 10.1016/j.fusengdes.2019.04.076 |
[17] | J. Mendoza, E. Bismut, D. Straub, J. Köhler, Optimal life-cycle mitigation of fatigue failure risk for structural systems, Reliab. Eng. Syst. Safe., 222 (2022), 108390. https://doi.org/10.1016/j.ress.2022.108390 doi: 10.1016/j.ress.2022.108390 |
[18] | C. A. Castiglioni, R. Pucinotti, Failure criteria and cumulative damage models for steel components under cyclic loading, J. Constr. Steel Res., 65 (2009), 751–765. https://doi.org/10.1016/j.jcsr.2008.12.007 doi: 10.1016/j.jcsr.2008.12.007 |
[19] | D. M. Harland, R. D. Lorenz, Space systems failures: Disasters and rescues of satellites, rockets and space probes, in Springer Praxis Books, Springer Praxis, 2005. https://doi.org/10.1007/978-0-387-27961-9 |
[20] | A. D. Kiureghian, O. Ditlevsen, Aleatory or epistemic? Does it matter?, Struct. Safe., 31 (2009), 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020 doi: 10.1016/j.strusafe.2008.06.020 |
[21] | M. A. Hariri-Ardebili, F. Pourkamali-Anaraki, Structural uncertainty quantification with partial information, Expert Syst. Appl., 198 (2022), 116736. https://doi.org/10.1016/j.eswa.2022.116736 doi: 10.1016/j.eswa.2022.116736 |
[22] | K. Bowcutt. A perspective on the future of aerospace vehicle design, in 12th AIAA International Space Planes and Hypersonic Systems and Technologies: American Institute of Aeronautics and Astronautics, 2003. |
[23] | J. Fang, Y. Gao, G. Sun, Y. Zhang, Q. Li, Crashworthiness design of foam-filled bitubal structures with uncertainty, Int. J. Non-Lin. Mech., 67 (2014), 120–132. https://doi.org/10.1016/j.ijnonlinmec.2014.08.005 doi: 10.1016/j.ijnonlinmec.2014.08.005 |
[24] | S. A. Latifi Rostami, A. Kolahdooz, J. Zhang, Robust topology optimization under material and loading uncertainties using an evolutionary structural extended finite element method, Eng. Anal. Bound. Elem., 133 (2021), 61–70. https://doi.org/10.1016/j.enganabound.2021.08.023 doi: 10.1016/j.enganabound.2021.08.023 |
[25] | X. Wang, Z. Meng, B. Yang, C. Cheng, K. Long, J. Li, Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty, Compos. Struct., 2022 (2022), 115537. https://doi.org/10.1016/j.compstruct.2022.115537 doi: 10.1016/j.compstruct.2022.115537 |
[26] | M. E. Riley, R. V. Grandhi, Quantification of model-form and predictive uncertainty for multi-physics simulation, Comput. Struct., 89 (2011), 1206–1213. https://doi.org/10.1016/j.compstruc.2010.10.004 doi: 10.1016/j.compstruc.2010.10.004 |
[27] | B. Do, M. Ohsaki, M. Yamakawa, Bayesian optimization for robust design of steel frames with joint and individual probabilistic constraints, Eng. Struct., 245 (2021), 112859. https://doi.org/10.1016/j.engstruct.2021.112859 doi: 10.1016/j.engstruct.2021.112859 |
[28] | Z. Meng, Y. Pang, Y. Pu, X. Wang, New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties, Comput. Method. Appl. Mech., 363 (2020), 112886. https://doi.org/10.1016/j.cma.2020.112886 doi: 10.1016/j.cma.2020.112886 |
[29] | C. Yang, H. Ouyang, A novel load-dependent sensor placement method for model updating based on time-dependent reliability optimization considering multi-source uncertainties, Mech. Syst. Signal Proces., 165 (2022), 108386. https://doi.org/10.1016/j.ymssp.2021.108386 doi: 10.1016/j.ymssp.2021.108386 |
[30] | G. A. da Silva, E. L. Cardoso, A. T. Beck, Comparison of robust, reliability-based and non-probabilistic topology optimization under uncertain loads and stress constraints, Probabilist. Eng. Mech., 59 (2020), 103039. https://doi.org/10.1016/j.probengmech.2020.103039 doi: 10.1016/j.probengmech.2020.103039 |
[31] | J. M. King, R. V. Grandhi, T. W. Benanzer, Quantification of epistemic uncertainty in re-usable launch vehicle aero-elastic design, Eng. Optimiz., 44 (2012), 489–504. https://doi.org/10.1080/0305215X.2011.588224 doi: 10.1080/0305215X.2011.588224 |
[32] | Y. C. Tsao, V. V. Thanh, A multi-objective fuzzy robust optimization approach for designing sustainable and reliable power systems under uncertainty, Appl. Soft Comput., 92 (2020), 106317. https://doi.org/10.1016/j.asoc.2020.106317 doi: 10.1016/j.asoc.2020.106317 |
[33] | L. Wang, B. Ni, X. Wang, Z. Li, Reliability-based topology optimization for heterogeneous composite structures under interval and convex mixed uncertainties, Appl. Math. Model., 99 (2021), 628–652. https://doi.org/10.1016/j.apm.2021.06.014 doi: 10.1016/j.apm.2021.06.014 |
[34] | L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst., 1 (1978), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5 doi: 10.1016/0165-0114(78)90029-5 |
[35] | H. Lü, K. Yang, X. Huang, H. Yin, W. B. Shangguan, D. Yu, An efficient approach for the design optimization of dual uncertain structures involving fuzzy random variables, Comput. Method. Appl. Mech., 371 (2020), 113331. https://doi.org/10.1016/j.cma.2020.113331 doi: 10.1016/j.cma.2020.113331 |
[36] | R. E. Moore, Methods and Application of Interval Analysis, SIAM: Philadelphia, USA, 1979. https://doi.org/10.1137/1.9781611970906 |
[37] | S. P. Gurav, J. F. L. Goosen, F. vanKeulen, Bounded-But-Unknown uncertainty optimization using design sensitivities and parallel computing: Application to MEMS, Comput. Struct., 83 (2005), 1134–1149. https://doi.org/10.1016/j.compstruc.2004.11.021 doi: 10.1016/j.compstruc.2004.11.021 |
[38] | R. Yuan, D. Ma, H. Zhang, Flow characteristics and grain size distribution of granular gangue mineral by compaction treatment, Adv. Mater. Sci. Eng., 2017 (2017), 2509286. https://doi.org/10.1155/2017/2509286 doi: 10.1155/2017/2509286 |
[39] | G. Sun, T. Pang, J. Fang, G. Li, Q. Li, Parameterization of criss-cross configurations for multiobjective crashworthiness optimization, Int. J. Mech. Sci., 124–125 (2017), 145–157. https://doi.org/10.1016/j.ijmecsci.2017.02.027 |
[40] | J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, Q. Li, On hierarchical honeycombs under out-of-plane crushing, Int. J. Solids Struct., 135 (2018), 1–13. https://doi.org/10.1016/j.ijsolstr.2017.08.013. doi: 10.1016/j.ijsolstr.2017.08.013 |
[41] | J. Fu, Q. Liu, K. Liufu, Y. Deng, J. Fang, Q. Li, Design of bionic-bamboo thin-walled structures for energy absorption, Thin-Wall. Struct., 135 (2019), 400–413. https://doi.org/10.1016/j.tws.2018.10.003 doi: 10.1016/j.tws.2018.10.003 |
[42] | J. Fang, Y. Gao, G. Sun, G. Zheng, Q. Li, Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness, Int. J. Mech. Sci., 103 (2015), 63–73. https://doi.org/10.1016/j.ijmecsci.2015.08.029 doi: 10.1016/j.ijmecsci.2015.08.029 |
[43] | J. Fang, Y. Gao, G. Sun, N. Qiu, Q. Li, On design of multi-cell tubes under axial and oblique impact loads, Thin-Wall. Struct., 95 (2015), 115–126. https://doi.org/10.1016/j.tws.2015.07.002 doi: 10.1016/j.tws.2015.07.002 |
[44] | J. Fang, G. Sun, N. Qiu, N. H. Kim, Q. Li, On design optimization for structural crashworthiness and its state of the art, Struct. Multidiscip. Optimiz., 55 (2017), 1091–1119. https://doi.org/10.1007/s00158-016-1579-y doi: 10.1007/s00158-016-1579-y |
[45] | N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, Q. Li, Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elem. Anal. Des., 104 (2015), 89–101. https://doi.org/10.1016/j.finel.2015.06.004 doi: 10.1016/j.finel.2015.06.004 |
[46] | S. Kodiyalam, High performance computing for multidisciplinary design optimization and robustness of vehicle structures, in Computational Fluid and Solid Mechanics 2003, Elsevier Science Ltd, (2003), 2305–2307. https://doi.org/10.1016/B978-008044046-0.50566-2 |
[47] | K. Hamza, K. Saitou, Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations, J. Mech. Des., 127 (2004), 485–492. https://doi.org/10.1115/1.1862680 doi: 10.1115/1.1862680 |
[48] | X. Gu, G. Sun, G. Li, X. Huang, Y. Li, Q. Li, Multiobjective optimization design for vehicle occupant restraint system under frontal impact, Struct. Multidiscip. Optimiz., 47 (2013), 465–477. https://doi.org/10.1007/s00158-012-0811-7 doi: 10.1007/s00158-012-0811-7 |
[49] | L. Chen, W. Li, Y. Yang, W. Miao, Evaluation and optimization of vehicle pedal comfort based on biomechanics, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 234 (2019), 1402–1412. https://doi.org/10.1177/0954407019878355 doi: 10.1177/0954407019878355 |
[50] | X. L. Zhang, T. Wu, Y. Shao, J. Song, Structure optimization of wheel force transducer based on natural frequency and comprehensive sensitivity, Chin. J. Mech. Eng., 30 (2017), 973–981. https://doi.org/10.1007/s10033-017-0149-6 doi: 10.1007/s10033-017-0149-6 |
[51] | X. Xu, X. Chen, Z. Liu, Y. Zhang, Y. Xu, J. Fang, et al., A feasible identification method of uncertainty responses for vehicle structures, Struct. Multidiscip. Optimiz., 64 (2021), 3861–3876. https://doi.org/10.1007/s00158-021-03065-0 doi: 10.1007/s00158-021-03065-0 |
[52] | X. Liu, X. Liu, Z. Zhou, L. Hu, An efficient multi-objective optimization method based on the adaptive approximation model of the radial basis function, Struct. Multidiscip. Optimiz., 63 (2021), 1385–1403. https://doi.org/10.1007/s00158-020-02766-2 doi: 10.1007/s00158-020-02766-2 |
[53] | J. Fang, Y. Gao, G. Sun, C. Xu, Q. Li, Multiobjective robust design optimization of fatigue life for a truck cab, Reliab. Eng. Syst. Safe., 135 (2015), 1–8. https://doi.org/10.1016/j.ress.2014.10.007 doi: 10.1016/j.ress.2014.10.007 |
[54] | X. Gu, G. Sun, G. Li, L. Mao, Q. Li, A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure, Struct. Multidiscip. Optimiz., 48 (2013), 669–684. https://doi.org/10.1007/s00158-013-0921-x doi: 10.1007/s00158-013-0921-x |
[55] | J. Zhou, F. Lan, J. Chen, F. Lai, Uncertainty optimization design of a vehicle body structure considering random deviations, Automot. Innov., 1 (2018), 342–351. https://doi.org/10.1007/s42154-018-0041-9 doi: 10.1007/s42154-018-0041-9 |
[56] | J. Zhu, X. Wang, H. Zhang, Y. Li, R. Wang, Z. Qiu, Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method, Chinese J. Aeronaut., 32 (2019), 2095–2108. https://doi.org/10.1016/j.cja.2019.04.009 doi: 10.1016/j.cja.2019.04.009 |
[57] | X. Wang, L. Shi, A new metamodel method using Gaussian process based bias function for vehicle crashworthiness design, Int. J. Crashworthines., 19 (2014), 311–321. https://doi.org/10.1080/13588265.2014.898932 doi: 10.1080/13588265.2014.898932 |
[58] | N. Qiu, J. Zhang, F. Yuan, Z. Jin, Y. Zhang, J. Fang, Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting, Eng. Struct., 263 (2022), 114377. https://doi.org/10.1016/j.engstruct.2022.114377 doi: 10.1016/j.engstruct.2022.114377 |
[59] | L. Chen, P. Ma, J. Tian, X. Liang, Prediction and optimization of lubrication performance for a transfer case based on computational fluid dynamics, Eng. Appl. Comp. Fluid, 13 (2019), 1013–1023. https://doi.org/10.1080/19942060.2019.1663765 doi: 10.1080/19942060.2019.1663765 |
[60] | X. Xu, Y. Zhang, X. Wang, J. Fang, J. Chen, J. Li, Searching superior crashworthiness performance by constructing variable thickness honeycombs with biomimetic cells, Int. J. Mech. Sci., 235 (2022), 107718. https://doi.org/10.1016/j.ijmecsci.2022.107718 doi: 10.1016/j.ijmecsci.2022.107718 |
[61] | X. Xu, Y. Zhang, J. Wang, F. Jiang, C. H. Wang, Crashworthiness design of novel hierarchical hexagonal columns, Compos. Struct., 194 (2018), 36–48. https://doi.org/10.1016/j.compstruct.2018.03.099 doi: 10.1016/j.compstruct.2018.03.099 |
[62] | X. Song, L. Lai, S. Xiao, Y. Tang, M. Song, J. Zhang, et al., Bionic design and multi-objective optimization of thin-walled structures inspired by conchs, Electron. Res. Arch., 31 (2023), 575–598. https://doi.org/10.3934/era.2023028 doi: 10.3934/era.2023028 |
[63] | J. Fang, Y. Gao, G. Sun, Q. Li, Multiobjective reliability-based optimization for design of a vehicledoor, Finite Elem. Anal. Des., 67 (2013), 13–21. https://doi.org/10.1016/j.finel.2012.11.007 doi: 10.1016/j.finel.2012.11.007 |
[64] | N. Qiu, Z. Jin, J. Liu, L. Fu, Z. Chen, N. H. Kim, Hybrid multi-objective robust design optimization of a truck cab considering fatigue life, Thin-Wall. Struct., 162 (2021), 107545. https://doi.org/10.1016/j.tws.2021.107545 doi: 10.1016/j.tws.2021.107545 |
[65] | G. Sun, H. Zhang, J. Fang, G. Li, Q. Li, A new multi-objective discrete robust optimization algorithm for engineering design, Appl. Math. Model., 53 (2018), 602–621. https://doi.org/10.1016/j.apm.2017.08.016 doi: 10.1016/j.apm.2017.08.016 |
[66] | F. Lei, X. Lv, J. Fang, T. Pang, Q. Li, G. Sun, Injury biomechanics-based nondeterministic optimization of front-end structures for safety in pedestrian-vehicle impact, Thin-Wall. Struct., 167 (2021). https://doi.org/10.1016/j.tws.2021.108087 |
[67] | H. Lu, D. Yu, Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization, J. Sound Vib., 333 (2014), 7313–7325. https://doi.org/10.1016/j.jsv.2014.08.027 doi: 10.1016/j.jsv.2014.08.027 |
[68] | J. Wu, Z. Luo, Y. Zhang, N. Zhang, An interval uncertain optimization method for vehicle suspensions using Chebyshev metamodels, Appl. Math. Model., 38 (2014), 3706–3723. https://doi.org/10.1016/j.apm.2014.02.012 doi: 10.1016/j.apm.2014.02.012 |
[69] | A. Jamali, M. Salehpour, N. Nariman-zadeh, Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters, Multibody Syst. Dyn., 30 (2013), 265–285. https://doi.org/10.1007/s11044-012-9337-4 doi: 10.1007/s11044-012-9337-4 |
[70] | X. Gu, W. Wang, L. Xia, P. Jiang, A system optimisation design approach to vehicle structure under frontal impact based on SVR of optimised hybrid kernel function, Int. J. Crashworthines., 26 (2021), 1–15. https://doi.org/10.1080/13588265.2019.1634335 doi: 10.1080/13588265.2019.1634335 |
[71] | Z. Liu, C. Jiang, Y. Li, Y. Bai, Fatigue life optimization for spot-welded Structures of vehicle body considering uncertainty of welding spots, China Mech. Eng., 26 (2015), 2544–2549. https://doi.org/10.3969/j.issn.1004-132X.2015.18.024 doi: 10.3969/j.issn.1004-132X.2015.18.024 |
[72] | L. Farkas, D. Moens, S. Donders, D. Vandepitte, Optimisation study of a vehicle bumper subsystem with fuzzy parameters, Mech. Syst. Signal Pr., 32 (2012), 59–68. https://doi.org/10.1016/j.ymssp.2011.11.014 doi: 10.1016/j.ymssp.2011.11.014 |
[73] | E. Acar, K. Solanki, System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures, Struct. Multidiscip. Optimiz., 39 (2009), 311–325. https://doi.org/10.1007/s00158-008-0327-3 doi: 10.1007/s00158-008-0327-3 |
[74] | Q. Zhao, H. Zhang, Z. Zhu, R. Jiang, L. Yuan, Reliability-based topology optimization for vehicle suspension control arm, Aut. Eng., 40(2018), 313–319. https://doi.org/10.19562/j.chinasae.qcgc.2018.03.011 doi: 10.19562/j.chinasae.qcgc.2018.03.011 |
[75] | M. Grujicic, G. Arakere, W. C. Bell, H. Marvi, H. V. Yalavarthy, B. Pandurangan, et al., Reliability-based design optimization for durability of ground vehicle suspension system components, J. Mater. Eng. Perform., 19 (2010), 301–313. https://doi.org/10.1007/s11665-009-9482-y doi: 10.1007/s11665-009-9482-y |
[76] | M. Rais-Rohani, K. N. Solanki, E. Acar, C. D. Eamon, Shape and sizing optimisation of automotive structures with deterministic and probabilistic design constraints, Int. J. Vehicle Des., 54 (2010), 309–338. https://doi.org/10.1504/IJVD.2010.036839 doi: 10.1504/IJVD.2010.036839 |
[77] | X. Xu, J. Chen, Z. Lin, Y. Qiao, X. Chen, Y. Zhang, et al., Optimization design for the planetary gear train of an electric vehicle under uncertainties, Actuators, 11 (2022). https://doi.org/10.3390/act11020049 |
[78] | G. Sun, H. Zhang, R. Wang, X. Lv, Q. Li, Multiobjective reliability-based optimization for crashworthy structures coupled with metal forming process, Struct. Multidiscip. Optimiz., 56 (2017), 1571–1587. https://doi.org/10.1007/s00158-017-1825-y doi: 10.1007/s00158-017-1825-y |
[79] | Y. Xu, Y. Gao, C. Wu, J. Fang, Q. Li, Robust topology optimization for multiple fiber-reinforced plastic (FRP) composites under loading uncertainties, Struct. Multidiscip. Optimiz., 59 (2019), 695–711. https://doi.org/10.1007/s00158-018-2175-0 doi: 10.1007/s00158-018-2175-0 |
[80] | C. van Mierlo, L. Burmberger, M. Daub, F. Duddeck, M. G. R. Faes, D. Moens, Interval methods for lack-of-knowledge uncertainty in crash analysis, Mech. Syst. Signal Proces., 168 (2022). https://doi.org/10.1016/j.ymssp.2021.108574 |
[81] | C. Lin, F. Gao, Y. Bai, Multiobjective reliability-based design optimisation for front structure of an electric vehicle using hybrid metamodel accuracy improvement strategy-based probabilistic sufficiency factor method, Int. J. Crashworthines., 23 (2018), 290–301. https://doi.org/10.1080/13588265.2017.1317466 doi: 10.1080/13588265.2017.1317466 |
[82] | F. Y. Li, G. Y. Li, Interval-based uncertain multi-objective optimization design of vehicle crashworthiness, CMC-Comput. Mater. Con., 15 (2010), 199–219. https://doi.org/10.2478/s11533-009-0061-0 doi: 10.2478/s11533-009-0061-0 |
[83] | J. Li, Y. Fang, Z. Zhan, Y. Jiang, An enhanced surrogate model based vehicle robust design method under materials and manufacturing uncertainties, in ASME International Mechanical Engineering Congress and Exposition, 2016. https://doi.org/10.1115/IMECE2016-67714 |
[84] | R. J. Yang, L. Gu, C. H. Tho, K. K. Choi, B. Youn, Reliability-based multidisciplinary design optimization of vehicle structures. in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002. https://doi.org/10.2514/6.2002-1758 |
[85] | L. Cao, J. Liu, L. Xie, C. Jiang, R. Bi, Non-probabilistic polygonal convex set model for structural uncertainty quantification, Appl. Math. Model., 89 (2021), 504–518. https://doi.org/10.1016/j.apm.2020.07.025 doi: 10.1016/j.apm.2020.07.025 |
[86] | X. Meng, J. Liu, L. Cao, Z. Yu, D. Yang, A general frame for uncertainty propagation under multimodally distributed random variables, Comput. Method. Appl. Mech. Eng., 367 (2020). https://doi.org/10.1016/j.cma.2020.113109 |
[87] | G. Chen, D. Yang, A unified analysis framework of static and dynamic structural reliabilities based on direct probability integral method, Mech. Syst. Signal Proces., 158 (2021). https://doi.org/10.1016/j.ymssp.2021.107783 |
[88] | X. Y. Long, D. L. Mao, C. Jiang, F. Y. Wei, G. J. Li, Unified uncertainty analysis under probabilistic, evidence, fuzzy and interval uncertainties, Comput. Method. Appl. Mech. Eng., 355 (2019), 1–26. https://doi.org/10.1016/j.cma.2019.05.041 |
[89] | X. Xu, X. Chen, Z. Liu, J. Yang, Y. Xu, Y. Zhang, et al., Multi-objective reliability-based design optimization for the reducer housing of electric vehicles, Eng. Optimiz., 54 (2022), 1324–1340. https://doi.org/10.1080/0305215X.2021.1923704 doi: 10.1080/0305215X.2021.1923704 |
[90] | N. Qiu, C. Park, Y. Gao, J. Fang, G. Sun, N. H. Kim, Sensitivity-based parameter calibration and model validation under model error, J. Mech. Des., 140 (2017). https://doi.org/10.1115/1.4038298 |
[91] | Z. L. Huang, C. Jiang, Y. S. Zhou, Z. Luo, Z. Zhang, An incremental shifting vector approach for reliability-based design optimization, Struct. Multidiscip. Optimiz., 53 (2016), 523–543. https://doi.org/10.1007/s00158-015-1352-7 doi: 10.1007/s00158-015-1352-7 |
[92] | W. Gao, D. Wu, K. Gao, X. Chen, F. Tin-Loi, Structural reliability analysis with imprecise random and interval fields, Appl. Math. Model., 55 (2018), 49–67. https://doi.org/10.1016/j.apm.2017.10.029 doi: 10.1016/j.apm.2017.10.029 |
[93] | N. Qiu, Y. Gao, J. Fang, G. Sun, Q. Li, N. H. Kim, Crashworthiness optimization with uncertainty from surrogate model and numerical error, Thin-Wall. Struct., 129 (2018), 457–472. https://doi.org/10.1016/j.tws.2018.05.002 doi: 10.1016/j.tws.2018.05.002 |
[94] | G. S. Song, M. C. Kim, Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables, Nucl. Eng. Technol., 54 (2022), 2084–2093. https://doi.org/10.1016/j.net.2021.12.033 doi: 10.1016/j.net.2021.12.033 |
[95] | N. A. W. Walton, R. Crowder, N. Satvat, N. R. Brown, V. Sobes, Demonstration of a random sampling approach to uncertainty propagation for generic pebble-bed fluoride-salt-cooled high temperature reactor (gFHR), Nucl. Eng. Des., 395 (2022), 111843. https://doi.org/10.1016/j.nucengdes.2022.111843 doi: 10.1016/j.nucengdes.2022.111843 |
[96] | X. P. Du, W. Chen, Sequential optimization and reliability assessment method for efficient probabilistic design, J. Mech. Des., 126 (2004), 225–233. https://doi.org/10.1115/1.1649968 doi: 10.1115/1.1649968 |
[97] | Y. Lei, N. Yang, D. Xia, Probabilistic structural damage detection approaches based on structural dynamic response moments, Smart Struct. Syst., 20 (2017), 207–217. https://doi.org/10.12989/sss.2017.20.2.207 doi: 10.12989/sss.2017.20.2.207 |
[98] | P. Hoang-Anh, T. Viet-Hung, V. Tien-Chuong, Fuzzy finite element analysis for free vibration response of functionally graded semi-rigid frame structures, Appl. Math. Model., 88 (2020), 852–869. https://doi.org/10.1016/j.apm.2020.07.014 doi: 10.1016/j.apm.2020.07.014 |
[99] | Z. Chen, Z. Lu, C. Ling, K. Feng, Reliability analysis model of time-dependent multi-mode system under fuzzy uncertainty: Applied to undercarriage structures, Aerosp. Sci. Technol., 120 (2022), 107278. https://doi.org/10.1016/j.ast.2021.107278 doi: 10.1016/j.ast.2021.107278 |
[100] | P. Wang, H. Zhu, H. Tian, G. Cai, Analytic target cascading with fuzzy uncertainties based on global sensitivity analysis for overall design of launch vehicle powered by hybrid rocket motor, Aerosp. Sci. Technol., 114 (2021), 106680. https://doi.org/10.1016/j.ast.2021.106680 doi: 10.1016/j.ast.2021.106680 |
[101] | S. Yin, D. Yu, H. Yin, B. Xia, A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion, Comput. Method. Appl. Mech. Eng., 322 (2017), 419–440. https://doi.org/10.1016/j.cma.2017.04.020 doi: 10.1016/j.cma.2017.04.020 |
[102] | H. Tang, D. Li, J. Li, S. Xue, Epistemic uncertainty quantification in metal fatigue crack growth analysis using evidence theory, Int. J. Fatigue, 99 (2017), 163–174. https://doi.org/10.1016/j.ijfatigue.2017.03.004 doi: 10.1016/j.ijfatigue.2017.03.004 |
[103] | Z. Zhang, X. X. Ruan, M. F. Duan, C. Jiang, An efficient epistemic uncertainty analysis method using evidence theory, Comput. Method. Appl. Mech. Eng., 339 (2018), 443–466. https://doi.org/10.1016/j.cma.2018.04.033 doi: 10.1016/j.cma.2018.04.033 |
[104] | X. Tang, K. Yuan, N. Gu, P. Li, R. Peng, An interval quantification-based optimization approach for wind turbine airfoil under uncertainties, Energy, 244 (2022), 122623. https://doi.org/10.1016/j.energy.2021.122623 doi: 10.1016/j.energy.2021.122623 |
[105] | Z. Niu, H. Zhu, X. Huang, A. Che, S. Fu, S. Meng, et al., Uncertainty quantification method for elastic wave tomography of concrete structure using interval analysis, Measurement, 205 (2022), 112160. https://doi.org/10.1016/j.measurement.2022.112160 doi: 10.1016/j.measurement.2022.112160 |
[106] | B. Y. Ni, C. Jiang, P. G. Wu, Z. H. Wang, W. Y. Tian, A sequential simulation strategy for response bounds analysis of structures with interval uncertainties, Comput. Struct., 266 (2022), 106785. https://doi.org/10.1016/j.compstruc.2022.106785 doi: 10.1016/j.compstruc.2022.106785 |
[107] | T. Tang, H. Luo, Y. Song, H. Fang, J. Zhang, Chebyshev inclusion function based interval kinetostatic modeling and parameter sensitivity analysis for Exechon-like parallel kinematic machines with parameter uncertainties, Mech. Mach. Theory, 157 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104209 |
[108] | C. Viegas, D. Daney, M. Tavakoli, A. T. de Almeida, Performance analysis and design of parallel kinematic machines using interval analysis, Mech. Mach. Theory, 115 (2017), 218–236. https://doi.org/10.1016/j.mechmachtheory.2017.05.003 doi: 10.1016/j.mechmachtheory.2017.05.003 |
[109] | M. Ma, L. Wang, Reliability-based topology optimization framework of two-dimensional phononic crystal band-gap structures based on interval series expansion and mapping conversion method, Int. J. Mech. Sci., 196 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106265 |
[110] | Z. Qiu, X. Li, A new model for the eigenvalue buckling analysis with unknown-but-bounded parameters, Aerosp. Sci. Technol., 113 (2021). https://doi.org/10.1016/j.ast.2021.106634 |
[111] | B. Xia, H. Lu, D. Yu, C. Jiang, Reliability-based design optimization of structural systems under hybrid probabilistic and interval model, Comput. Struct., 160 (2015), 126–134. https://doi.org/10.1016/j.compstruc.2015.08.009 doi: 10.1016/j.compstruc.2015.08.009 |
[112] | L. Wang, Z. Chen, G. Yang, Q. Sun, J. Ge, An interval uncertain optimization method using back-propagation neural network differentiation, Comput. Method. Appl. Mech. Eng., 366 (2020). https://doi.org/10.1016/j.cma.2020.113065 |
[113] | S. H. Chen, L. Ma, G. W. Meng, R. Guo, An efficient method for evaluating the natural frequencies of structures with uncertain-but-bounded parameters, Comput. Struct., 87 (2009), 582–590. https://doi.org/10.1016/j.compstruc.2009.02.009 doi: 10.1016/j.compstruc.2009.02.009 |
[114] | N. Impollonia, G. Muscolino, Interval analysis of structures with uncertain-but-bounded axial stiffness, Comput. Method. Appl. Mech. Eng., 200 (2011), 1945–1962. https://doi.org/10.1016/j.cma.2010.07.019 doi: 10.1016/j.cma.2010.07.019 |
[115] | G. Zhao, G. Wen, J. Liu, A novel analysis method for vibration systems under time-varying uncertainties based on interval process model, Probabilistic Eng. Mech., 70 (2022), 103363. https://doi.org/10.1016/j.probengmech.2022.103363 doi: 10.1016/j.probengmech.2022.103363 |
[116] | L. Wang, J. Liu, C. Yang, D. Wu, A novel interval dynamic reliability computation approach for the risk evaluation of vibration active control systems based on PID controllers, Appl. Math. Model., 92 (2021), 422–446. https://doi.org/10.1016/j.apm.2020.11.007 doi: 10.1016/j.apm.2020.11.007 |
[117] | W. Gao, D. Wu, C. Song, F. Tin-Loi, X. Li, Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method, Finite Elem. Anal. Des., 47 (2011), 643–652. https://doi.org/10.1016/j.finel.2011.01.007 doi: 10.1016/j.finel.2011.01.007 |
[118] | Z. P. Qiu, X. J. Wang, Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters, J. Sound Vib., 282 (2005), 381–399. https://doi.org/10.1016/j.jsv.2004.02.024 doi: 10.1016/j.jsv.2004.02.024 |
[119] | F. Li, Z. Luo, J. Rong, N. Zhang, Interval multi-objective optimisation of structures using adaptive Kriging approximations, Comput. Struct., 119 (2013), 68–84. https://doi.org/10.1016/j.compstruc.2012.12.028 doi: 10.1016/j.compstruc.2012.12.028 |
[120] | J. A. Fernandez-Prieto, J. Canada-Bago, M. A. Gadeo-Martos, J. R. Velasco, Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads, Appl. Soft Comput., 12 (2012), 1875–1883. https://doi.org/10.1016/j.asoc.2012.04.018 doi: 10.1016/j.asoc.2012.04.018 |
[121] | Y. G. Xu, G. R. Li, Z. P. Wu, A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move, Appl. Artif. Intell., 15 (2001), 601–631. https://doi.org/10.1080/088395101750363966 doi: 10.1080/088395101750363966 |
[122] | C. Jiang, X. Han, G. P. Liu, A sequential nonlinear interval number programming method for uncertain structures, Comput. Meth. Appl. Mech. Eng., 197 (2008), 4250–4265. https://doi.org/10.1016/j.cma.2008.04.027 doi: 10.1016/j.cma.2008.04.027 |
[123] | J. Cheng, M. Y. Tang, Z. Y. Liu, J. R. Tan, Direct reliability-based design optimization of uncertain structures with interval parameters, J. Zhejiang Univ-Sci. A, 17 (2016), 841–854. https://doi.org/10.1631/jzus.A1600143 doi: 10.1631/jzus.A1600143 |
[124] | Y. P. Li, G. H. Huang, P. Guo, Z. F. Yang, S. L. Nie, A dual-interval vertex analysis method and its application to environmental decision making under uncertainty, Eur. J. Oper. Res., 200 (2010), 536–550. https://doi.org/10.1016/j.ejor.2009.01.013 doi: 10.1016/j.ejor.2009.01.013 |
[125] | C. Wang, H. G. Matthies, Non-probabilistic interval process model and method for uncertainty analysis of transient heat transfer problem, Int. J. Therm. Sci., 144 (2019), 147–157. https://doi.org/10.1016/j.ijthermalsci.2019.06.002 doi: 10.1016/j.ijthermalsci.2019.06.002 |
[126] | S. Nayak, S. Chakraverty, Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate, Int. J. Heat Mass Tran., 67 (2013), 445–454. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.036 doi: 10.1016/j.ijheatmasstransfer.2013.08.036 |
[127] | Z. Qiu, X. Wang, J. Chen, Exact bounds for the static response set of structures with uncertain-but-bounded parameters, Int. J. Solids Struct., 43 (2006), 6574–6593. https://doi.org/10.1016/j.ijsolstr.2006.01.012 doi: 10.1016/j.ijsolstr.2006.01.012 |
[128] | Z. Qiu, Y. Xia, H. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Method. Appl. Mech. Eng., 196 (2007), 4965–4984. https://doi.org/10.1016/j.cma.2007.06.022 doi: 10.1016/j.cma.2007.06.022 |
[129] | Z. P. Qiu, S. H. Chen, I. Elishakoff, Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters, Chaos Solition. Fract., 7 (1996), 425–434. https://doi.org/10.1016/0960-0779(95)00065-8 doi: 10.1016/0960-0779(95)00065-8 |
[130] | Z. P. Qiu, X. J. Wang, Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis, Int. J. Solids Struct., 42 (2005), 4958–4970. https://doi.org/10.1016/j.ijsolstr.2005.02.023 doi: 10.1016/j.ijsolstr.2005.02.023 |
[131] | Z. Qiu, L. Ma, X. Wang, Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J. Sound Vib., 319 (2009), 531–540. https://doi.org/10.1016/j.jsv.2008.06.006 doi: 10.1016/j.jsv.2008.06.006 |
[132] | D. Meng, T. Xie, P. Wu, C. He, Z. Hu, Z. Lv, An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems, Structures, 32 (2021), 997–1004. https://doi.org/10.1016/j.istruc.2021.03.020 doi: 10.1016/j.istruc.2021.03.020 |
[133] | X. Liu, X. Yu, J. Tong, X. Wang, X. Wang, Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength, Reliab. Eng. Syst. Safe., 209 (2021), 107472. https://doi.org/10.1016/j.ress.2021.107472 doi: 10.1016/j.ress.2021.107472 |
[134] | J. Wang, Z. Lu, Probabilistic safety model and its efficient solution for structure with random and interval mixed uncertainties, Mech. Mach. Theory, 147 (2020), 103782. https://doi.org/10.1016/j.mechmachtheory.2020.103782 doi: 10.1016/j.mechmachtheory.2020.103782 |
[135] | D. M. Do, K. Gao, W. Yang, C. Q. Li, Hybrid uncertainty analysis of functionally graded plates via multiple-imprecise-random-field modelling of uncertain material properties, Comput. Method. Appl. Mech. Eng., 368 (2020), 113116. https://doi.org/10.1016/j.cma.2020.113116 doi: 10.1016/j.cma.2020.113116 |
[136] | J. Wang, Z. Lu, M. Zhong, T. Wang, C. Sun, H. Li, Coupled thermal–structural analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles, Thin-Wall. Struct., 141 (2019), 360-373. https://doi.org/10.1016/j.tws.2019.04.026 doi: 10.1016/j.tws.2019.04.026 |
[137] | M. Luo, Y. Chen, D. Gao, L. Wang, Inversion study of vehicle frontal collision and front bumper collision, Electron. Res. Arch. 31 (2023), 776–792. https://doi.org/10.3934/era.2023039 |
[138] | W. Li, J. Wang, Z. Du, H. Ma, L. Zhang, L. Duan, Lightweight design method and application of MEWP bracket based on multi-level optimization, Electron. Res. Arch., 30 (2022), 4416–4435. https://doi.org/10.3934/era.2022224 doi: 10.3934/era.2022224 |
[139] | X. Xu, G. Xu, J. Chen, Z. Liu, X. Chen, Y. Zhang, et al., Multi-objective design optimization using hybrid search algorithms with interval uncertainty for thin-walled structures, Thin-Wall. Struct., 175 (2022), 109218. https://doi.org/10.1016/j.tws.2022.109218 doi: 10.1016/j.tws.2022.109218 |
[140] | Y. Wu, W. Li, J. Fang, Q. Lan, Multi-objective robust design optimization of fatigue life for a welded box girder, Eng. Optimiz., 50 (2018), 1252–1269. https://doi.org/10.1080/0305215X.2017.1395023 doi: 10.1080/0305215X.2017.1395023 |
[141] | Y. Wu, L. Sun, P. Yang, J. Fang, W. Li, Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads, Thin-Wall. Struct., 164 (2021), 107810. https://doi.org/10.1016/j.tws.2021.107810 doi: 10.1016/j.tws.2021.107810 |
[142] | Y. Su, H. Tang, S. Xue, D. Li, Multi-objective differential evolution for truss design optimization with epistemic uncertainty, Adv. Struct. Eng., 19 (2016), 1403–1419. https://doi.org/10.1177/1369433216643250 doi: 10.1177/1369433216643250 |
[143] | X. Liu, Q. Fu, N. Ye, L. Yin, The multi-objective reliability-based design optimization for structure based on probability and ellipsoidal convex hybrid model, Struct. Safe., 77 (2019), 48–56. https://doi.org/10.1016/j.strusafe.2018.11.004 doi: 10.1016/j.strusafe.2018.11.004 |
[144] | T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, T. Nguyen-Thoi, An effective couple method for reliability-based multi-objective optimization of truss structures with static and dynamic constraints, Int. J. Comput. Method., 17 (2020). https://doi.org/10.1142/S0219876219500166 |
[145] | F. S. Lobato, M. A. da Silva, A. A. Cavalini, V. Steffen, Reliability-based robust multi-objective optimization applied to engineering system design, Eng. Optimiz., 52 (2020), 1–21. https://doi.org/10.1080/0305215X.2019.1577413 doi: 10.1080/0305215X.2019.1577413 |
[146] | P. Wang, S. Zheng, G. Wu, Multidisciplinary design optimization of vehicle body structure based on collaborative optimization and multi-objective genetic algorithm, Chinese J. Mech. Eng., 47 (2011), 102–108. https://doi.org/10.3901/JME.2011.02.102 doi: 10.3901/JME.2011.02.102 |
[147] | H. Yin, H. Fang, Y. Xiao, G. Wen, Q. Qing, Multi-objective robust optimization of foam-filled tapered multi-cell thin-walled structures, Struct. Multidiscip. Optimiz., 52 (2015), 1051–1067. https://doi.org/10.1007/s00158-015-1299-8 doi: 10.1007/s00158-015-1299-8 |
[148] | A. Khakhali, N. Nariman-zadeh, A. Darvizeh, A. Masoumi, B. Notghi, Reliability-based robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties, Int. J. Crashworthines., 15 (2010), 443–456. https://doi.org/10.1080/13588261003696458 doi: 10.1080/13588261003696458 |
[149] | A. U. Ebenuwa, K. F. Tee, Y. Zhang, Fuzzy-based multi-objective design optimization of buried pipelines, Int. J. Uncertain. Fuzz., 29 (2021), 209–229. https://doi.org/10.1142/S0218488521500104 doi: 10.1142/S0218488521500104 |
[150] | E. Untiedt. A Parametrized Model for Optimization with Mixed Fuzzy and Possibilistic Uncertainty, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-13935-2_9 |
[151] | X. Liu, Z. Zhang, L. Yin, A multi-objective optimization method for uncertain structures based on nonlinear interval number programming method, Mech. Based Des. Struct. Mach., 45 (2017), 25–42. https://doi.org/10.1080/15397734.2016.1141365 doi: 10.1080/15397734.2016.1141365 |
[152] | T. Xie, Q. Zhou, J. Hu, L. Shu, P. Jiang, A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines, in 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017, 2088–2092. https://doi.org/10.1109/IEEM.2017.8290260 |
[153] | H. Chagraoui, M. Soula, M. Guedri, Robust multi-objective collaborative optimization of complex structures. Adv. Acous. Vib., 5 (2017), 247–258. https://doi.org/10.1007/978-3-319-41459-1_24 doi: 10.1007/978-3-319-41459-1_24 |
[154] | F. Li, G. Li, G. Sun, Z. Luo, Z. Zhang, Multi-disciplinary optimization for multi-objective uncertainty design of thin walled beams, CMC-Comput. Mater. Con., 19 (2010), 37–56. http://hdl.handle.net/10453/22026 |
[155] | X. Zhang, W. Sun, J. Huo, X. Ding, Interval multi-objective optimization design based on physical programming, Przeglad Elektrotechiczhy, 88 (2012), 379–381. |
[156] | J. Cheng, G. Duan, Z. Liu, X. Li, Y. Feng, X. Chen, Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-Ⅱ, J. Zhejiang Univ-Sci. A, 15 (2014), 774–788. https://doi.org/10.1631/jzus.A1300311 |
[157] | X. Feng, J. Wu, Y. Zhang, M. Jiang, Suspension kinematic/compliance uncertain optimization using a chebyshev polynomial approach, SAE Int. J. Mater. Manu., 8 (2015), 257–262. https://doi.org/10.4271/2015-01-0432 doi: 10.4271/2015-01-0432 |
[158] | X. Li, C. Jiang, X. Han, An uncertainty multi-objective optimization based on interval analysis and its application, China Mech. Eng., 22 (2011), 1100–1106. http://www.cmemo.org.cn/EN/Y2011/V22/I9/1100 |
[159] | C. Jiang, H. C. Xie, Z. G. Zhang, X. Han, A new interval optimization method considering tolerance design, Eng. Optimiz., 47 (2015), 1637–1650. https://doi.org/10.1080/0305215X.2014.982632 doi: 10.1080/0305215X.2014.982632 |