Citation: Hongli Yang, Jinzhi Lei. A mathematical model of chromosome recombination-induced drug resistance in cancer therapy[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
[1] | N. Beerenwinkel, C. D. Greenman, and J. Lagergren, Computational Cancer Biology: An Evolutionary Perspectiv, PLoS Comput. Biol., 12 (2016), e1004717. |
[2] | N. Beerenwinkel, R. F. Schwarz, M. Gerstung, et al., Cancer evolution: Mathematical models and computational inference, Syst. Biol., 64 (2015), e1–e25. |
[3] | S. Blum, F. Martins and M. Lübbert, Immunotherapy in adult acute leukemia, Leuk. Res., 60 (2017), 63–73. |
[4] | C. H. June, R. S. O'Connor, O. U. Kawalekar, et al., CAR T cell immunotherapy for human cancer, Science, 359 (2018), 1361–1365. |
[5] | L. Labanieh, R. G. Majzner and C. L. Mackall, Programming CAR-T cells to kill cancer, Nat. Biomed. Eng., 2 (2018), 377–391. |
[6] | M. H. Abdul-Aziz, J. Lipman, J. W. Mouton, et al., Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: Optimizing efficacy and reducing resistance development, Semin. Respir. Crit. Care Med., 36 (2015), 136–153. |
[7] | W. J. Aston, D. E. Hope, A. K. Nowak, et al., A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice, BMC Cancer, 17 (2017), 684. |
[8] | C. Hudis and C. Danq, The development of dose-dense adjuvant chemotherapy, Breast J., 21 (2015), 42–51. |
[9] | A. Matikas, T. Foukakis and J. Berqh, Dose intense, dose dense and tailored dose adjuvant chemotherapy for early breast cancer: An evolution of concepts, Acta Oncol., 56 (2017), 1143–1151. |
[10] | T. Prasanna, J. Beith, S. Kao, et al., Dose modifications in adjuvant chemotherapy for solid organ malignancies: A systematic review of clinical trials, Asia Pac. J. Clin. Oncol., 14 (2018), 125–133. |
[11] | J. A. Roberts, P. Kruger, D. L. Paterson, et al., Antibiotic resistance: What's dosing got to do with it? Crit. Care Med., 36 (2008), 2433–2440. |
[12] | C. L. Tourneau, J. J. Lee and L. L. Siu, Dose escalation methods in phase I cancer clinical trials, J. Natl. Cancer Inst., 101 (2009), 708–720. |
[13] | J. Y. Lin, H. M. He, Y. Yang, et al., Comparison of two different treatment regimens for curative effect and recurrence rate in patients with extranodal nasal type NK/T cell lymphoma, Chin. J. Clin. Res., 29 (2016), 1042–1045. |
[14] | Y. Yang, Y. Wen, C. Bedi, et al., The relationship between cancer patient's fear of recurrence and chemotherapy: A systematic review and meta-analysis, J. Psychosomatic Res., 98 (2017), 55–63. |
[15] | Y. A. Luqmani, Mechanisms of drug resistance in cancer chemotherapy, Med. Princ. Pract., 14 (2005), 35–48. |
[16] | M. Moschovi, E. Critselis, O. Cen, et al., Drugs acting on homeostasis: Challenging cancer cell adaptation, Expert Rev. Anticancer Ther., 15 (2015), 1405–1417. |
[17] | J. Zhang, J. J. Cunningham, J. S. Brown, et al., Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nat. Commun., 8 (2017), 1816. |
[18] | H. Easwaran, H. C. Tsai and S. B. Baylin, Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance, Mol. Cell, 54 (2014), 716–727. |
[19] | C. E. Meacham and S. J. Morrison, Tumour heterogeneity and cancer cell plasticity, Nature, 501 (2013), 328–337. |
[20] | C. Kim, R. Gao, E. Sei, et al., Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing, Cell, 173 (2018), 879–893. |
[21] | Y. Su, W. Wei, L. Robert, et al., Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance, Proc. Natl. Acad. Sci. USA, 114 (2017), 13679–13684. |
[22] | H. Sakahira, M. Enari and S. Nagata, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature, 391 (1998), 96–99. |
[23] | G. Liu, J. B. Stevens, S. D. Horne, et al., Genome chaos: Survival strategy during crisis, Cell Cycle, 13 (2014), 528–537. |
[24] | J. B. Stevens, B. Y. Abdallah, G. Liu, et al., Diverse system stresses: Common mechanisms of chromosome fragmentation, Cell Death Dis., 2 (2011), e178. |
[25] | C. Gao, Y. Su, J. Koeman, et al., Chromosome instability drives phenotypic switching to metastasis Proc. Natl. Acad. Sci. USA, 113 (2016), 14793–14798. |
[26] | H. H. Heng and J. B. Stevens, Patterns of genome of dynamics and cancer evolution, Cell. Oncol., 30 (2008), 513–514. |
[27] | J. B. Stevens, S. D. Horne, B. Y. Abdallah, et al., Chromosomal instability and transcriptome dynamics in cancer, Cancer Metastasis Rev., 32 (2013), 391–402. |
[28] | J. B. Stevens, G. Liu, B. Y. Abdallah, et al., Unstable genomes elevate transcriptome dynamics, Int J. Cancer, 134 (2014), 2074–2087. |
[29] | P. M. Altrock, L. L. Liu and F. Michor, The mathematics of cancer: Integrating quantitative models, Nat. Rev. Cancer, 15 (2015), 730–745. |
[30] | F. S. Borges, K. C. Iarosz, H. P. Ren, et al., Model for tumour growth with treatment by continuous and pulsed chemotherapy, BioSystems, 116 (2014), 43–48. |
[31] | H. Cho and D. Levy, Modeling the dynamics of heterogeneity of solid tumors in response to chemotherapy, Bull. Math. Biol., 79 (2017), 2986–3012. |
[32] | K. C. Larosz, F. S. Borges, A. M. Batista, et al., Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment, J. Theor. Biol., 368 (2015), 113–121. |
[33] | Á.G. López, K.C. Larosz, A.M. Batista, et al., Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis, Commun. Nonlinear Sci. Numer Simul., 70 (2019), 307–317. |
[34] | F. Michor, Mathematical models of cancer stem cells, J. Clin. Oncol., 26 (2008), 2854–2861. |
[35] | H. H. Heng, S. M. Regan, G. Liu, et al., Why it is crucial to analyze non clonal chromosome aberrations of NCCAs? Mol. Cytogenet., 9 (2016), 15. |
[36] | C. Colijin and M. C. Mackey, A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia, J. Theor. Biol, 237 (2005), 117–132. |
[37] | C. Colijin and M. C. Mackey, A mathematical model of hematopoiesis: II. Cyclical neutropenia, J. Theor. Biol., 237 (2005), 133–146. |
[38] | A. C. Fowler and M. C. Mackey, Relaxation oscillations in a class of delay differential equations, SIAM J. Appl. Math., 63 (2002), 299–323. |
[39] | L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a model of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4 (2005), 312–332. |
[40] | F. Burns and I. Tannock, On the existence of a G 0 phase in the cell cycle, Cell Tissue Kinet., 3 (1970), 321–334. |
[41] | M. C. Mackey and P. Dormer, Continuous maturation of proliferating erythroid precursor, Cell Tissue Kinet., 15 (1982), 381–392. |
[42] | M. C. Mackey and J. G. Milto, Dynamical disease, Ann. New York Acad. Sci., 504 (1987), 16–32. |
[43] | D. C. Dale and M. C. Mackey, Understanding, treating and avoiding hematological disease: Better medicine through mathematics? Bull. Math. Biol., 77 (2015), 739–757. |
[44] | J. Lei and M. C. Mackey, Multisability in an age-structured model of hematopoiesis: Cyclical neutropenia, J. Theor. Biol., 270 (2011), 143–153. |
[45] | M. C. Mackey, Cell kinetic status of haematopoietic stem cells, Cell Prolif., 34 (2001), 71–83. |
[46] | C. Zhuge, M. C. Mackey and J. Lei, Origins of oscillation patterns in cyclical thrombocytopenia, J. Theor. Biol., 462 (2019), 432–445. |
[47] | G. Brooks, G. Provencher, J. Lei, et al., Neutrophil dynamics after chemotherapy and G-CSF: The role of pharmacokinetics in shaping the response, J. Theor. Biol., 315 (2012), 97–109. |
[48] | C. Zhuge, J. Lei and M. C. Mackey, Neutrophil dynamics in response to chemotherapy and G-CSF, J. Theor. Biol., 293 (2012), 111–120. |
[49] | Y. Hannun, Apoptosis and dilemma of cancer chemotherapy, Blood, 89 (1997), 1845–1853. |
[50] | S. Bernard, J. Belair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based in mathematical modeling, J. Theor. Biol., 223 (2003), 283–298. |
[51] | D. Hanahan and R.A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646–674. |
[52] | J. Abkowitz, R. Holly and W. P. Hammond, Cyclic hematopoiesis in dogs: Studies of erythroid burst forming cells confirm and early stem cell defect, Exp. Hematol., 16 (1988), 941–945. |
[53] | C. Foley and M. C. Mackey, Dynamic hematological disease: A review, J. Math. Biol., 58 (2009), 285–322. |
[54] | T. B. Gaspar, J. Henriques, L. Marconato, et al., The use of low-dose metronomic chemotherapy in dogs-insight into a modern caner field, Vet. Comp. Oncol., 16 (2018), 2–11. |
[55] | A. Safarishahribijari and A. Gaffari, Parameter identification of hematopoiesis mathematical model – periodic chronic myelogenous leukemia, Contemp. Oncol(Pozn)., 17 (2013), 73–77. |