Citation: Cameron Browne. Immune response in virus model structured by cell infection-age[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
[1] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[2] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[3] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[4] | Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111 |
[5] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[6] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[7] | Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809 |
[8] | Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242 |
[9] | Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li . A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431 |
[10] | Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026 |
[1] | Clinical Immunology, 143 (2012), 99-115. |
[2] | PLoS One, 6 (2011), e16468-e16468. |
[3] | Journal of Virology, 83 (2009), 7659-7667. |
[4] | Journal of Virology, 87 (2013), 8726-8734. |
[5] | Mathematical Biosciences, 183 (2003), 63-91. |
[6] | Nonlinear Analysis: Real World Applications, 22 (2015), 354-372. |
[7] | Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999-2017. |
[8] | Retrovirology, 10 (2013), 1-12. |
[9] | Journal of Mathematical Analysis and Applications, 385 (2012), 709-720. |
[10] | Blood, 120 (2012), 100-111. |
[11] | Mathematical Biosciences, 165 (2000), 27-39. |
[12] | PLoS Comput. Biol., 8 (2012), e1002593, 5pp. |
[13] | SIAM Journal on Applied Mathematics, 73 (2013), 572-593. |
[14] | Journal of Mathematical Analysis and applications, 341 (2008), 501-518. |
[15] | Journal of Theoretical Biology, 229 (2004), 281-288. |
[16] | SIAM Journal on Mathematical Analysis, 20 (1989), 388-395. |
[17] | SIAM Journal on Applied Mathematics, 72 (2012), 25-38. |
[18] | The Journal of Experimental Medicine, 204 (2007), 2187-2198. |
[19] | Journal of Virology, 87 (2013), 2628-2638. |
[20] | Mathematical Biosciences and Engineering: MBE, 11 (2014), 1091-1113. |
[21] | Bulletin of Mathematical Biology, 72 (2010), 1492-1505. |
[22] | Applicable Analysis, 89 (2010), 1109-1140. |
[23] | Electronic Journal of Differential Equations, 2001 (2001), 1-35. |
[24] | SIAM Journal on Mathematical Analysis, 37 (2005), 251-275. |
[25] | Math. Biosci. Eng., 1 (2004), 267-288. |
[26] | Mathematical Biosciences, 179 (2002), 73-94. |
[27] | Science, 272 (1996), 74-79. |
[28] | Journal of Theoretical Biology, 175 (1995), 325-353. |
[29] | Journal of Virology, 84 (2010), 10543-10557. |
[30] | SIAM Review, 41 (1999), 3-44. |
[31] | Science, 271 (1996), 1582-1586. |
[32] | SIAM Journal on Applied Mathematics, 67 (2007), 731-756. |
[33] | Journal of Theoretical Biology, 247 (2007), 804-818. |
[34] | The Journal of Immunology, 178 (2007), 2746-2754. |
[35] | SIAM Journal on Applied Mathematics, 73 (2013), 1280-1302. |
[36] | Springer Science & Business Media, 2011. |
[37] | SIAM Journal on Applied Mathematics, 63 (2003), 1313-1327. |
[38] | Journal of Mathematical Analysis and Applications, 373 (2011), 345-355. |
[39] | Journal of Mathematical Analysis and Applications, 152 (1990), 416-447. |
[40] | Advances in Mathematical Population Dynamics-Molecules, Cells and Man., Volume 6, Worlds Scientific, pages 691-711, 1997. |
[41] | Differential and Integral Equations, 3 (1990), 1035-1066. |
[42] | Nature Reviews Immunology, 13 (2013), 487-498. |
[43] | Physica D: Nonlinear Phenomena, 226 (2007), 197-208. |
[44] | Journal of Mathematical Biology, 67 (2013), 901-934. |
[45] | CRC Press, 1985. |
[46] | Ecology Letters, 9 (2006), 694-705. |
[47] | Journal of Applied Mathematics, (2013), Art. ID 419593, 12 pp. |
1. | Khalid Hattaf, Yu Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, 2018, 11, 1793-5245, 1850065, 10.1142/S1793524518500651 | |
2. | Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani, Global stability of an age-structured model for pathogen–immune interaction, 2019, 59, 1598-5865, 631, 10.1007/s12190-018-1194-8 | |
3. | Sanhong Liu, Ran Zhang, On an Age-Structured Hepatitis B Virus Infection Model with HBV DNA-Containing Capsids, 2020, 0126-6705, 10.1007/s40840-020-01014-6 | |
4. | Cameron Browne, Global properties of nested network model with application to multi-epitope HIV/CTL dynamics, 2017, 75, 0303-6812, 1025, 10.1007/s00285-017-1102-0 | |
5. | Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, 2017, 2017, 1687-1847, 10.1186/s13662-017-1294-z | |
6. | HAYRIYE GULBUDAK, AN IMMUNO-EPIDEMIOLOGICAL VECTOR–HOST MODEL WITH WITHIN-VECTOR VIRAL KINETICS, 2020, 28, 0218-3390, 233, 10.1142/S0218339020400021 | |
7. | Cameron J. Browne, Hal L. Smith, Dynamics of virus and immune response in multi-epitope network, 2018, 77, 0303-6812, 1833, 10.1007/s00285-018-1224-z | |
8. | Farzad Fatehi, Richard J. Bingham, Peter G. Stockley, Reidun Twarock, An age-structured model of hepatitis B viral infection highlights the potential of different therapeutic strategies, 2022, 12, 2045-2322, 10.1038/s41598-021-04022-z | |
9. | Dylan Lederman, Raghav Patel, Omar Itani, Horacio G. Rotstein, Parameter Estimation in the Age of Degeneracy and Unidentifiability, 2022, 10, 2227-7390, 170, 10.3390/math10020170 | |
10. | Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3 | |
11. | Chunhua Liu, Xianning Liu, Yan Wang, Yangjiang Wei, Dynamics of an age-structured tumor cell population model with nutrition, 2024, 0924-090X, 10.1007/s11071-024-10034-x | |
12. | Mengna Li, Zhanwen Yang, Numerical analysis of an age-structured model for HIV viral dynamics with latently infected T cells based on collocation methods, 2024, 03784754, 10.1016/j.matcom.2024.09.028 | |
13. | NAYANA MUKHERJEE, VITALY VOLPERT, SPATIOTEMPORAL DYNAMICS IN A MODEL OF IMMUNODOMINANCE, 2024, 32, 0218-3390, 1521, 10.1142/S0218339024400047 | |
14. | Hana M. Dobrovolny, How do viruses get around? A review of mathematical modeling of in-host viral transmission, 2025, 604, 00426822, 110444, 10.1016/j.virol.2025.110444 |