Research article

Evolutionary analysis of replicator dynamics about anti-cancer combination therapy


  • Received: 28 June 2022 Revised: 04 September 2022 Accepted: 08 September 2022 Published: 13 October 2022
  • The emergence and growth of drug-resistant cancer cell subpopulations during anti-cancer treatment is a major challenge for cancer therapies. Combination therapies are usually applied for overcoming drug resistance. In the present paper, we explored the evolution outcome of tumor cell populations under different combination schedules of chemotherapy and p53 vaccine, by construction of replicator dynamical model for sensitive cells, chemotherapy-resistant cells and p53 vaccine-resistant cells. The local asymptotic stability analysis of the evolutionary stable points revealed that cancer population could evolve to the population with single subpopulation, or coexistence of sensitive cells and p53 vaccine-resistant cells, or coexistence of chemotherapy-resistant cells and p53 vaccine-resistant cells under different monotherapy or combination schedules. The design of adaptive therapy schedules that maintain the subpopulations under control is also demonstrated by sequential and periodic application of combination treatment strategies based on the evolutionary velocity and evolutionary absorbing regions. Applying a new replicator dynamical model, we further explored the supportive effects of sensitive cancer cells on targeted therapy-resistant cells revealed in mice experiments. It was shown that the supportive effects of sensitive cells could drive the evolution of cell population from sensitive cells to coexistence of sensitive cells and one type of targeted therapy-resistant cells.

    Citation: Rujing Zhao, Xiulan Lai. Evolutionary analysis of replicator dynamics about anti-cancer combination therapy[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030

    Related Papers:

  • The emergence and growth of drug-resistant cancer cell subpopulations during anti-cancer treatment is a major challenge for cancer therapies. Combination therapies are usually applied for overcoming drug resistance. In the present paper, we explored the evolution outcome of tumor cell populations under different combination schedules of chemotherapy and p53 vaccine, by construction of replicator dynamical model for sensitive cells, chemotherapy-resistant cells and p53 vaccine-resistant cells. The local asymptotic stability analysis of the evolutionary stable points revealed that cancer population could evolve to the population with single subpopulation, or coexistence of sensitive cells and p53 vaccine-resistant cells, or coexistence of chemotherapy-resistant cells and p53 vaccine-resistant cells under different monotherapy or combination schedules. The design of adaptive therapy schedules that maintain the subpopulations under control is also demonstrated by sequential and periodic application of combination treatment strategies based on the evolutionary velocity and evolutionary absorbing regions. Applying a new replicator dynamical model, we further explored the supportive effects of sensitive cancer cells on targeted therapy-resistant cells revealed in mice experiments. It was shown that the supportive effects of sensitive cells could drive the evolution of cell population from sensitive cells to coexistence of sensitive cells and one type of targeted therapy-resistant cells.



    加载中


    [1] J. Foo, F. Michor, Evolution of acquired resistance to anti-cancer therapy, J. Theor. Biol., 355 (2014), 10–20. https://doi.org/10.1016/j.jtbi.2014.02.025 doi: 10.1016/j.jtbi.2014.02.025
    [2] S. Boumahdi, F. J. de Sauvage, The great escape: tumour cell plasticity in resistance to targeted therapy, Nat. Rev. Drug Discovery, 19 (2020), 39–56. https://doi.org/10.1038/s41573-019-0044-1 doi: 10.1038/s41573-019-0044-1
    [3] Z. F. Lim, P. C. Ma, Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy, J. Hematol. Oncol., 12 (2019), 1–18. https://doi.org/10.1186/s13045-019-0818-2 doi: 10.1186/s13045-019-0818-2
    [4] H. Easwaran, H. C. Tsai, S. B. Baylin, Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance, Mol. Cell, 54 (2014), 716–727. https://doi.org/10.1016/j.molcel.2014.05.015 doi: 10.1016/j.molcel.2014.05.015
    [5] R. A. Burrell, C. Swanton, Tumour heterogeneity and the evolution of polyclonal drug resistance, Mol. Oncol., 8 (2014), 1095–1111. https://doi.org/10.1016/j.molonc.2014.06.005 doi: 10.1016/j.molonc.2014.06.005
    [6] R. A. Gatenby, J. S. Brown, Integrating evolutionary dynamics into cancer therapy, Nat. Rev. Clin. Oncol., 17 (2020), 675–686. https://doi.org/10.1038/s41571-020-0411-1 doi: 10.1038/s41571-020-0411-1
    [7] A. Acar, D. Nichol, J. Fernandez-Mateos, G. D. Cresswell, I. Barozzi, S. P. Hong, et al., Exploiting evolutionary steering to induce collateral drug sensitivity in cancer, Nat. Commun., 11 (2020), 1–14. https://doi.org/10.1038/s41467-020-15596-z doi: 10.1038/s41467-020-15596-z
    [8] P. M. Enriquez-Navas, J. W. Wojtkowiak, R. A. Gatenby, Application of evolutionary principles to cancer therapy, Cancer Res., 75 (2015), 4675–4680. https://doi.org/10.1158/0008-5472.CAN-15-1337 doi: 10.1158/0008-5472.CAN-15-1337
    [9] D. Basanta, R. A. Gatenby, A. R. Anderson, Exploiting evolution to treat drug resistance: combination therapy and the double bind, Mol. Pharmaceutics, 9 (2012), 914–921. https://doi.org/10.1021/mp200458e doi: 10.1021/mp200458e
    [10] R. A. Gatenby, J. Brown, T. Vincent, Lessons from applied ecology: cancer control using an evolutionary double bind, Cancer Res., 69 (2009), 7499–7502. https://doi.org/10.1158/0008-5472.CAN-09-1354 doi: 10.1158/0008-5472.CAN-09-1354
    [11] R. M. Webster, Combination therapies in oncology, Nat. Rev. Drug Discovery, 15 (2016), 81. https://doi.org/10.1038/nrd.2016.3 doi: 10.1038/nrd.2016.3
    [12] R. A. Gatenby, A. S. Silva, R. J. Gillies, B. R. Frieden, Adaptive therapy, Cancer Res., 69 (2009), 4894–4903. https://doi.org/10.1158/0008-5472.CAN-08-3658
    [13] J. West, L. You, J. Zhang, R. A. Gatenby, J. S. Brown, P. Newton, et al., Towards multidrug adaptive therapy, Cancer Res., 80 (2020), 1578 – 1589. https://doi.org/10.1158/0008-5472.CAN-19-2669 doi: 10.1158/0008-5472.CAN-19-2669
    [14] J. Zhang, J. J. Cunningham, J. S. Brown, R. A. Gatenby, Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nat. Commun., 8 (2017), 1–9. https://doi.org/10.1038/s41467-017-01968-5 doi: 10.1038/s41467-017-01968-5
    [15] J. B. West, M. N. Dinh, J. S. Brown, J. Zhang, A. R. Anderson, R. A. Gatenby, Multidrug cancer therapy in metastatic castrate-resistant prostate cancer: an evolution-based strategy, Clin. Cancer Res., 25 (2019), 4413–4421. https://doi.org/10.1158/1078-0432.CCR-19-0006 doi: 10.1158/1078-0432.CCR-19-0006
    [16] E. Kim, J. S. Brown, Z. Eroglu, A. R. Anderson, Adaptive therapy for metastatic melanoma: predictions from patient calibrated mathematical models, Cancers, 13 (2021), 823. https://doi.org/10.3390/cancers13040823 doi: 10.3390/cancers13040823
    [17] E. Hansen, A. F. Read, Modifying adaptive therapy to enhance competitive suppression, Cancers, 12 (2020), 3556. https://doi.org/10.3390/cancers12123556 doi: 10.3390/cancers12123556
    [18] M. A. Strobl, J. West, Y. Viossat, M. Damaghi, M. Robertson-Tessi, J. S. Brown, et al., Turnover modulates the need for a cost of resistance in adaptive therapy, Cancer Res., 81 (2021), 1135–1147. https://doi.org/10.1158/0008-5472.CAN-20-0806 doi: 10.1158/0008-5472.CAN-20-0806
    [19] M. A. Strobl, J. Gallaher, J. West, M. Robertson-Tessi, P. K. Maini, A. R. Anderson, Spatial structure impacts adaptive therapy by shaping intra-tumoral competition, Commun. Med., 2 (2022), 1–18. https://doi.org/10.1038/s43856-022-00110-x doi: 10.1038/s43856-022-00110-x
    [20] G. Singh, Population dynamics of hybrid state during adaptive therapy in cancer, preprint, bioRxiv.
    [21] Y. Ma, P. Newton, Role of synergy and antagonism in designing multidrug adaptive chemotherapy schedules, Phys. Rev. E, 103 (2021), 032408. https://doi.org/10.1103/PhysRevE.103.032408 doi: 10.1103/PhysRevE.103.032408
    [22] E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems, (1980), 471–497. Available from: https://link.springer.com/chapter/10.1007/BFb0087009.
    [23] J. Hofbauer, K. Sigmund, Evolutionary game dynamics, Bull. Am. Math. Soc., 40 (2003), 479–519. https://doi.org/10.1090/S0273-0979-03-00988-1 doi: 10.1090/S0273-0979-03-00988-1
    [24] M. Gluzman, J. G. Scott, A. Vladimirsky, Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory, Proc. R. Soc. B, 287 (2020), 20192454. https://doi.org/10.1098/rspb.2019.2454 doi: 10.1098/rspb.2019.2454
    [25] B. Wölfl, H. Te Rietmole, M. Salvioli, A. Kaznatcheev, F. Thuijsman, J. S. Brown, et al., The contribution of evolutionary game theory to understanding and treating cancer, Dyn. Games Appl., 2021 (2021), 1–30. https://doi.org/10.1007/s13235-021-00397-w doi: 10.1007/s13235-021-00397-w
    [26] P. A. Orlando, R. A. Gatenby, J. S. Brown, Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy, Phys. Biol., 9 (2012), 065007. https://doi.org/10.1088/1478-3975/9/6/065007 doi: 10.1088/1478-3975/9/6/065007
    [27] S. Hummert, K. Bohl, D. Basanta, A. Deutsch, S. Werner, G. Theißen, et al., Evolutionary game theory: cells as players, Mol. BioSyst., 10 (2014), 3044–3065. https://doi.org/10.1039/C3MB70602H doi: 10.1039/C3MB70602H
    [28] A. C. Obenauf, Y. Zou, A. L. Ji, S. Vanharanta, W. Shu, H. Shi, et al., Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, 520 (2015), 368–372. https://doi.org/10.1038/nature14336 doi: 10.1038/nature14336
    [29] S. Sastry, Nonlinear Systems, Prentice Hall, 2002. Available from: https://link.springer.com/book/10.1007/978-1-4757-3108-8.
    [30] J. Hale, S. Lunel, Introduction to functional differential equations, Springer Science & Business Media, 2013. Available from: https://link.springer.com/book/10.1007/978-1-4612-4342-7.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2013) PDF downloads(140) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog