Research article Special Issues

Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays


  • Received: 19 December 2023 Revised: 17 January 2024 Accepted: 20 January 2024 Published: 04 February 2024
  • The synchronization of inertial complex-valued memristor-based neural networks (ICVMNNs) with time-varying delays was explored in the paper with the non-separation and non-reduced approach. Sufficient conditions required for the exponential synchronization of the ICVMNNs were identified with the construction of comprehensive Lyapunov functions and the design of a novel control scheme. The adaptive synchronization was also investigated based on the derived results, which is easier to implement in practice. What's more, a numerical example that verifies the obtained results was presented.

    Citation: Pan Wang, Xuechen Li, Qianqian Zheng. Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 3319-3334. doi: 10.3934/mbe.2024147

    Related Papers:

  • The synchronization of inertial complex-valued memristor-based neural networks (ICVMNNs) with time-varying delays was explored in the paper with the non-separation and non-reduced approach. Sufficient conditions required for the exponential synchronization of the ICVMNNs were identified with the construction of comprehensive Lyapunov functions and the design of a novel control scheme. The adaptive synchronization was also investigated based on the derived results, which is easier to implement in practice. What's more, a numerical example that verifies the obtained results was presented.



    加载中


    [1] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [2] L. O. Chua, S. M. Kang, Memristive devices and systems, Proc. IEEE, 64 (1976), 209–223. https://doi.org/10.1109/PROC.1976.10092 doi: 10.1109/PROC.1976.10092
    [3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932 doi: 10.1038/nature06932
    [4] L. Chua, Resistance switching memories are memristors, Appl. Phys. A, 102 (2011), 765–783. https://doi.org/10.1007/s00339-011-6264-9 doi: 10.1007/s00339-011-6264-9
    [5] H. Bao, J. H. Park, J. Cao, Adaptive synchronization of fractional-order memristor-based neural networks with time delay, Nonlinear Dyn., 82 (2015), 1343–1354. https://doi.org/10.1007/s11071-015-2242-7 doi: 10.1007/s11071-015-2242-7
    [6] G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja, D. Baleanu, A. Pratap, Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks, Neurocomputing, 417 (2020), 290–301. https://doi.org/10.1016/j.neucom.2020.07.036 doi: 10.1016/j.neucom.2020.07.036
    [7] C. D. Zheng, L. Zhang, On synchronization of competitive memristor-based neural networks by nonlinear control, Neurocomputing, 410 (2020), 151–160. https://doi.org/10.1016/j.neucom.2020.05.061 doi: 10.1016/j.neucom.2020.05.061
    [8] S. Zhang, Y. Q. Yang, X. Sui, Y. N. Zhang, Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control, Math. Biosci. Eng., 19 (2022), 11717–11734. https://doi.org/10.3934/mbe.2022545 doi: 10.3934/mbe.2022545
    [9] R. Y. Wei, J. D. Cao, Prespecified-time bipartite synchronization of coupled reaction-diffusion memristive neural networks with competitive interactions, Math. Biosci. Eng., 19 (2022), 12814–12832. https://doi.org/10.3934/mbe.2022598 doi: 10.3934/mbe.2022598
    [10] K. L. Babcock, R. M. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Phys. D Nonlinear Phenom., 23 (1986), 464–469. https://doi.org/10.1016/0167-2789(86)90152-1 doi: 10.1016/0167-2789(86)90152-1
    [11] K. L. Babcock, R. M. Westervelt, Dynamics of simple electronic neural networks, Phys. D Nonlinear Phenom., 28 (1987), 305–316. https://doi.org/10.1016/0167-2789(87)90021-2 doi: 10.1016/0167-2789(87)90021-2
    [12] W. D. Liu, J. L. Huang, Q. H. Yao, Stability analysis for quaternion-valued inertial memristor-based neural networks with time delays, Neurocomputing, 448 (2021), 67–81. https://doi.org/10.1016/j.neucom.2021.03.106 doi: 10.1016/j.neucom.2021.03.106
    [13] N. Li, W. X. Zheng, Synchronization criteria for inertial memristor-based neural networks with linear coupling, Neural Networks, 106 (2018), 260–270. https://doi.org/10.1016/j.neunet.2018.06.014 doi: 10.1016/j.neunet.2018.06.014
    [14] Z. W. Tu, J. D. Cao, A. Alsaedi, F. Alsaadi, Global dissipativity of memristor-based neutral type inertial neural networks, Neural Networks, 88 (2017), 125–133. https://doi.org/10.1016/j.neunet.2017.01.004 doi: 10.1016/j.neunet.2017.01.004
    [15] L. F. Hua, H. Zhu, K. B. Shi, S. M. Zhong, Y. Q. Tang, Y. J. Liu, Novel finite-time reliable control design for memristor-based inertial neural networks with mixed time-varying delays, IEEE Trans. Circuits Syst. I Regul. Pap., 68 (2021), 1599–1609. https://doi.org/10.1109/TCSI.2021.3052210 doi: 10.1109/TCSI.2021.3052210
    [16] H. Y. Liao, Z. Q, Zhang, Finite-time stability of equilibrium solutions for the inertial neural networks via the figure analysis method, Math. Biosci. Eng., 20 (2023), 3379–3395. https://doi.org/10.3934/mbe.2023159 doi: 10.3934/mbe.2023159
    [17] M. Liu, J. L. Wang, H. J. Jiang, C. Hu, Aperiodically intermittent control strategy and adaptive synchronization of neural networks with inertial and memristive terms, IEEE Access, 11 (2023), 93077–93089. https://doi.org/10.1109/ACCESS.2023.3310473 doi: 10.1109/ACCESS.2023.3310473
    [18] R. N. Guo, S. Y. Xu, J. Guo, Sliding-mode synchronization control of complex-valued inertial neural networks with leakage delay and time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 53 (2022), 1095–1103. https://doi.org/10.1109/TSMC.2022.3193306 doi: 10.1109/TSMC.2022.3193306
    [19] H. L. Song, C. Hu, J. Yu, Stability and synchronization of fractional-order complex-valued inertial neural networks: a direct approach, Mathematics, 10 (2022), 4823. https://doi.org/10.3390/math10244823 doi: 10.3390/math10244823
    [20] L. Z. Zhang, Y. Y. Li, J. G. Lou, J. Q. Lu, Bipartite asynchronous impulsive tracking consensus for multi-agent systems, Front. Inform. Technol. Electron. Eng., 23 (2022), 1522–1532. https://doi.org/10.1631/FITEE.2100122 doi: 10.1631/FITEE.2100122
    [21] L. Z. Zhang, J. Zhong, J. Q. Lu, Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Networks, 144 (2021), 11–20. https://doi.org/10.1016/j.neunet.2021.08.004 doi: 10.1016/j.neunet.2021.08.004
    [22] W. L. He, T. H. Luo, Y. Tang, W. L. Du, Y.-C. Tian, F. Qian, Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3334–3345. https://doi.org/10.1109/TNNLS.2019.2943548 doi: 10.1109/TNNLS.2019.2943548
    [23] X. S. Yang, X. D. Li, J. Q. Lu, Z. S. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50 (2020), 4043–4052. https://doi.org/10.1109/TCYB.2019.2938217 doi: 10.1109/TCYB.2019.2938217
    [24] C. Aouiti, E. A. Assali, Finite-time, fixed-time synchronization of inertial neural networks with mixed delays, J. Syst. Sci. Complex., 34 (2021), 206–235. https://doi.org/10.1007/s11424-020-9029-8 doi: 10.1007/s11424-020-9029-8
    [25] Z. Q. Zhang, M. Chen, A. L. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. https://doi.org/10.1016/j.neucom.2019.09.034 doi: 10.1016/j.neucom.2019.09.034
    [26] F. C. Kong, Q. X. Zhu, New fixed-time synchronization control of discontinuous inertial neural networks via indefinite Lyapunov-Krasovskii functional method, Int. J. Robust Nonlinear Control, 31 (2021), 471–495. https://doi.org/10.1002/rnc.5297 doi: 10.1002/rnc.5297
    [27] T. Y. Jia, X. Y. Chen, F. Zhao, J. D. Cao, J. L. Qiu, Adaptive fixed-time synchronization of stochastic memristor-based neural networks with discontinuous activations and mixed delays, J. Frankl. Inst., 360 (2023), 3364–3388. https://doi.org/10.1016/j.jfranklin.2022.11.006 doi: 10.1016/j.jfranklin.2022.11.006
    [28] L. Y. Cheng, F. C. Tang, X. L. Shi, X. Y. Chen, J. L. Qiu, Finite-time and fixed-time synchronization of delayed memristive neural networks via adaptive aperiodically intermittent adjustment strategy, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 8516–8530. https://doi.org/10.1109/TNNLS.2022.3151478 doi: 10.1109/TNNLS.2022.3151478
    [29] X. Y. Chen, T. Y. Jia, Z. S. Wang, X. P. Xie, J. L. Qiu, Practical fixed-time bipartite synchronization of uncertain coupled neural networks subject to deception attacks via dual-channel event-triggered control, IEEE Trans. Cybern., 2023. https://doi.org/10.1109/TCYB.2023.3338165
    [30] W. H Li, X. B. Gao, R. X. Li, Stability and synchronization control of inertial neural networks with mixed delays, Appl. Math. Comput., 367 (2020), 124779. https://doi.org/10.1016/j.amc.2019.124779 doi: 10.1016/j.amc.2019.124779
    [31] T. Fang, S. Y. Jiao, D. M. Fu, L. Su. Passivity-based synchronization for Markov switched neural networks with time delays and the inertial term. Appl. Math. Comput., 394 (2021), 125786. https://doi.org/10.1016/j.amc.2020.125786 doi: 10.1016/j.amc.2020.125786
    [32] P. Wan, D. H. Sun, D. Chen, M. Zhao, L. J. Zheng, Exponential synchronization of inertial reaction-diffusion coupled neural networks with proportional delay via periodically intermittent control, Neurocomputing, 356 (2019), 195–205. https://doi.org/10.1016/j.neucom.2019.05.028 doi: 10.1016/j.neucom.2019.05.028
    [33] J. S. Pan, Z. Q. Zhang, Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable, Chaos, Solitons Fractals, 146 (2021), 110897. https://doi.org/10.1016/j.chaos.2021.110897 doi: 10.1016/j.chaos.2021.110897
    [34] C. Aouiti, M. Bessifi, Sliding mode control for finite-time and fixed-time synchronization of delayed complex-valued recurrent neural networks with discontinuous activation functions and nonidentical parameters, Eur. J. Control, 59 (2021), 109–122. https://doi.org/10.1016/j.ejcon.2021.01.006 doi: 10.1016/j.ejcon.2021.01.006
    [35] A. Kumar, D. Subir, Y. H. Joo, Quasi-projective synchronization of memristor-based complex valued recurrent neural network with time-varying delay and mismatched parameters, Neurocomputing, 559 (2023), 126774. https://doi.org/10.1016/j.neucom.2023.126774 doi: 10.1016/j.neucom.2023.126774
    [36] X. F. Li, T. W. Huang, Adaptive synchronization for fuzzy inertial complex-valued neural networks with state-dependent coefficients and mixed delays, Fuzzy Sets Syst., 411 (2021), 174–189. https://doi.org/10.1016/j.fss.2020.05.013 doi: 10.1016/j.fss.2020.05.013
    [37] Y. J. Liu, J. J. Huang, Y. Qin, X. B. Yang, Finite-time synchronization of complex-valued neural networks with finite-time distributed delays, Neurocomputing, 416 (2020), 152–157. https://doi.org/10.1016/j.neucom.2019.01.114 doi: 10.1016/j.neucom.2019.01.114
    [38] P. Wang, X. C. Li, J. Q. Lu, J. G. Lou, Fixed-time synchronization of stochastic complex-valued fuzzy neural networks with memristor and proportional delays, Neural Process Lett., 55 (2023), 8465–8481. https://doi.org/10.1007/s11063-023-11320-2 doi: 10.1007/s11063-023-11320-2
    [39] J. Yu, C. Hu, H. J. Jiang, L. M. Wang, Exponential and adaptive synchronization of inertial complex-valued neural networks: A non-reduced order and non-separation approach, Neural Networks, 124 (2020), 50–59. https://doi.org/10.1016/j.neunet.2020.01.002 doi: 10.1016/j.neunet.2020.01.002
    [40] K. Wu, J. J. Jian, Non-reduced order strategies for global dissipativity of memristive neutral-type inertial neural networks with mixed time-varying delays, Neurocomputing, 436 (2021), 174–183. https://doi.org/10.1016/j.neucom.2020.12.120 doi: 10.1016/j.neucom.2020.12.120
    [41] J. Q. Lu, B. X. Jiang, W. X. Zheng, Potential impacts of delay on stability of impulsive control systems, IEEE Trans. Circuits Syst. I Regul. Pap., 67 (2021), 5179–5190. https://doi.org/10.1109/TAC.2021.3120672 doi: 10.1109/TAC.2021.3120672
    [42] B. X. Jiang, J. G. Lou, J. Q. Lu, K. B. Shi, Synchronization of chaotic neural networks: average-delay impulsive control, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 6007–6012. https://doi.org/10.1109/TNNLS.2021.3069830 doi: 10.1109/TNNLS.2021.3069830
    [43] D. Yang, X. D. Li, S. J. Song, Finite-time synchronization for delayed complex dynamical networks with synchronizing or desynchronizing impulses, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 736–746. https://doi.org/10.1109/TNNLS.2020.3028835 doi: 10.1109/TNNLS.2020.3028835
    [44] M. Iswarya, R. Raja, J. Cao, M. Niezabitowski, J. Alzabut, C. Maharajan, New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays, Math. Comput. Simul., 201 (2022), 440–461. https://doi.org/10.1016/j.matcom.2021.01.020 doi: 10.1016/j.matcom.2021.01.020
    [45] J. Han, Finite-time passivity and synchronization for a class of fuzzy inertial complex-valued neural networks with time-varying delays, Axioms, 13 (2024), 39. https://doi.org/10.3390/axioms13010039 doi: 10.3390/axioms13010039
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(771) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog