[1]
|
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Erratum: Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 68 (2020), 394-424.
|
[2]
|
C. Sawyers, Targeted cancer therapy, Nature, 432 (2004), 294-297.
|
[3]
|
C. Brown, Targeted therapy: an elusive cancer target, Nature, 537 (2016), S106-S108.
|
[4]
|
X. Sun, B. Hu, Mathematical modeling and computational prediction of cancer drug resistance, Briefings Bioinf., 19 (2018), 1382-1399. doi: 10.1093/bib/bbx065
|
[5]
|
X. Hu, Z. Zhang, Understanding the genetic mechanisms of cancer drug resistance using genomic approaches, Trends Genet., 32 (2016), 127-137. doi: 10.1016/j.tig.2015.11.003
|
[6]
|
R. Brown, E. Curry, L. Magnani, C. S. Wilhelm-Benartzi, J. Borley, Poised epigenetic states and acquired drug resistance in cancer, Nat. Rev. Cancer, 14 (2014), 747-753. doi: 10.1038/nrc3819
|
[7]
|
O. S. Rukhlenko, F. Khorsand, A. Krstic, J. Rozanc, L. G. Alexopoulos, N. Rauch, et al., Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling, Cell Syst., 7 (2018), 161-179.
|
[8]
|
X. Sun, J. Bao, Y. Shao, Mathematical modeling of therapy-induced cancer drug resistance: connecting cancer mechanisms to population survival rates, Sci. Rep., 6 (2016), 22498. doi: 10.1038/srep22498
|
[9]
|
J. Zhang, F. Zhou, X. Wu, X. Zhang, Y. Chen, B. S. Zha, et al., Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells, Br. J. Pharmacol., 165 (2012), 120-134.
|
[10]
|
C. B. Gambacorti-Passerini, R. H. Gunby, R. Piazza, A. Galietta, R. Rostagno, L. Scapozza, Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias, Lancet Oncol., 4 (2003), 75-85. doi: 10.1016/S1470-2045(03)00979-3
|
[11]
|
M. E. Gorre, M. Mohammed, K. Ellwood, N. Hsu, R. Paquette, P. N. Rao, et al., Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification, Science, 293 (2001), 876-880.
|
[12]
|
F. McCormick, New-age drug meets resistance, Nature, 412 (2001), 281-282. doi: 10.1038/35085665
|
[13]
|
P. Bajger, M. Bodzioch, U. Foryś, Singularity of controls in a simple model of acquired ´ chemotherapy resistance, Discrete Contin. Dyn. -B, 24 (2019), 2039-2052.
|
[14]
|
J. Foo, F. Michor, Evolution of acquired resistance to anticancer therapy, J. Theor. Biol., 355 (2014), 10-20. doi: 10.1016/j.jtbi.2014.02.025
|
[15]
|
N. Kumar, G. M. Cramer, S. Dahaj, B. Sundaram, J. P. Celli, R. V. Kulkarni, Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations, Sci. Rep., 9 (2019), 10845. doi: 10.1038/s41598-019-54346-0
|
[16]
|
A. Hodgkinson, L. Le Cam, D. Trucu, O. Radulescu, Spatio-Genetic and phenotypic modelling elucidates resistance and re-sensitisation to treatment in heterogeneous melanoma, J. Theor. Biol., 466 (2019), 84-105. doi: 10.1016/j.jtbi.2018.11.037
|
[17]
|
J. Cosgrove, J. Butler, K. Alden, M. Read, V. Kumar, L. Cucurull-Sanchez, et al., Agent-based modeling in systems pharmacology, CPT: Pharmacometrics Syst. Pharmacol., 4 (2015), 615-629.
|
[18]
|
P. Sudalagunta, M. C. Silva, R. R. Canevarolo, R. R. Alugubelli, G. DeAvila, A. Tungesvik, et al., A pharmacodynamic model of clinical synergy in multiple myeloma, EBioMedicine, 54 (2020), 102716.
|
[19]
|
A. Kaznatcheev, J. Peacock, D. Basanta, A. Marusyk, J. G. Scott, Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer, Nat. Ecol. Evol., 3 (2019), 450-456. doi: 10.1038/s41559-018-0768-z
|
[20]
|
J. H. Goldie, A. J. Coldman, A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat. Rep., 63 (1979), 1727-1733.
|
[21]
|
A. J. Coldman, J. H. Goldie, A stochastic model for the origin and treatment of tumors containing drug-resistant cells, Bull. Math. Biol., 48 (1986), 279-292. doi: 10.1016/S0092-8240(86)90028-5
|
[22]
|
J. H. Goldie, A. J. Coldman, Drug Resistance in Cancer: Mechanisms and Models, Cambridge University Press, New York, 2009.
|
[23]
|
N. L. Komarova, D. Wodarz, Drug resistance in cancer: Principles of emergence and prevention, Proc. Natl. Acad. Sci., 102 (2005), 9714-9719. doi: 10.1073/pnas.0501870102
|
[24]
|
N. Komarova, Stochastic modeling of drug resistance in cancer, J. Theor. Biol., 239 (2006), 351- 366. doi: 10.1016/j.jtbi.2005.08.003
|
[25]
|
Y. Iwasa, M. Nowak, F. Michor, Evolution of resistance during clonal expansion, Genetics, 172 (2006), 2557-2566. doi: 10.1534/genetics.105.049791
|
[26]
|
J. Foo, F. Michor, Evolution of resistance to targeted anticancer therapies during continuous and pulsed administration strategies, PLoS Comput. Biol., 5 (2009), e1000557.
|
[27]
|
I. Bozic, J. G. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah et al., Evolutionary dynamics of cancer in response to targeted combination therapy, ELife, 2 (2013), e00747.
|
[28]
|
C. Tomasetti, D. Levy, An elementary approach to modeling drug resistance in cancer, Math. Biosci. Eng., 7 (2010), 905-918. doi: 10.3934/mbe.2010.7.905
|
[29]
|
E. Afenya, C. Calderón, Diverse ideas on the growth kinetics of disseminated cancer cells, Bull. Math. Biol., 62 (2000), 527-542.
|
[30]
|
J. Gallaher, A. Babu, S. Plevritis, A. R. A. Anderson, Bridging population and tissue scale tumor dynamics: a new paradigm for understanding differences in tumor growth and metastatic disease, Cancer Res., 74 (2014), 426-435. doi: 10.1158/0008-5472.CAN-13-0759
|
[31]
|
A. Obenauf, Y. Zou, A. L. Ji, S. Vanharanta, W. Shu, H. Shi, et al., Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, 520 (2015), 368-372.
|