In this paper, we investigated leader-following consensus control for nonlinear multi-agent systems (MASs) experiencing denial-of-service (DoS) attacks. We proposed a distributed control strategy incorporating an adaptive scheme and a state feedback control gain to eliminate the effects of system nonlinear dynamics and uncertainties. In addition, we introduced a dynamic event-triggered control (DETC) to minimize the utilization of communication resources. Finally, we provided simulation results to show the validity of the proposed approach.
Citation: Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang. Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146
In this paper, we investigated leader-following consensus control for nonlinear multi-agent systems (MASs) experiencing denial-of-service (DoS) attacks. We proposed a distributed control strategy incorporating an adaptive scheme and a state feedback control gain to eliminate the effects of system nonlinear dynamics and uncertainties. In addition, we introduced a dynamic event-triggered control (DETC) to minimize the utilization of communication resources. Finally, we provided simulation results to show the validity of the proposed approach.
[1] | X. Wang, G. H. Yang, Distributed fault-tolerant control for a class of cooperative uncertain systems with actuator failures and switching topologies, Inform. Sci., 370 (2016), 650–666. https://doi.org/10.1016/j.ins.2015.11.002 doi: 10.1016/j.ins.2015.11.002 |
[2] | S. Chen, DWC. Ho, L. Li, M. Liu, Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol, IEEE Trans. Cybern., 45 (2014), 2142–2155. https://doi.org/10.1109/TCYB.2014.2366204 doi: 10.1109/TCYB.2014.2366204 |
[3] | X. Jin, X. Zhao, J. Yu, X. Wu, J. Chi, Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy, Neural Networks, 121 (2020), 474–483. https://doi.org/10.1016/j.neunet.2019.09.028 doi: 10.1016/j.neunet.2019.09.028 |
[4] | M. Khalili, X. Zhang, M. M. Polycarpou, T. Parisini, Y. Cao, Distributed adaptive fault-tolerant control of uncertain multi-agent systems, Automatica, 87 (2018), 142–151. https://doi.org/10.1016/j.automatica.2017.09.002 doi: 10.1016/j.automatica.2017.09.002 |
[5] | H. Yang, M. Staroswiecki, B. Jiang, J. Liu, Fault tolerant cooperative control for a class of nonlinear multi-agent systems, Syst. Control Letters, 60 (2011), 271–277. https://doi.org/10.1016/j.sysconle.2011.02.004 doi: 10.1016/j.sysconle.2011.02.004 |
[6] | W. He, F. Qian, J. Lam, G. Chen, Q. L. Han, J. Kurths, Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design, Automatica, 62 (2015), 249–262. https://doi.org/10.1016/j.automatica.2015.09.028 doi: 10.1016/j.automatica.2015.09.028 |
[7] | W. He, G. Chen, Q. L. Han, F. Qian, Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Inform. Sci., 380 (2017), 145–158. https://doi.org/10.1016/j.ins.2015.06.005 doi: 10.1016/j.ins.2015.06.005 |
[8] | H. Hou, Q. Zhang, Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control, ISA Trans., 65 (2016), 96–108. https://doi.org/10.1016/j.isatra.2016.07.004 doi: 10.1016/j.isatra.2016.07.004 |
[9] | D. V. Dimarogonas, E. Frazzoli, Distributed event-triggered control strategies for multi-agent systems, in 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), (2009), 906–910. https://doi.org/10.1109/ALLERTON.2009.5394897 |
[10] | D. V. Dimarogonas, E. Frazzoli, Distributed event-triggered control for multi-agent systems, IEEE Trans. Autom. Control, 57 (2011), 1291–1297. 10.1109/TAC.2011.2174666 doi: 10.1109/TAC.2011.2174666 |
[11] | G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson, Control of multi-agent systems via event-based communication, IFAC Proceed Volumes, 44 (2011), 10086–10091. https://doi.org/10.3182/20110828-6-IT-1002.01496 doi: 10.3182/20110828-6-IT-1002.01496 |
[12] | D. Liu, A. Hu, H. Shao, Adaptive event-triggered control for consensus of multi-agent systems, Comput. Eng. Appl., 53 (2017), 44–48. https://doi.org/10.3778/j.issn.1002-8331.1503-0235 doi: 10.3778/j.issn.1002-8331.1503-0235 |
[13] | D. Liu, G. H. Yang, A dynamic event-triggered control approach to leader-following consensus for linear multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 6271–6279. https://doi.org/10.1109/TSMC.2019.2960062 doi: 10.1109/TSMC.2019.2960062 |
[14] | X. Wang, G. Yang, Distributed fault-tolerant control for a class of cooperative uncertain systems with actuator failures and switching topologies, Inform. Sci., 370–371 (2016), 650–666. https://doi.org/10.1016/j.ins.2015.11.002 doi: 10.1016/j.ins.2015.11.002 |
[15] | K. Zhang, Z. Hu, F. Song, X. Yang, Y. Liu, Consensus of input constrained multi-agent systems by dynamic time-varying event-triggered strategy with a designable minimal inter-event time, in IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, (2023), 1. https://doi.org/10.1109/TCSII.2023.3332593 |
[16] | M. Li, Y. Long, T. Li, H. Liang, C. L. P. Chen, Dynamic event-triggered consensus control for input constrained multi-agent systems with a designable minimum inter-event time, IEEE J. Autom. Sin., (2023), 1–12. https://doi.org/10.1109/JAS.2023.123582 |
[17] | H. Zhang, A. Wang, W. Ji, J. Qiu, H. Yan, Optimal consensus control for continuous-time linear multiagent systems: A dynamic event-triggered approach, IEEE Trans. Neural Networks Learn. Syst., (2023), 1–9. https://doi.org/10.1109/TNNLS.2023.3279137 |
[18] | F. Zhi, G. Hu, Distributed secure average consensus for linear multi-agent systems under DoS attacks, in 2017 American control conference (ACC), (2017), 2261–2266. https://doi.org/10.23919/ACC.2017.7963289 |
[19] | F. Zhi, G. Hu, Distributed secure leader-following consensus of multi-agent systems under DoS attacks and directed topology, in 2017 IEEE International Conference on Information and Automation (ICIA), (2017), 73–79. https://doi.org/10.1109/ICInfA.2017.8078885 |
[20] | T. Dong, Y. A. Gong, Leader-following secure consensus for second-order multi-agent systems with nonlinear dynamics and event-triggered control strategy under DoS attack, Neurocomputing, 416 (2020), 95–102. https://doi.org/10.1016/j.neucom.2019.01.113 doi: 10.1016/j.neucom.2019.01.113 |
[21] | X. G. Guo, P. M. Liu, J. L. Wang, C. K. Ahn, Event-triggered adaptive fault-tolerant pinning control for cluster consensus of heterogeneous nonlinear multi-agent systems under aperiodic DoS attacks, IEEE Trans. Network Sci. Eng., 8 (2021), 1941–1956. https://doi.org/10.1109/TNSE.2021.3077766 doi: 10.1109/TNSE.2021.3077766 |
[22] | Y. C. Sun, G. H. Yang, Event-triggered distributed state estimation for multiagent systems under DoS attacks, IEEE Trans. Cybern., 52 (2020), 6901–6910. https://doi.org/10.1109/TCYB.2020.3034456 doi: 10.1109/TCYB.2020.3034456 |
[23] | Y. Ma, W. Che, C. Deng, Z. Wu, Observer-based event-triggered containment control for MASs under DoS attacks, IEEE Trans. Cybern., 52 (2021), 13156–13167. https://doi.org/10.1109/TCYB.2021.3104178 doi: 10.1109/TCYB.2021.3104178 |
[24] | T. Hao, Y. J. Wu, X. Z. Jin, Robust adaptive leader-following control of a class of multi-agent systems, in 2020 Chinese Control And Decision Conference (CCDC), (2020), 2967–2972. https://doi.org/10.1109/CCDC49329.2020.9164753 |
[25] | Z. Liang, G. H. Yang, Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks, Inform. Sci., 526 (2020), 39–53. https://doi.org/10.1016/j.ins.2020.03.083 doi: 10.1016/j.ins.2020.03.083 |