Research article Special Issues

Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty


  • Received: 14 June 2021 Accepted: 09 August 2021 Published: 24 August 2021
  • In this paper we introduce a space-dependent multiscale model to describe the spatial spread of an infectious disease under uncertain data with particular interest in simulating the onset of the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental model, within our approach the population is given by a sum of commuters moving on a extra-urban scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion model for non commuters at the urban scale. Thanks to a suitable scaling limit, the kinetic transport model used to describe the dynamics of commuters, within a given urban area coincides with the diffusion equations that characterize the movement of non-commuting individuals. Because of the high uncertainty in the data reported in the early phase of the epidemic, the presence of random inputs in both the initial data and the epidemic parameters is included in the model. A robust numerical method is designed to deal with the presence of multiple scales and the uncertainty quantification process. In our simulations, we considered a realistic geographical domain, describing the Lombardy region, in which the size of the cities, the number of infected individuals, the average number of daily commuters moving from one city to another, and the epidemic aspects are taken into account through a calibration of the model parameters based on the actual available data. The results show that the model is able to describe correctly the main features of the spatial expansion of the first wave of COVID-19 in northern Italy.

    Citation: Giulia Bertaglia, Walter Boscheri, Giacomo Dimarco, Lorenzo Pareschi. Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 7028-7059. doi: 10.3934/mbe.2021350

    Related Papers:

  • In this paper we introduce a space-dependent multiscale model to describe the spatial spread of an infectious disease under uncertain data with particular interest in simulating the onset of the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental model, within our approach the population is given by a sum of commuters moving on a extra-urban scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion model for non commuters at the urban scale. Thanks to a suitable scaling limit, the kinetic transport model used to describe the dynamics of commuters, within a given urban area coincides with the diffusion equations that characterize the movement of non-commuting individuals. Because of the high uncertainty in the data reported in the early phase of the epidemic, the presence of random inputs in both the initial data and the epidemic parameters is included in the model. A robust numerical method is designed to deal with the presence of multiple scales and the uncertainty quantification process. In our simulations, we considered a realistic geographical domain, describing the Lombardy region, in which the size of the cities, the number of infected individuals, the average number of daily commuters moving from one city to another, and the epidemic aspects are taken into account through a calibration of the model parameters based on the actual available data. The results show that the model is able to describe correctly the main features of the spatial expansion of the first wave of COVID-19 in northern Italy.



    加载中


    [1] G. Albi, L. Pareschi, M. Zanella, Control with uncertain data of socially structured compartmental epidemic models, J. Math. Bio., 82 (2021), 63.
    [2] G. Albi, L. Pareschi, M. Zanella, Modelling lockdown measures in epidemic outbreaks using selective socio-economic containment with uncertainty, preprint medRxiv doi: 10.1101/2020.05.12.20099721,2020.
    [3] B. Tang, X. Wang, A. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clinical Med., 9 (2020), 462.
    [4] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi et al., Spread and dynamicss of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proceed. Nat. Acad. Sci., 117 (2020), 10484-10491.
    [5] B. N. Ashraf, Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets, J. Behav. Exp. Finance, 27 (2020), 100371. doi: 10.1016/j.jbef.2020.100371
    [6] G. Dimarco, L. Pareschi, G. Toscani, M. Zanella, Wealth distribution under the spread of infectious diseases, Phys. Rev. E, 102 (2020), 022303. doi: 10.1103/PhysRevE.102.022303
    [7] H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907
    [8] D. Balcan, B. Gonçalves, H. Hu, J. J. Ramasco, V. Colizza, A. Vespignani, Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model, J. Comput. Sci., 1 (2010), 132–145. doi: 10.1016/j.jocs.2010.07.002
    [9] B. Buonomo, R. Della Marca, Effects of information-induced behavioural changes during the COVID-19 lockdowns: The case of Italy: COVID-19 lockdowns and behavioral change, R. Soc. Open Sci., 7 (2020), 201635. doi: 10.1098/rsos.201635
    [10] V. Colizza, A. Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2008), 450–467. doi: 10.1016/j.jtbi.2007.11.028
    [11] E. Franco, A feedback SIR (fSIR) model highlights advantages and limitations of infection-based social distancing, preprint, arXiv: 2004.13216, 2020.
    [12] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo et al., Modelling the COVID-19 epidemic and implementation of populationwide interventions in Italy, Nat. Med., 26 (2020), 855-860. doi: 10.1038/s41591-020-0883-7
    [13] E. L. Piccolomini, F. Zama, Monitoring Italian COVID-19 spread by a forced SEIRD model, PloS One, 15 (2020), e0237417. doi: 10.1371/journal.pone.0237417
    [14] Chronology of main steps and legal acts taken by the Italian Government for the containment of the COVID-19 epidemiological emergency, (http://www.protezionecivile.gov.it/documents/20182/1227694/Summary+of+measures+taken+against+the+spread+of+C-19/c16459ad-4e52-4e90-90f3-c6a2b30c17eb)
    [15] S. Riley, K. Eames, V. Isham, D. Mollison, P. Trapman, Five challenges for spatial epidemic models, Epidemics, 10 (2015), 68–71. doi: 10.1016/j.epidem.2014.07.001
    [16] R. Dutta, S. Gomes, D. Kalise, L. Pacchiardi, Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic, PLoS Comput. Biol., 17 (2021), e1009236. doi: 10.1371/journal.pcbi.1009236
    [17] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1–20. doi: 10.3934/dcds.2008.21.1
    [18] V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274–284. doi: 10.1137/0135022
    [19] W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Model., 14 (2017), 7. doi: 10.1186/s12976-017-0051-z
    [20] Q. X. Liu, Z. Jin, Formation of spatial patterns in an epidemic model with constant removal rate of the infectives, J. Stat. Mech. Theory Exp., (2007), P05002.
    [21] P. Magal, G. F. Webb, X. Wu, Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico, Discrete Cont. Dyn. Sys. B, 25 (2019), 2185–2202.
    [22] J. P. Keller, L. Gerardo-Giorda, A. Veneziani, Numerical simulation of a susceptible-exposed-infectious space-continuous model for the spread of rabies in raccoons across a realistic landscape, J. Biol. Dyn., 7 (2014), 31–46.
    [23] G. Sun, Pattern formation of an epidemic model with diffusion, Nonlinear Dyn., 69 (2012), 1097–1104. doi: 10.1007/s11071-012-0330-5
    [24] A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli, T. J. R. Hughes, A. Patton et al., Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion, Appl. Math. Lett., 101 (2021), 106617.
    [25] A. Viguerie, A. Veneziani, G. Lorenzo, D. Baroli, N. Aretz-Nellesen, A. Patton et al., Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study, Comput. Mech., 66 (2020), 1131–1152. doi: 10.1007/s00466-020-01888-0
    [26] J. Wang, F. Xie, T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, Comm. Nonlin. Sci. Num. Simul., 80 (2020), 104951. doi: 10.1016/j.cnsns.2019.104951
    [27] E. Frias-Martinez, G. Williamson, V. Frias-Martinez, An agent-based model of epidemic spread using human mobility and social network information, in Proceedings of the 3rd International Conference on Social Computing, Boston, MA, USA, (2011), 49–56.
    [28] E. Barbera, G. Consolo, G. Valenti, Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-recovered model, Phys. Rev. E, 88 (2013), 052719. doi: 10.1103/PhysRevE.88.052719
    [29] G. Bertaglia, L. Pareschi, Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods, ESAIM Math. Model, Numer. Anal., 55 (2020), 381–407.
    [30] G. Bertaglia, L. Pareschi, Hyperbolic compartmental models for epidemic spread on networks with uncertain data: application to the emergence of Covid-19 in Italy, Math. Mod. Meth. Appl. Sci., 2021.
    [31] R. M. Colombo, M. Garavello, F. Marcellini, E. Rossi, An age and space structured SIR model describing the COVID-19 pandemic, J. Math. Ind., 10 (2020), 22. doi: 10.1186/s13362-020-00090-4
    [32] W. Boscheri, G. Dimarco, L. Pareschi, Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations, Math. Mod. Meth. App. Math., 31 (2021), 1059–1097. doi: 10.1142/S0218202521400017
    [33] K. M. Case, P. F. Zweifel, Existence and uniqueness theorems for the neutron transport equation, J. Math. Phys., 4 (1963), 1376–1385. doi: 10.1063/1.1703916
    [34] F. A. C. C. Chalub, P. A. Markovich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123–141. doi: 10.1007/s00605-004-0234-7
    [35] T. Hillen, A. Swan, The diffusion limit of transport equations in biology, in Mathematical Models and Methods for Living Systems, Springer, 2167 (2016).
    [36] B. Perthame, Transport Equations in Biology, Birkhäuser, Boston, 2007.
    [37] L. Pareschi, G. Toscani, Interacting multiagent systems: kinetic equations and Monte Carlo methods, Oxford University Press, Oxford, UK, 2014.
    [38] N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A. Knopoff et al., A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Mod. Meth. Appl. Sci., 30 (2020), 1591–1651. doi: 10.1142/S0218202520500323
    [39] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Diluted Gases, Springer, New York, 1994.
    [40] M. Delitala, Generalized kinetic theory approach to modeling spread and evolution of epidemics, Math. Compet. Mod., 39 (2004), 1–12. doi: 10.1016/S0895-7177(04)90501-8
    [41] M. Pulvirenti, S. Simonella, A kinetic model for epidemic spread, Math. Mech. Complex Syst., 8 (2020), 249–260. doi: 10.2140/memocs.2020.8.249
    [42] R. Yano, Kinetic modeling of local epidemic spread and its simulation, J. Sci. Comput., 73 (2017), 122–156. doi: 10.1007/s10915-017-0408-9
    [43] E. W. Larsen, J. B. Keller, Asymptotic solution of neutron transport problems for small free mean paths, J. Math. Phys., 15 (1974), 75–81. doi: 10.1063/1.1666510
    [44] M. Peirlinck, K. Linka, F. Sahli Costabal, J. Bhattacharya, E. Bendavid, J. P. Ioannidis et al., Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamicss of COVID-19, Comp. Meth. Appl. Mech. Eng., 372 (2020), 113410. doi: 10.1016/j.cma.2020.113419
    [45] F. Golse, S. Jin, C. Levermore, The convergence of numerical transfer schemes in diffusive regimes I: Discrete-ordinate method, SIAM J. Num. Anal., 36 (1999), 1333–1369. doi: 10.1137/S0036142997315986
    [46] S. Jin, L. Pareschi, G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Num. Anal., 38 (2000), 913–936. doi: 10.1137/S0036142998347978
    [47] M. Dumbser, M. Kaeser, Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221 (2007), 693–723. doi: 10.1016/j.jcp.2006.06.043
    [48] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes, J. Comput. Phys., 407 (2020), 109167. doi: 10.1016/j.jcp.2019.109167
    [49] S. Boscarino, L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), 22–51. doi: 10.1137/110842855
    [50] S. Boscarino, L. Pareschi, G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation, SIAM J. Numer. Anal., 55 (2017), 2085–2109. doi: 10.1137/M1111449
    [51] G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369–520. doi: 10.1017/S0962492914000063
    [52] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, NY, (2010).
    [53] Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile, Italia, COVID-19 epidemiological data in Italy, (https://github.com/pcm-dpc/COVID-19).
    [54] A. Korobeinikov, P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Bio.: J. IMA, 22 (2005), 113–128. doi: 10.1093/imammb/dqi001
    [55] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8
    [56] G. F. Webb, A reaction-diffusion model for a deterministic diffusion epidemic, J. Math. Anal. Appl., 84 (1981), 150–161. doi: 10.1016/0022-247X(81)90156-6
    [57] O. Diekmann, J. Heesterbeek, M. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. Roy. Soc. Interface, 7 (2010), 873–885. doi: 10.1098/rsif.2009.0386
    [58] Istituto Nazionale di Statistica, Italia. Dati Geografici, (https://www4.istat.it/it/archivio/209722)
    [59] Istituto Nazionale di Statistica, Italia, Dati Demografici, (http://demo.istat.it/)
    [60] Regione Lombardia, Italia. Open Data, (https://www.dati.lombardia.it/Mobilit-e-trasporti/Matrice-OD2020-Passeggeri/hyqr-mpe2)
    [61] M. A. C. Vollmer, S. Mishra, H. J. T. Unwin, A. Gandy, T. A. Mellan, H. Zhu et al., Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios, Technical Report May, Imperial College London, 2020.
    [62] A. Aktay, S. Bavadekar, G. Cossoul, J. Davis, D. Desfontaines, A. Fabrikant et al., Google COVID-19 community mobility reports: anonymization process description (version 1.1), preprint, arXiv: 2004.04145, (2020).
    [63] A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM J. Numer. Anal., 35 (1998), 1073–1094. doi: 10.1137/S0036142996305558
    [64] W. Boscheri, G. Dimarco, High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes, J. Comput. Phys., 422 (2020), 109766. doi: 10.1016/j.jcp.2020.109766
    [65] M. Dumbser, W. Boscheri, M. Semplice, G. Russo, Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes, SIAM J. Sci. Comp., 39 (2017), A2564–A2591. doi: 10.1137/17M1111036
    [66] S. Jin, H. Lu, L. Pareschi, Efficient stochastic asymptotic-preserving implicit-explicit methods for transport equations with diffusive scalings and random inputs, SIAM J. Sci. Comput., 40 (2018), A671–A696. doi: 10.1137/17M1120518
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3565) PDF downloads(164) Cited by(12)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog