Citation: Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky. A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
[1] | M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Eng. J., 59 (2020), 2379-2389. doi: 10.1016/j.aej.2020.02.033 |
[2] | H. Lu, C. W. Stratton, Y. W. Tang, Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle, J. Med. Virol., 92 (2020), 401-402. doi: 10.1002/jmv.25678 |
[3] | M. Goyal, H. M. Baskonus, A. Prakash, An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women, Eur. Phys. J. Plus, 134 (2019), 482. doi: 10.1140/epjp/i2019-12854-0 |
[4] | W. Gao, P. Veeresha, D. Prakasha, H. M. Baskonus, G. Ye, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos, Solitons Fractals, 134 (2020), 109696. doi: 10.1016/j.chaos.2020.109696 |
[5] | D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying, Adv. Differ. Equations, 2019 (2019), 278. |
[6] | K. Shah, M. A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional order derivative, Chaos, Solitons Fractals, 135 (2020), 109754. doi: 10.1016/j.chaos.2020.109754 |
[7] | M. Martcheva, An introduction to mathematical epidemiology, Springer, 2015. |
[8] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6 |
[9] | J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689-697. |
[10] | J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions, Fourthcoming 2020. |
[11] | B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. doi: 10.3390/jcm9020462 |
[12] | N. Imai, A. Cori, I. Dorigatti, M. Baguelin, C. A. Donnelly, S. Riley, et al., Report 3: transmissibility of 2019-nCoV, Imperial College London, 2020. Available from: https://doi.org/10.25561/77148. |
[13] | H. Zhu, Q. Guo, M. Li, C. Wang, Z. Fang, P. Wang, et al., Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm, Fourthcoming 2020. |
[14] | C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724. doi: 10.3934/mbe.2020148 |
[15] | K. Wang, Z. Lu, X. Wang, H. Li, Z. Peng, Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis, Math. Biosci. Eng., 17 (2020), 3052-3061. doi: 10.3934/mbe.2020173 |
[16] | R. U. Din, K. Shah, I. Ahmad, T. Abdeljawad, Study of Transmission Dynamics of Novel COVID-19 by Using Mathematical Model, Adv. Differ. Equation, 2020 (2020). |
[17] | L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, Forthcoming 2020. |
[18] | J. F. Rabajante, Insights from early mathematical models of 2019-nCoV acute respiratory disease (COVID-19) dynamics, Forthcoming 2020. |
[19] | L. Mangoni, M. Pistilli, Epidemic analysis of Covid-19 in Italy by dynamical modelling, SSRN Electron. J., 2020 (2020). |
[20] | S. S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-2019: A model based study, Forthcoming 2020. |
[21] | A. J. Kucharski, T. W. Russell, C. Diamond, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect Dis., 20 (2020), 553-558. doi: 10.1016/S1473-3099(20)30144-4 |
[22] | T. Chen, J. Rui, Q. Wang, Z. Zhao, J. A. Cui, L. Yin, A mathematical model for simulating the transmission of Wuhan novel Coronavirus, Forthcoming 2020. |
[23] | D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, M. Ciccozzi, Application of the ARIMA model on the COVID-2019 epidemic dataset, Data Brief, 29 (2020), 105340. doi: 10.1016/j.dib.2020.105340 |
[24] | M. De la Sen, R. P. Agarwal, A. Ibeas, S. Alonso-Quesada, On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls, Adv. Differ. Equations, 2010 (2010), 281612. doi: 10.1186/1687-1847-2010-281612 |
[25] | X. Song, Y. Jiang, H. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Appl. Math. Comput.n, 214 (2009), 381-390. doi: 10.1016/j.amc.2009.04.005 |
[26] | D. Pal, D. Ghosh, P. Santra, G. S. Mahapatra, Mathematical Analysis of a COVID-19 Epidemic Model by using Data Driven Epidemiological Parameters of Diseases Spread in India, Forthcoming 2020. |
[27] | Minisry of Health, https://www.moh.gov.sa/en/Pages/default.aspx, (2020). |
[28] | COVID-19 pandemic in Saudi Arabia, https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Saudi_Arabia, (2020). |
[29] | Saudi Center for Deasies Preventation and Control, https://covid19.cdc.gov.sa/ar/daily-updates-ar/, (2020). |