Citation: Maoxing Liu, Jie Zhang, Zhengguang Li, Yongzheng Sun. Modeling epidemic in metapopulation networks with heterogeneous diffusion rates[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7085-7097. doi: 10.3934/mbe.2019355
[1] | L. A. Rvachev and I. M. J. Longini, A mathematical model for global spread of influenza, Math. Bio., 75 (1985), 3–23. |
[2] | O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, New York: Wiley, 2000. |
[3] | W. Gu, R. Heikkilä and I. Hanski, Estimating the consequences of habitat fragmentation on extinction risk in dynamic landscapes, Landscape Ecol., 17 (2002), 699–710. |
[4] | R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Entomol. Soc. Amer. Bull., 15 (1969), 237–240. |
[5] | B. Grenfell and B. M. Bolker, Cities and villages: Infection hierarchies in am easles metapopulation, Ecol. Lett., 1 (1998), 63–70. |
[6] | B. Grenfell and J. Harwood, (Meta) population dynamics of infectious diseases, Trends Ecol. Evol., 12 (1997), 395–399. |
[7] | M. J. Keeling and P. Rohani, Estimating spatial coupling in epidemiological systems: A mechanistic approach, Ecol. Lett., 5 (2002), 20–29. |
[8] | R. M. May and R. M. Anderson, Population biology of infectious diseases: Part II, Nature, 280 (1979), 455–461. |
[9] | R. M. May and R. M. Anderson, Spatial heterogeneity and the design of immunization programs, Math. Biosci., 72 (1984), 83–111. |
[10] | V. Colizza, R. Pastorsatorras and A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3 (2007), 276–282. |
[11] | V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2007), 450–467. |
[12] | V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99 (2007), 148701. |
[13] | V. Colizza, A. Barrat, M. Barthélemy, et al., Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions, Plos Med., 4 (2007), e13. |
[14] | V. Colizza, A. Barrat, M. Barthélemy, et al., The modeling of global epidemics: Stochastic dynamics and predictability, Bulletin Math. Biol., 68 (2006), 1893–1921. |
[15] | V. Colizza, A. Barrat, M. Barthélemy, et al., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci., 103 (2006), 2015–2020. |
[16] | V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2008), 450–467. |
[17] | D. Juher, J. Ripoll and J. Saldaña, Analysis and Monte Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations, Phys. Rev. E, 80 (2009), 041920. |
[18] | D. Juher and V. Mañosa, Spectral properties of the connectivity matrix and the, SIS-epidemic threshold for mid-size metapopulations, Math. Model. Natl. Phenomena, 9 (2014), 108–120. |
[19] | J. Saldaña, Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations, Phys. Rev. E, 78 (2008), 139–143. |
[20] | A. Baronchelli, M. Catanzaro and R. Pastor-Satorras, Bosonic reaction-diffusion processes on scale-free networks, Phys. Rev. E, 78 (2008), 1302–1314. |
[21] | K. Kuga and J. Tanimoto, Impact of imperfect vaccination and defense against contagion on vaccination behavior in complex networks, J. Stat. Mech.: Theory. Exp., 2018 (2018), 113402. |
[22] | K. Kuga, J. Tanimoto and M. Jusup, To vaccinate or not to vaccinate: A comprehensive study of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling, J. Theoretical Biol., 469 (2019), 107–126. |
[23] | K. M. A. Kabir and J. Tanimoto, Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs, Chaos, Solitons Fractals, 120 (2019), 41–55. |
[24] | K. M. A. Kabir and J. Tanimoto, Dynamical Behaviors for Vaccination can Suppress Infectious Disease-A Game Theoretical Approach, Chaos, Solitons Fractals, 123 (2019), 229–239. |
[25] | M. Alam, K. Kuga and J. Tanimoto, Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure, Appl. Math. Comput. 346 (2019), 408–422. |
[26] | N. Masuda, Effects of diffusion rates on epidemic spreads in metapopulation networks, New J. Phys., 12 (2010), 093009. |
[27] | G. Tanaka, C. Urabe and K. Aihara, Random and targeted interventions for epidemic control in metapopulation models, Sci. Rep., 4 (2013), 5522. |
[28] | V. Batagelj and A. Mrvar, Pajek dajek datasets, 2006. Available from: http://vlado.fmf.uni-lj.si/pub/networks/data/. |
[29] | M. Zanin, On alternative formulations of the small-world metric in complex networks, Comput. Sci., preprint, arXiv1505.03689. |
[30] | A. Barrat, M. Barthélemy, R. Pastor-Satorras, et al., The architecture of complex weighted networks, Proc. Natl. Acad. Sci. U. S. A., 101 (2004), 3747–3752. |
[31] | S. Meloni, A. Arenas, Y. Moreno, et al., Traffic-driven epidemic spreading in finite-Size scale-free networks, Proc. Natl. Acad. Sci. U. S. A., 106 (2009), 16897–16902. |
[32] | B. Wang, G. Tanaka, H. Suzuki, et al., Epidemic spread on interconnected metapopulation networks, Phys. Rev. E, 90 (2014), 032806. |
[33] | C. Poletto, M. Tizzoni and V. Colizza, Heterogeneous length of stay of hosts' movements and spatial epidemic spread, Sci. Rep., 2 (2012), 476. |
[34] | Y. W. Gong, Y. R. Song and G. P. Jiang, Epidemic spreading in metapopulation networks with heterogeneous infection rates, Phys. A Stat. Mechan. Its Appl., 416 (2014), 208–218. |
[35] | J. Anderson, A secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Its Appl., 246 (1996), 49–70. |