A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [
Citation: Valentin Duruisseaux, Melvin Leok. Time-adaptive Lagrangian variational integrators for accelerated optimization[J]. Journal of Geometric Mechanics, 2023, 15(1): 224-255. doi: 10.3934/jgm.2023010
A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [
[1] | A. Wibisono, A. Wilson, M. Jordan, A variational perspective on accelerated methods in optimization, Proc. Natl. Acad. Sci., 113 (2016), E7351–E7358. https://doi.org/10.1073/pnas.1614734113 doi: 10.1073/pnas.1614734113 |
[2] | V. Duruisseaux, M. Leok, A variational formulation of accelerated optimization on Riemannian manifolds, SIAM J. Math. Data Sci., 4 (2022), 649–674. https://doi.org/10.1137/21M1395648 doi: 10.1137/21M1395648 |
[3] | V. Duruisseaux, J. Schmitt, M. Leok, Adaptive Hamiltonian variational integrators and applications to symplectic accelerated optimization, SIAM J. Sci. Comput., 43 (2021), A2949–A2980. https://doi.org/10.1137/20M1383835 doi: 10.1137/20M1383835 |
[4] | Y. Nesterov, A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$. Sov. Math. Dokl., 27 (1983), 372–376. |
[5] | Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization, Kluwer Academic Publishers, Boston, MA, 2004. |
[6] | W. Su, S. Boyd, E. Candes, A differential equation for modeling Nesterov's Accelerated Gradient method: theory and insights. J. Mach. Learn. Res., 17 (2016), 1–43. |
[7] | M. Betancourt, M. I. Jordan, A. Wilson, On symplectic optimization. 2018. https://doi.org/10.48550/arXiv.1802.03653 |
[8] | C. M. Campos, A. Mahillo, D. Martín de Diego, A discrete variational derivation of accelerated methods in optimization. 2021. https://doi.org/10.48550/arXiv.2106.02700 |
[9] | G. França, M. I. Jordan, R. Vidal, On dissipative symplectic integration with applications to gradient-based optimization. J. Stat. Mech., 2021 (2021), 043402. https://doi.org/10.1088/1742-5468/abf5d4 doi: 10.1088/1742-5468/abf5d4 |
[10] | G. França, A. Barp, M. Girolami, M. I. Jordan, Optimization on manifolds: A symplectic approach, 07 2021. https://doi.org/10.48550/arXiv.2107.11231 |
[11] | M. I. Jordan, Dynamical, symplectic and stochastic perspectives on gradient-based optimization, In Proceedings of the International Congress of Mathematicians (ICM 2018), 523–549. https://doi.org/10.1142/9789813272880_0022 |
[12] | E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006. |
[13] | J. P. Calvo, J. M. Sanz-Serna, The development of variable-step symplectic integrators, with application to the two-body problem, SIAM J. Sci. Comp., 14 (1993), 936–952. https://doi.org/10.1137/0914057 doi: 10.1137/0914057 |
[14] | B. Gladman, M. Duncan, J. Candy, Symplectic integrators for long-time integrations in celestial mechanics. Celestial Mech. Dyn. Astr., 52 (1991), 221–240. https://doi.org/10.1007/BF00048485 doi: 10.1007/BF00048485 |
[15] | E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219–227. https://doi.org/10.1016/S0168-9274(97)00061-5 doi: 10.1016/S0168-9274(97)00061-5 |
[16] | K. Zare, V. G. Szebehely, Time transformations in the extended phase-space. Celestial Mech., 11 (1975), 469–482. https://doi.org/10.1007/BF01650285 doi: 10.1007/BF01650285 |
[17] | J. Hall, M. Leok, Spectral Variational Integrators, Numer. Math., 130 (2015), 681–740. https://doi.org/10.1007/s00211-014-0679-0 doi: 10.1007/s00211-014-0679-0 |
[18] | J. E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer., 10 (2001), 357–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X |
[19] | T. Lee, M. Tao, M. Leok, Variational symplectic accelerated optimization on Lie groups. 2021. |
[20] | M. Tao, T. Ohsawa, Variational optimization on Lie groups, with examples of leading (generalized) eigenvalue problems. In Proceedings of the 23rd International AISTATS Conference, volume 108 of PMLR, 2020. |
[21] | F. Alimisis, A. Orvieto, G. Bécigneul, A. Lucchi, A continuous-time perspective for modeling acceleration in Riemannian optimization. In Proceedings of the 23rd International AISTATS Conference, volume 108 of PMLR, 1297–1307, 2020. |
[22] | V. Duruisseaux, M. Leok, Accelerated optimization on Riemannian manifolds via discrete constrained variational integrators. J. Nonlinear Sci., 32 (2022). https://doi.org/10.1007/s00332-022-09795-9 doi: 10.1007/s00332-022-09795-9 |
[23] | V. Duruisseaux, M. Leok, Accelerated optimization on Riemannian manifolds via projected variational integrators. 2022. https://doi.org/10.48550/arXiv.2201.02904 |
[24] | J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20–63. https://doi.org/10.2307/1969989 doi: 10.2307/1969989 |
[25] | H. Whitney, The self-intersections of a smooth $n$-manifold in $2n$-space, Ann. Math., 45 (1944), 220–246. https://doi.org/10.2307/1969265 doi: 10.2307/1969265 |
[26] | H. Whitney, The singularities of a smooth $n$-manifold in $(2n - 1)$-space, Ann. Math., 45 (1944), 247–293. https://doi.org/10.2307/1969266 doi: 10.2307/1969266 |
[27] | N. Bou-Rabee, J. E. Marsden, Hamilton–Pontryagin integrators on Lie groups part Ⅰ: Introduction and structure-preserving properties, Found. Comput. Math., 9 (2009), 197–219. https://doi.org/10.1007/s10208-008-9030-4 doi: 10.1007/s10208-008-9030-4 |
[28] | I. I. Hussein, M. Leok, A. K. Sanyal, A. M. Bloch, A discrete variational integrator for optimal control problems on SO(3). Proceedings of the 45th IEEE Conference on Decision and Control, 6636–6641, 2006. https://doi.org/10.1109/CDC.2006.377818 doi: 10.1109/CDC.2006.377818 |
[29] | T. Lee, Computational geometric mechanics and control of rigid bodies. Ph.D. dissertation, University of Michigan, 2008. |
[30] | T. Lee, M. Leok, N. H. McClamroch, Lie group variational integrators for the full body problem, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2907–2924. https://doi.org/10.1016/j.cma.2007.01.017 doi: 10.1016/j.cma.2007.01.017 |
[31] | T. Lee, M. Leok, N. H. McClamroch, Lie group variational integrators for the full body problem in orbital mechanics, Celestial Mech. Dyn. Astr., 98 (2007), 121–144. https://doi.org/10.1007/s10569-007-9073-x doi: 10.1007/s10569-007-9073-x |
[32] | T. Lee, N. H. McClamroch, M. Leok, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3d pendulum, Proceedings of 2005 IEEE Conference on Control Applications. (CCA 2005), 962–967. https://doi.org/10.1109/CCA.2005.1507254 doi: 10.1109/CCA.2005.1507254 |
[33] | M. Leok, Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods, (preprint, arXiv: math.NA/0508360), 2004. |
[34] | N. Nordkvist, A. K. Sanyal, A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics, In 49th IEEE Conference on Decision and Control (CDC), 5414–5419, 2010. https://doi.org/10.1109/CDC.2010.5717622 |
[35] | T. Lee, M. Leok, N. H. McClamroch, Lagrangian mechanics and variational integrators on two-spheres, Int. J. Numer. Methods Eng., 79 (2009), 1147–1174. https://doi.org/10.1002/nme.2603 doi: 10.1002/nme.2603 |
[36] | J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 1999. |
[37] | S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A, 39 (2006), 5509–5519. https://doi.org/10.1088/0305-4470/39/19/S11 doi: 10.1088/0305-4470/39/19/S11 |
[38] | M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497–1532. https://doi.org/10.1093/imanum/drq027 doi: 10.1093/imanum/drq027 |
[39] | J. M. Schmitt, M. Leok, Properties of Hamiltonian variational integrators, IMA J. Numer. Anal., 38 (2017), 377–398. https://doi.org/10.1093/imanum/drx010 doi: 10.1093/imanum/drx010 |
[40] | M. Leok, T. Shingel, Prolongation-collocation variational integrators, IMA J. Numer. Anal., 32 (2012), 1194–1216. https://doi.org/10.1093/imanum/drr042 doi: 10.1093/imanum/drr042 |
[41] | J. M. Schmitt, T. Shingel, M. Leok, Lagrangian and Hamiltonian Taylor variational integrators, BIT Numer. Math., 58 (2018), 457–488. https://doi.org/10.1007/s10543-017-0690-9 doi: 10.1007/s10543-017-0690-9 |
[42] | M. Leok, T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529–562. https://doi.org/10.1007/s10208-011-9096-2 doi: 10.1007/s10208-011-9096-2 |
[43] | H. Yoshimura, J. E. Marsden, Dirac structures in Lagrangian mechanics Part Ⅰ: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009 |
[44] | H. Yoshimura, J. E. Marsden, Dirac structures in Lagrangian mechanics Part Ⅱ: Variational structures, J. Geom. Phys., 57 (2006), 209–250. https://doi.org/10.1016/j.geomphys.2006.02.012 doi: 10.1016/j.geomphys.2006.02.012 |
[45] | D. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations, 12 2014. https://doi.org/10.48550/arXiv.1412.6980 |
[46] | J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12 (2011), 2121–2159. |
[47] | T. Tieleman, G. Hinton, Coursera: Neural Networks for Machine Learning - Lecture 6.5: RMSprop, 2012. |
[48] | P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244 |
[49] | N. Boumal, An introduction to optimization on smooth manifolds, 2020. |
[50] | J. M. Lee, Introduction to Riemannian Manifolds, volume 176 of Graduate Texts in Mathematics, Springer, Cham, second edition, 2018. |
[51] | J. Jost, Riemannian Geometry and Geometric Analysis, Universitext. Springer, Cham, 7th edition, 2017. |
[52] | T. Lee, M. Leok, N. H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis, Interaction of Mechanics and Mathematics. Springer International Publishing, 2017. |
[53] | J. Gallier, J. Quaintance, Differential Geometry and Lie Groups: A Computational Perspective, Geometry and Computing. Springer International Publishing, 2020. |
[54] | E. Celledoni, H. Marthinsen, B. Owren, An introduction to Lie group integrators – basics, new developments and applications, J. Comput. Phys., 257 (2014), 1040–1061. https://doi.org/10.1016/j.jcp.2012.12.031 doi: 10.1016/j.jcp.2012.12.031 |
[55] | E. Celledoni, E. Çokaj, A. Leone, D. Murari, B. Owren, Lie group integrators for mechanical systems, Int. J. Comput. Math., 99 (2022), 58–88. https://doi.org/10.1080/00207160.2021.1966772 doi: 10.1080/00207160.2021.1966772 |
[56] | S. H. Christiansen, H. Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization, Acta Numer., 20 (2011), 1–119. https://doi.org/10.1017/S096249291100002X doi: 10.1017/S096249291100002X |
[57] | A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, A. Zanna, Lie group methods, Acta Numer., 9 (2000), 215–365. https://doi.org/10.1017/S0962492900002154 |
[58] | P. E. Crouch, R. L. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci., 3 (1993), 1–33. https://doi.org/10.1007/BF02429858 doi: 10.1007/BF02429858 |
[59] | D. Lewis, J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4 (1994), 253–299. https://doi.org/10.1007/BF02430634 doi: 10.1007/BF02430634 |
[60] | F. Casas, B. Owren, Cost efficient Lie group integrators in the RKMK class, BIT, 43 (2003), 723–742. https://doi.org/10.1023/B:BITN.0000009959.29287.d4 doi: 10.1023/B:BITN.0000009959.29287.d4 |
[61] | H. Z. Munthe-Kaas, Lie-Butcher theory for Runge-Kutta methods, BIT, 35 (1995), 572–587. https://doi.org/10.1007/BF01739828 doi: 10.1007/BF01739828 |
[62] | H. Z. Munthe-Kaas, Runge-Kutta methods on Lie groups, Bit Numer. Math., 38 (1998), 92–111. https://doi.org/10.1007/BF02510919 doi: 10.1007/BF02510919 |
[63] | H. Z. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29 (1999), 115–127. https://doi.org/10.1016/S0168-9274(98)00030-0 doi: 10.1016/S0168-9274(98)00030-0 |
[64] | S. Blanes, F. Casas, J. A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2008), 151–238. https://doi.org/10.1016/j.physrep.2008.11.001 doi: 10.1016/j.physrep.2008.11.001 |
[65] | A. Iserles, S. P. Nørsett, On the solution of linear differential equations in Lie groups, Phil. Trans. R. Soc. A, 357 (1999), 983–1019. https://doi.org/10.1098/rsta.1999.0362 doi: 10.1098/rsta.1999.0362 |
[66] | A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions, SIAM J. Numer. Anal., 36 (1999), 1145–1182. https://doi.org/10.1137/S0036142997326616 doi: 10.1137/S0036142997326616 |
[67] | E. Celledoni, A. Marthinsen, B. Owren, Commutator-free Lie group methods, Future Gener. Comput. Syst., 19 (2003), 341–352. https://doi.org/10.1016/S0167-739X(02)00161-9 doi: 10.1016/S0167-739X(02)00161-9 |
[68] | G. Wahba, A Least Squares Estimate of Satellite Attitude, SIAM Rev., 7 (1965), 409. https://doi.org/10.1137/1007077 doi: 10.1137/1007077 |
[69] | V. Duruisseaux, M. Leok, Practical perspectives on symplectic accelerated optimization, 2022. https://doi.org/10.48550/arXiv.2207.11460 |
jgm-15-01-010-s001.pdf |