In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems.
Citation: Biwen Li, Xuan Cheng. Synchronization analysis of coupled fractional-order neural networks with time-varying delays[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665
In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems.
[1] | X. F. Li, D. J. Bi, X. Xie, Y. L. Xie, Multi-Synchronization of stochastic coupled multi-stable neural networks with time-varying delay by impulsive control, IEEE Access, 7 (2019), 15641–15653. https://doi.org/10.1109/ACCESS.2019.2893641 doi: 10.1109/ACCESS.2019.2893641 |
[2] | X. M. Zhang, Q. L. Han, X. Ge, D. Ding, An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays, Neurocomputing, 313 (2018), 392–401. https://doi.org/10.1016/j.neucom.2018.06.038 doi: 10.1016/j.neucom.2018.06.038 |
[3] | H. Lu, W. L. He, Q. L. Han, C. Peng, Fixed-time pinning-controlled synchronization for coupled delayed neural networks with discontinuous activations, Neural Networks, 116 (2019), 139–149. https://doi.org/10.1016/j.neunet.2019.04.010 doi: 10.1016/j.neunet.2019.04.010 |
[4] | W. H. Chen, S. Luo, X. Lu, Multistability in a class of stochastic delayed Hopfield neural networks, Neural Networks, 68 (2015), 52–61. https://doi.org/10.1016/j.neunet.2015.04.010 doi: 10.1016/j.neunet.2015.04.010 |
[5] | Y. Xu, J. J. Liu, W. X. Li, Quasi-synchronization of fractional-order multi-layer networks with mismatched parameters via delay-dependent impulsive feedback control, Neural Networks, 150 (2022), 43–57. https://doi.org/10.1016/j.neunet.2022.02.023 doi: 10.1016/j.neunet.2022.02.023 |
[6] | S. Y. Yin, Y. Huang, T. Y. Chang, S. F. Chang, V. S. Tseng, Continual learning with attentive recurrent neural networks for temporal data classification, Neural Networks, 158 (2023), 171–187. https://doi.org/10.1016/j.neunet.2022.10.031 doi: 10.1016/j.neunet.2022.10.031 |
[7] | S. T. Wang, F. L. C. Korris, D. Fu, Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection, Neurocomputing, 70 (2007), 1348–1359. https://doi.org/10.1016/j.neucom.2006.07.012 doi: 10.1016/j.neucom.2006.07.012 |
[8] | A. D. Liu, H. Zhao, Q. J. Wang, S. J. Niu, X. Z. Gao, C. Chen, et al., A new predefined-time stability theorem and its application in the synchronization of memristive complex-valued BAM neural networks, Neural Networks, 153 (2022), 152–163. https://doi.org/10.1016/j.neunet.2022.05.031 doi: 10.1016/j.neunet.2022.05.031 |
[9] | L. M. Wang, H. B. He, Z. G. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. https://doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032 |
[10] | C. D. Huang, J. Wang, X. P. Chen, J. D. Cao, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141 (2021), 344–354. https://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005 |
[11] | H. S. Hou, H. Zhang, Stability and hopf bifurcation of fractional complex-valued BAM neural networks with multiple time delays, Appl. Math. Comput., 450 (2023), 127986. https://doi.org/10.1016/j.amc.2023.127986 doi: 10.1016/j.amc.2023.127986 |
[12] | J. C. Fu, C. C. Chen, J. W. Chai, S. T. C. Wong, I. C. Li, Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging, Comput. Med. Imag. Grap., 34 (2010), 308–320. https://doi.org/10.1016/j.compmedimag.2009.12.002 doi: 10.1016/j.compmedimag.2009.12.002 |
[13] | W. Zhang, J. Cao, D. Chen, A. Alsaedi, Bifurcations in a fractional-order BAM neural network with four different delays, Complexity, 2019 (2019), 1–7. https://doi.org/10.1155/2019/5612150 doi: 10.1155/2019/5612150 |
[14] | J. Zhou, Solutions of mixed-type functional differential equations with state-dependence, J. Differ. Equations, 312 (2022), 148–175. https://doi.org/10.1016/j.jde.2021.12.017 doi: 10.1016/j.jde.2021.12.017 |
[15] | Y. H. Lan, H. B. Gu, C. X. Chen, Y. Zhou, Y. P. Luo, An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks, Neurocomputing, 136 (2014), 235–242. https://doi.org/10.1016/j.neucom.2014.01.009 doi: 10.1016/j.neucom.2014.01.009 |
[16] | J. Jia, X. Huang, Y. X. Li, J. D. Cao, A. Alsaedi, Global stabilization of fractional-order memristor-based neural networks with time delay, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 997–1009. https://doi.org/10.1109/TNNLS.2019.2915353 doi: 10.1109/TNNLS.2019.2915353 |
[17] | J. J. Chen, B. S. Chen, Z. G. Zeng, $O (t^{-\alpha})$ -synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations, Neural Networks, 100 (2018), 10–24. https://doi.org/10.1016/j.neunet.2018.01.004 doi: 10.1016/j.neunet.2018.01.004 |
[18] | J. X. Ci, Z. Y. Guo, H. Long, S. P. Wen, T. W. Huang, Multiple asymptotical $\omega $-periodicity of fractional-order delayed neural networks under state-dependent switching, Neural Networks, 157 (2023), 11–25. https://doi.org/10.1016/j.neunet.2022.09.034 doi: 10.1016/j.neunet.2022.09.034 |
[19] | B. S. Chen, J. J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl. Math. Comput., 254 (2015), 63–69. https://doi.org/10.1016/j.amc.2014.12.010 doi: 10.1016/j.amc.2014.12.010 |
[20] | C. G. Liu, J. L. Wang, Passivity of fractional-order coupled neural networks with multiple state/derivative couplings, Neurocomputing, 455 (2021), 379–389. https://doi.org/10.1016/j.neucom.2021.05.050 doi: 10.1016/j.neucom.2021.05.050 |
[21] | L. M. Wang, C. K. Zhang, Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays, IEEE Trans. Neural Networks Learn. Syst., 99 (2022), 1–14. https://doi.org/10.1109/TNNLS.2022.3176887 doi: 10.1109/TNNLS.2022.3176887 |
[22] | C. J. Xu, D. Mu, Z. X. Liu, Y. C. Pang, M. X. Liao, C. K. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 113 (2023), 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043 |
[23] | S. Yang, H. J. Jiang, C. Hu, J. Yu, Exponential synchronization of fractional-order reaction-diffusion coupled neural networks with hybrid delay-dependent impulses, J. Franklin Inst., 358 (2021), 3167–3192. https://doi.org/10.1016/j.jfranklin.2021.02.003 doi: 10.1016/j.jfranklin.2021.02.003 |
[24] | X. L. Ruan, A. L. Wu, Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control, Adv. Differ. Equations, 2017 (2017), 359–377. https://doi.org/10.1186/s13662-017-1417-6 doi: 10.1186/s13662-017-1417-6 |
[25] | H. B. Bao, J. H. Park, J. D. Cao, Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 3230–3239. https://doi.org/10.1109/TNNLS.2020.3013619 doi: 10.1109/TNNLS.2020.3013619 |
[26] | P. Liu, M. X. Kong, M. L. Xu, J. W. Sun, N. Liu, Pinning synchronization of coupled fractional-order time-varying delayed neural networks with arbitrary fixed topology, Neurocomputing, 400 (2020), 46–52. https://doi.org/10.1016/j.neucom.2020.03.029 doi: 10.1016/j.neucom.2020.03.029 |
[27] | W. J. Mo, H. B. Bao, Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse, Chaos Solitons Fractals, 164 (2022), 112714–112726. https://doi.org/10.1016/j.chaos.2022.112714 doi: 10.1016/j.chaos.2022.112714 |
[28] | H. B. Bao, J. H. Park, J. D. Cao, Synchronization of fractional-order complex-valued neural networks with time delay, Neural Networks, 81 (2016), 16–28. https://doi.org/10.1016/j.neunet.2016.05.003 doi: 10.1016/j.neunet.2016.05.003 |
[29] | A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, J. D. Cao, G. Rajchakit, Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses, Neural Networks, 103 (2018), 128–141. https://doi.org/10.1016/j.neunet.2018.03.012 doi: 10.1016/j.neunet.2018.03.012 |
[30] | X. Zhang, C. Li, Z. He, Cluster synchronization of delayed coupled neural networks: Delay-dependent distributed impulsive control, Neural Networks, 142 (2021), 34–43. https://doi.org/10.1016/j.neunet.2021.04.026 doi: 10.1016/j.neunet.2021.04.026 |
[31] | X. F. Hu, L. M. Wang, C. K. Zhang, X. B. Wan, Y. He, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inf. Sci., 66 (2023), 152204–152218. https://doi.org/10.1007/s11432-022-3633-9 doi: 10.1007/s11432-022-3633-9 |
[32] | Z. L. Yan, X. Huang, Y. J. Fan, J. W. Xia, H. Shen, Threshold-function-dependent quasi-synchronization of delayed memristive neural networks via Hybrid event-triggered control, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 6712–6722. https://doi.org/10.1109/TSMC.2020.2964605 doi: 10.1109/TSMC.2020.2964605 |
[33] | L. Wang, J. L. Wang, Analysis and pinning control for passivity and synchronization of multiple derivative coupled reaction diffusion neural networks, J. Franklin Inst., 357 (2020), 1221–1252. https://doi.org/10.1016/j.jfranklin.2019.12.003 doi: 10.1016/j.jfranklin.2019.12.003 |
[34] | X. Wu, S. T. Liu, H. Y. Wang, Y. Wang, Stability and pinning synchronization of delayed memristive neural networks with fractional-order and reaction-diffusion terms, ISA Trans., 136 (2023), 114–125. https://doi.org/10.1016/j.isatra.2022.10.046 doi: 10.1016/j.isatra.2022.10.046 |
[35] | J. L. Wang, H. N. Wu, Synchronization and adaptive control of an array of linearly coupled reaction-diffusion neural networks with hybrid coupling, IEEE Trans. Cybern., 44 (2014), 1350–1361. https://doi.org/10.1109/TCYB.2013.2283308 doi: 10.1109/TCYB.2013.2283308 |
[36] | X. Wu, S. Liu, R. Yang, Y. J. Zhang, X. Y. Li, Global synchronization of fractional complex networks with non-delayed and delayed couplings, Neurocomputing, 290 (2018), 43–49. https://doi.org/10.1016/j.neucom.2018.02.026 doi: 10.1016/j.neucom.2018.02.026 |
[37] | J. E. Zhang, Centralized data-sampling approach for global $O (t^{-\alpha})$ synchronization of fractional-order neural networks with time delays, Discrete Dyn. Nat. Soc., 2017 (2017), 1–10. https://doi.org/10.1155/2017/6157292 doi: 10.1155/2017/6157292 |
[38] | B. B. Zheng, Z. S. Wang, Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays, Appl. Math. Comput., 430 (2022), 127303–127315. https://doi.org/10.1016/j.amc.2022.127303 doi: 10.1016/j.amc.2022.127303 |
[39] | L. Li, X. G. Liu, M. L. Tang, S. L. Zhang, X. M. Zhang, Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings, Neurocomputing, 445 (2021), 180–193. https://doi.org/10.1016/j.neucom.2021.03.001 doi: 10.1016/j.neucom.2021.03.001 |
[40] | D. Mukherjee, Stability Analysis of a Stochastic Model for Prey-Predator System with Disease in the Prey, Nonlinear Anal. Modell. Control, 8 (2003), 83–92. https://doi.org/10.15388/NA.2003.8.2.15186 doi: 10.15388/NA.2003.8.2.15186 |
[41] | D. W. Ding, J. Yan, N. Wang, D. Liang, Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling, Chaos Solitons Fractals, 104 (2017), 41–50. https://doi.org/10.1016/j.chaos.2017.07.028 doi: 10.1016/j.chaos.2017.07.028 |
[42] | W. Fei, Y. Yang, Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes, Appl. Math. Comput., 339 (2018), 1–14. https://doi.org/10.1016/j.amc.2018.07.041 doi: 10.1016/j.amc.2018.07.041 |
[43] | L. Peng, X. Li, D. Bi, X. Xie, Y. Xie, Pinning multisynchronization of delayed fractional-order memristor-based neural networks with nonlinear coupling and almost-periodic perturbations, Neural Networks, 144 (2021), 372–383. https://doi.org/10.1016/j.neunet.2021.08.029 doi: 10.1016/j.neunet.2021.08.029 |