Research article Special Issues

Adaptive fuzzy output-feedback event-triggered control for fractional-order nonlinear system


  • Received: 20 May 2022 Revised: 28 July 2022 Accepted: 05 August 2022 Published: 24 August 2022
  • This paper studies the issue of adaptive fuzzy output-feedback event-triggered control (ETC) for a fractional-order nonlinear system (FONS). The considered fractional-order system is subject to unmeasurable states. Fuzzy-logic systems (FLSs) are used to approximate unknown nonlinear functions, and a fuzzy state observer is founded to estimate the unmeasurable states. By constructing appropriate Lyapunov functions and utilizing the backstepping dynamic surface control (DSC) design technique, an adaptive fuzzy output-feedback ETC scheme is developed to reduce the usage of communication resources. It is proved that the controlled fractional-order system is stable, the tracking and observer errors are able to converge to a neighborhood of zero, and the Zeno phenomenon is excluded. A simulation example is given to verify the availability of the proposed ETC algorithm.

    Citation: Chaoyue Wang, Zhiyao Ma, Shaocheng Tong. Adaptive fuzzy output-feedback event-triggered control for fractional-order nonlinear system[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12334-12352. doi: 10.3934/mbe.2022575

    Related Papers:

  • This paper studies the issue of adaptive fuzzy output-feedback event-triggered control (ETC) for a fractional-order nonlinear system (FONS). The considered fractional-order system is subject to unmeasurable states. Fuzzy-logic systems (FLSs) are used to approximate unknown nonlinear functions, and a fuzzy state observer is founded to estimate the unmeasurable states. By constructing appropriate Lyapunov functions and utilizing the backstepping dynamic surface control (DSC) design technique, an adaptive fuzzy output-feedback ETC scheme is developed to reduce the usage of communication resources. It is proved that the controlled fractional-order system is stable, the tracking and observer errors are able to converge to a neighborhood of zero, and the Zeno phenomenon is excluded. A simulation example is given to verify the availability of the proposed ETC algorithm.



    加载中


    [1] S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. https://doi.org/10.1063/1.5082907 doi: 10.1063/1.5082907
    [2] S. Ullah, M. A. Khan, M. Farooq, A fractional model for the dynamics of TB virus, Chaos Solitons Fractals, 29 (2019), 63–71. https://doi.org/10.1016/j.chaos.2018.09.001 doi: 10.1016/j.chaos.2018.09.001
    [3] R. M. Jena, S. Chakraverty, H. Rezazadeh, D. D. Ganji, On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions, Math. Methods Appl. Sci., 43 (2020), 3903–3913. https://doi.org/10.1002/mma.6141 doi: 10.1002/mma.6141
    [4] H. Liu, S. G. Li, Y. G. Sun, H. X. Wang, Prescribed performance synchronization for fractional-order chaotic systems, Chin. Phys. B, 24 (2015). https://doi.org/10.1088/1674-1056/24/9/090505 doi: 10.1088/1674-1056/24/9/090505
    [5] Y. H. Wei, Y. Q. Chen, S. Liang, Y. Wang, A novel algorithm on adaptive backstepping control of fractional order system, Neurocomputing, 116 (2018), 63–71. https://doi.org/10.1016/j.neucom.2015.03.029 doi: 10.1016/j.neucom.2015.03.029
    [6] X. Y. Li, C. Y. Wen, Y. Zou, Adaptive backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control, IEEE Trans. Syst. Man, Cybern. Syst., 51 (2021), 7860–7869. https://doi.org/10.1109/TSMC.2020.2987335 doi: 10.1109/TSMC.2020.2987335
    [7] H. Liu, Y. P. Pan, S. G. Li, Y. Chen, Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans. Syst. Man, Cybern., Syst., 47 (2017), 2209–2217. https://doi.org/10.1109/TSMC.2016.2640950 doi: 10.1109/TSMC.2016.2640950
    [8] C. H. Wang, M. Liang, Adaptive NN tracking control for nonlinear fractional order systems with uncertainty and input saturation, IEEE Access, 6 (2018), 70035–70044. https://doi.org/10.1109/ACCESS.2018.2878772 doi: 10.1109/ACCESS.2018.2878772
    [9] Y. X. Li, Q. Y. Wang, S. C. Tong, Fuzzy adaptive fault-tolerant control of fractional-order nonlinear systems, IEEE Trans. Syst. Man, Cybern. Syst., 51 (2021), 1372–1379. https://doi.org/10.1109/TSMC.2019.2894663 doi: 10.1109/TSMC.2019.2894663
    [10] Z. Y. Ma, H. J. Ma, Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 28 (2020), 122–133. https://doi.org/10.1109/TFUZZ.2019.2900602 doi: 10.1109/TFUZZ.2019.2900602
    [11] S. Sui, C. L. P. Chen, S. C. Tong, Neural-network-based adaptive DSC design for switched fractional-order nonlinear systems, IEEE Trans. Neural Network Learn. Syst., 32 (2021), 4703–4712. https://doi.org/10.1109/TNNLS.2020.3027339 doi: 10.1109/TNNLS.2020.3027339
    [12] Z. Y. Ma, H. J. Ma, Reduced-order observer-based adaptive backstepping control for fractional-order uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 28 (2020), 3287–3301. https://doi.org/10.1109/TFUZZ.2019.2949760 doi: 10.1109/TFUZZ.2019.2949760
    [13] S. Song, J. H. Park, B. Y. Zhang, X. N. Song, Observer-based adaptive hybrid fuzzy resilient control for fractional-order nonlinear systems with time-varying delays and actuator failures, IEEE Trans. Fuzzy Syst., 29 (2021), 471–485. https://doi.org/10.1109/TFUZZ.2019.2955051 doi: 10.1109/TFUZZ.2019.2955051
    [14] W. G. Yang, W. W. Yu, Y. Z. Lv, L. Zhu, T. Hayat, Adaptive fuzzy tracking control design for a class of uncertain nonstrict-feedback fractional-order nonlinear SISO systems, IEEE Trans. Cybern., 51 (2021), 3039–3053. https://doi.org/10.1109/TCYB.2019.2931401 doi: 10.1109/TCYB.2019.2931401
    [15] X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control., 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [16] S. Sui, C. L. P. Chen, S. C. Tong, Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics, IEEE Trans. Fuzzy Syst., 29 (2021), 1914–1926. https://doi.org/10.1109/TFUZZ.2020.2988849 doi: 10.1109/TFUZZ.2020.2988849
    [17] W. Wang, Y. M. Li, S. C, Tong, Neural-network-based adaptive event-triggered consensus control of nonstrict-feedback nonlinear systems, IEEE Trans. Neural Network Learn. Syst., 32 (2021), 1750–1764. https://doi.org/10.1109/TNNLS.2020.2991015 doi: 10.1109/TNNLS.2020.2991015
    [18] M. Wei, Y. X. Li, S. C. Tong, Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints, Neurocomputing, 412 (2020), 320–326. https://doi.org/10.1016/j.neucom.2020.06.082 doi: 10.1016/j.neucom.2020.06.082
    [19] B. Q. Cao, X. B. Nie, Event-triggered adaptive neural networks control for fractional-order nonstrict-feedback nonlinear systems with unmodeled dynamics and input saturation, Neural Networks, 142 (2021), 288–302. https://doi.org/10.1016/j.neunet.2021.05.014 doi: 10.1016/j.neunet.2021.05.014
    [20] Y. X. Li, M. Wei, S. C. Tong, Event-triggered adaptive neural control for fractional-order nonlinear systems based on finite-time scheme, IEEE Trans. Cybern., 2021 (2021), 1–9. https://doi.org/10.1109/TCYB.2021.3056990 doi: 10.1109/TCYB.2021.3056990
    [21] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [22] P. Gong, W. Y. Lan, Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies, Automatica, 92 (2018), 92–99. https://doi.org/10.1016/j.automatica.2018.02.010 doi: 10.1016/j.automatica.2018.02.010
    [23] X. D. Li, D. W. C. Ho J. D. Cao, Finite-time stability and settling estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [24] X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1665) PDF downloads(64) Cited by(4)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog