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Abstract: Cytotoxic chemotherapeutics are common treatment methods of many cancers, and patients
are often dosed at maximum tolerated dose (MTD), which is trying to eliminate cancer cells as much
as possible. However, highly doses chemotherapy may induce unexpected gene mutations or DNA
recombinations, which in turn result in unpredictable outcomes and drug resistance. In this study, we
focus on the occurrence of DNA recombinations, and present a mathematical model for the influence
of genomic disorder due to chemotherapy, and investigate how it may lead to drug resistance. We show
that there is an optimal dose so that the tumor cells number is minimum at the steady state, which
suggests the existence of an optimal dose of chemotherapy below the MTD. Model simulations show
that when the dose is either low or high, the tumor cancer cells number may maintain a higher level
steady state, or even sustained oscillations when the dose is too high, which are clinically inappropriate.
Our results provide a theoretical study on the dose control of chemotherapy in cancer therapy.

Keywords: delay differential equation; genomic disorder; non-clonal chromosome aberrations;
chemotherapy; drug resistance

1. Introduction

Cancer is a group of diseases involving abnormal cell growth [1, 2]. Currently, despite great
progresses of many newly developed therapeutic methods [3–5], chemotherapy is still a common
treatment method for many cancers. Patients are often administrated with high-dose of cytotoxic
chemotherapeutics trying to eliminate tumor cells as much as possible [6–11]. Nevertheless, it is
difficult to determine the proper dosage of chemotherapy, low dosage is ineffective in killing tumor
cells, whereas excessive dosage may result in additional toxicity that is intolerable to patients [6].
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Clinically, patients are often dosed at maximum or near maximum tolerated dose, which is carefully
determined in phase I studies [7, 12]. However, high level doses often induce series side-effects,
increasing the chemotherapy dose (also the treatment cost) would not yield the decreasing of the
recurrence rate [13, 14]. The recurrent tumors often show drug resistance, which is a major cause of
treatment failure in chemotherapeutic drugs [15–17].

Drug resistance has been a major challenge in cancer therapy. The mechanisms of drug resistance
are complex, and many reasons are involved, including cellular plasticity [18], heterogenous tumor
cells [19], or therapy induced gene mutations [20, 21]. In this study, we focus on a mechanism of drug
resistance due to chemotherapy-induced genome instability. Chemotherapy agents are cytotoxic by
means of interfering with cell division in a way of damaging or stressing cells, and leading to cell
death through apoptosis. During the early stage of apoptosis, apoptotic chromosome fragmentation
(C-Frag) are produced through the cleavage by caspase-3 activated DNase (CAD) [22]. Nevertheless,
C-Frag does not always result in cell death, sometimes the chromosome fragments can randomly
rejoin to form genome chaos so that the cells survive from crisis [23, 24]. These survived cells carry
non-clonal chromosome aberrations (NCCAs), the major form of genome variation and the key index
of genome instability in cancer cells [25–28]. It was proposed that such genome instability induced
by chemotherapy is a source of drug resistance in cancer therapy [26, 27]; quantitative control of drug
dosages is important for the long-term clinical effects.

Mathematical modelling approaches have been widely used in cancer research from different
aspects [2, 29]. A variety of models have been established to study the mechanisms of drug resistance
after chemotherapy [30–34]. However, there are rare quantitative studies on how tumor cells
population change in response to chemotherapy and drug resistance due to therapy-induced
chromosome recombination. The roles of NCCAs in tumor recurrence is still controversial [35].

In this study, we intend to investigate how NCCAs may affect tumor growth, and present a
mathematical model for chromosome recombination-induced drug resistance in cancer therapy. The
model extends the previously well studied G0 cell cycle model [36–39], and includes cell survival
from C-Frag [23, 24]. We mainly study cell population responses to various doses of chemotherapy,
and show that there is an optimal dose (within the maximum tolerated dose) so that the steady state
tumor cell number is relative low after chemotherapy. Moreover, the model implies that persistent
extreme high dose therapy may induce oscillations in cell number, which is clinically inappropriate
and should be avoided.

2. Model formulation

In this study, we model the process of tumor growth through formulations of stem cell regeneration.
Here, we mainly consider chemotherapy for leukemia, and mathematical models of hematopoiesis are
referred in our modeling. We refer the classical G0 cell cycle model that has long been studied in
literatures [40–42] (Figure. 1(a)). In the model, leukemia stem cells are classified as either resting or
proliferative phase cells. Resting phase cells (Q, cells/kg) either enter the proliferative phase at a rate
β (day−1), or be removed from the pool of resting phase due to differentiation, senescence, or death,
at a rate κ (day−1). The cells at the proliferative phase undergo apoptosis in a rate µ (day−1), and the
duration of the proliferative phase is τ (days), each survived cell divides into two daughter cells through
mitosis at the end of the proliferative phase. These processes can be described by a delay differential
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equation model [36–39]:
dQ
dt

= −(β(Q) + κ)Q + 2e−µτβ(Qτ)Qτ. (2.1)

Here, the subscript means the time delay, i.e., Qτ = Q(t − τ). The equation (2.1) has been widely
applied in the study of hematopoietic stem cell regeneration dynamics and blood disease [43–46], as
well as the hematopoietic responses to chemotherapy [47, 48].

proliferating phase G0

proliferation: �(Q)

�

� �

differentiation,death,
senescence

apoptosis

proliferating phase G0

proliferation: �(Q)

� �
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�

q(�1)
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Figure 1. The G0 cell cycle model of leukemia stem cell regeneration. (a) Leukemia stem
cell regeneration without chemotherapy. All stem cells are classified into the resting and
the proliferative phase. During stem cell regeneration, resting phase cells either enter the
proliferating phase with a rate β, or be removed from the resting pool with a rate κ due to
differentiation, senescence, or death. The proliferating cells undergo apoptosis with a rate
µ. At the end of the resting phase, each cell divides into two daughter cells through mitosis.
(b) Leukemia stem cell regeneration under chemotherapy. Chemotherapy agents interfere
the process of cell division and promote apoptosis [49]. During apoptosis, after the early
stage of chromosome fragmentation, some cells survive from crisis (with a probability q(µ1))
through chromosome recombination, and the survived cells re-enter the G0 phase. Here the
extra apoptosis rate µ1 is a parameter associated with the chemotherapy dose.

The proliferation rate β is a function of the resting phase cell number Q, indicating the regulation
of cell proliferation through cytokines secreted from all stem cells. Normally, the proliferation rate is
a decrease function of the cell number, and approaches 0 when the cell number Q is large enough [50].
Nevertheless, in the situation of cancer, the function can be non-monotonic because cancer cells can
evade growth suppressors, and produce self-sustaining proliferative signaling [51].

Now, we consider the effects of chemotherapy, which often promote cell death during the
proliferative phrase due to the toxicity [49]. Hence, we write the apoptosis rate as µ = µ0 + µ1, where
µ0 represents the baseline apoptosis rate in the absence of chemotherapy, and µ1 the extra apoptosis
rate due to treatment stress (the rate µ1 is often increase with the chemotherapy dose, hence we also
refer µ1 as the dose for short). At the early apoptosis stage, the cells undergo chromosome
fragmentation (C-Frag) (cell number given by (1 − e−µτ)β(Qτ)Qτ). However, in a small population of
cells with C-Frag, the fragments can rejoin to yield chromosome recombination and the cells survive
from crisis and re-enter the G0 phase; other cells continue the apoptosis process (Figure. 1(b)). We
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assume that the probability of chromosome recombination, q(µ1) (0 ≤ q(µ1) < 1), is dependent on the
chemotherapy dose, so that q(µ1) is an increase function. Therefore, we modify the above G0 cell
cycle model (2.1) to include chromosome recombination, the cell number Q satisfies the following
delay differential equation:

dQ
dt

= −(β(Q) + κ)Q + (2e−µτ + (1 − e−µτ)q(µ1))β(Qτ)Qτ, (2.2)

where
µ = µ0 + µ1. (2.3)

Hereafter, we always assume that β(Q) is a decrease function, and q(µ1) is an increase function.
For model simulation, we refer the classical models for hematopoietic stem cells (Table 1), and

take the proliferation rate β(Q) and the probability of chromosome recombination q(µ1) as Hill type
functions [44, 50]:

β(Q) = β0
θn

θn + Qn + β1, q(µ1) = q1
µm

1

em + µm
1
. (2.4)

Table 1. Default parameter values. The parameter values for hematopoietic stem cells are
referred to [44, 50, 52], and β1 is set to 0 for default, other parameters for the chemotherapy
effect are taken arbitrary.

Parameter Value Unit Source
Q∗ 1.53 ×106 cells/kg [44, 52]
β0 8.0 day−1 [44, 50]
β1 0 day−1 -
θ 0.096 ×106 cells/kg [44, 50]
n 2 - [44]
q1 1 day−1 -
e 0.34 day−1 -
m 4 - -
κ 0.02 day−1 [44, 50]
τ 2.8 days [44, 52]
µ0 0.001 day−1 [44, 50]

3. Results

3.1. Dependence of the steady state with drug dosage

From (2.2), the steady state Q(t) ≡ Q∗ is given by the equation

−(β(Q∗) + κ)Q∗ + (2e−µτ + (1 − e−µτ)q(µ1))β(Q∗)Q∗ = 0.
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Obviously, there is a zero solution Q∗ = 0. When the proliferation rate β(Q) is a decrease function,
there is a positive steady state Q∗ > 0 if and only if the condition

β0 >
κ

2e−µτ − 1 + (1 − e−µτ)q(µ1)
− β1 > 0 (3.1)

is satisfied, and the steady state is given by the root of

β(Q∗) =
κ

2e−µτ − 1 + (1 − e−µτ)q(µ1)
. (3.2)

From (3.1), there exists a positive steady state when the recombination rate q(µ1) satisfies

κ

(β0 + β1)(1 − e−µτ)
< q(µ1) +

2e−µτ − 1
1 − e−µτ

<
κ

β1(1 − e−µτ)
. (3.3)

Specifically, if

q(µ1) +
2e−µτ − 1
1 − e−µτ

<
κ

(β0 + β1)(1 − e−µτ)
, (3.4)

the system has only zero solution steady state, and the zero solution is global stable which means the
situation of no cells; and if

q(µ1) +
2e−µτ − 1
1 − e−µτ

>
κ

β1(1 − e−µτ)
, (3.5)

the zero solution is unstable and all positive solutions approach to +∞, which means the situation of
uncontrolled cell growth.

Next, we consider the stability of the steady states. Let x(t) = Q(t) − Q∗ and linearize the equation
(2.2) at x = 0, we obtain

dx
dt

= −ax + bxτ, (3.6)

where

a = β(Q∗) + κ + β
′

(Q∗)Q∗,
b = [2e−µτ + (1 − e−µτ)q(µ1)][β(Q∗) + β

′

(Q∗)Q∗].

The zero solution of equation (3.6) is stable if and only if the coefficients a and b take values from the
region S defined as

S = {(a, b) ∈ R2|a secωτ < b < a,where ω = −a tanωτ, a > −
1
τ
, ω ∈ (0,

π

τ
)}. (3.7)

For the zero solution Q(t) ≡ Q∗ = 0, we have

a = β0 + κ > 0, b = (2e−µτ + (1 − e−µτ)q(µ1))β0 > 0.

Hence, the zero solution is stable if and only if b < a, i.e., the inequality (3.4) is satisfied.
For the positive steady state Q(t) = Q∗ > 0, we have

a = β̄ + κ − β̂, b =
(
2e−µτ + (1 − e−µτ)q(µ1)

)
(β̄ − β̂), (3.8)
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where β̄ = β(Q∗) > 0 and β̂ = −β′(Q∗)Q∗ > 0. Hence, when the condition (3.1) is satisfied, the
equation (3.7) gives the Hopf bifurcation curve for the positive steady state

β̂crit = −
[2e−µτ + (1 − e−µτ)q(µ1)](secωτ − 1)

2e−µτ − secωτ + (1 − e−µτ)q(µ1)
β̄,

ω = −β̄
[2e−µτ + (1 − e−µτ)q(µ1)][2e−µτ − 1 + (1 − e−µτ)q(µ1)]

2e−µτ − secωτ + (1 − e−µτ)q(µ1)
tanωτ,

(3.9)

where ω can be solved from the second equation of (3.9), and

ω ∈

[
1
τ

arccos
1

2e−µτ + (1 − e−µτ)q(µ1)
,
π

τ

]
. (3.10)

When β̂ < β̂crit, the positive steady state solution of equation (2.2) is stable, and when β̂ > β̂crit,
the steady state becomes unstable. Biologically, the Hopf bifurcation curve (3.9) gives the critical
proliferation rate β̂crit, so that the steady state is stable when the proliferation rate is less than the critical
rate, but when the proliferation rate is larger than the critical rate, the steady state becomes unstable
and the system exhibits oscillatory dynamics, which can be a source of dynamical blood diseases [42].

In summary, we have the following conclusion:

Theorem 1. Consider the model equation (2.2), where β(Q) (β0 > β(Q) > β1) is a decrease function,
and 0 ≤ q(µ1) < 1. The equation always has zero steady state Q(t) ≡ 0; if and only if the condition

β0 >
κ

2e−µτ − 1 + (1 − e−µτ)q(µ1))
− β1 > 0 (3.11)

is satisfied, equation (2.2) has a unique positive steady state solution Q(t) = Q∗, which is given by

β(Q∗) =
κ

2e−µτ − 1 + (1 − e−µτ)q(µ1))
. (3.12)

Moreover,

(1) the zero steady state is stable if and only if

q(µ1) +
2e−µτ − 1
1 − e−µτ

<
κ

(β0 + β1)(1 − e−µτ)
; (3.13)

(2) when (3.11) is satisfied and let β̄ = β(Q∗), β̂ = −β′(Q∗)Q∗, for any µ1 > 0, there is a critical
proliferation rate β̂crit > 0, defined by (3.9), so that the positive steady state is stable if and only if
β̂ < β̂crit.

When the functions β(Q) and q(µ1) are defined by (2.4), equation (3.2) gives

β̄ =
κ

f
, f = 2e−µτ − 1 + (1 − e−µτ)q(µ1), (3.14)

and

β̂ = −β′(Q∗)Q∗ = n(β̄ − β1)(1 −
β̄ − β1

β0
). (3.15)
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Figure 2. Bifurcation analysis of the model system. (a) Dependence of the bifurcation curve
β̂crit (black line) in equation (3.9) and β̂ (red line) in equation (3.15) on the parameter µ1.
(b) Sample dynamics of cell population. Different color lines are obtained from different µ1

values (same color dots in (a)): µ1 = 0.1(blue line), µ1 = 0.3(green line), µ1 = 0.5(magenta
line), and µ1 = 1.1(black line). Other values are the same as default values in Table 1. In
simulations, we first set the parameters as their default values, Q(t) ≡ 0.5 for t < 0, and solve
the equation to t = 300 day.

Applying the default parameter values in Table 1, when µ1 varies from 0 to 1.2, the critical
proliferation rate β̂crit (black line, given by (3.9)) and proliferation rate at the steady state β̂ (red line,
given by (3.15)) are shown in Figure 2(a). Here, β̂ > β̂crit implies the parameter region with unstable
steady state, and there are oscillatory solutions due to Hopf bifurcation (Figure 2(b)).

From Figure 2(a), when the drug dose is low, we have β̂ < β̂crit, and (2.2) has a stable positive steady
state (Figure 2(b), blue line). The steady state cell number depends on the dose µ1, and reach a local
minimum when µ1 takes intermediate values (green dot in Figure 2(a), also referred to Figure 3). When
the drug dose further increase to a high level (black dot), the steady state of (2.2) becomes unstable,
and the cell populations show oscillatory dynamics (Figure 2(b), black line).

3.2. Optimal dose of chemotherapy

From the above analyses, when

f = 2e−µτ − 1 + (1 − e−µτ)q(µ1) > 0, β1 <
κ

f
< β0 + β1, (3.16)

the equation (2.2) has a unique positive steady state Q(t) = Q∗. Moreover, let β̄ = β(Q∗), then β̄ = κ/ f ,
and

0 < β̄ − β1 < β0.

Hence, the steady state can be expressed explicitly as

Q∗ = θ n

√
β0

β̄ − β1
− 1. (3.17)

Equation (3.17) shows that the steady state Q∗ is dependent on the chemotherapy dose parameter µ1

through β̄ = κ/ f . The following theorem shows that under certain conditions, there is an optimal dose
(within a tolerated dose) so that the steady state cell number reach a local minimum.
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Theorem 2. Consider the equation (2.2), if the following conditions are satisfied

(1) the functions β(Q) and q(µ1) are continuous, and satisfy

β0 + β1 > β(Q) > β1 ≥ 0, 1 ≥ q(µ1) ≥ 0, β′(Q) < 0, q′(µ1) > 0,

(2) the parameters (β0, β1, κ, µ0, and τ) satisfy the condition (3.16) (here we note µ = µ0 + µ1),
(3) both q(0) and q′(0) are sufficiently small,
(4) there exists µ∗1 > 0 so that conditions (1)-(2) are satisfied when µ1 ∈ (0, µ∗1), and

q(µ∗1) + q′(µ∗1)τ−1(e(µ0+µ∗1)τ − 1) > 2,

the steady state Q∗ reaches a local minimum value at an optimal dose µ1 = µ̂1 ∈ (0, µ∗1).

Proof. When the conditions (1) and (2) are satisfied, equation (2.2) has a unique positive steady state
Q(t) ≡ Q∗, which is given by (3.17). Hence, we have

dQ∗

dµ1
=

θ

n
(
β0

β̄ − β1
− 1)

1
n−1 −β0

(β̄ − β1)2

dβ̄
dµ1

=
θ

n
(
β0

β̄ − β1
− 1)

1
n−1 −β0

(β̄ − β1)2

−κ

f 2

d f
dµ1

=
θ

n
(
β0

β̄ − β1
− 1)

1
n−1 β0κ

(β̄ − β1)2 f 2

d f
dµ1

,

and
d f
dµ1

= τe−µτ(q(µ1) + q′(µ1)τ−1(eµτ − 1) − 2). (3.18)

Hence, the sign of
dQ∗

dµ1
is determined by the sign of

d f
dµ1

.

The condition (3) implies
d f
dµ1

∣∣∣∣∣
µ1=0

< 0, and condition (4) implies
d f
dµ1

∣∣∣∣∣
µ1=µ∗1

> 0. Hence, there

exists an optimal value µ̂1 ∈ (0, µ∗1), so that
dQ∗

dµ1

∣∣∣∣∣
µ1=µ̂1

= 0, thus Q∗ reaches a local minimum value at

µ1 = µ̂1. �

Figure 3 shows the dependence of steady state with the dose µ1 when we take parameters from
Table 1, which exhibits a local minimum at about µ̂1 = 0.3. Here we note that the steady state cell
number Q∗ decrease with further increasing of µ1 > 0.5 and approaches zero when µ1 is large enough.
However, clinically, higher level µ1 may exceed the maximum tolerated dose, and have a risk to induce
oscillatory dynamics (Figure 2, and the discussion below). Hence, there is an optimal dose within a
certain region (for example, µ1 < 0.5) so that the cell number reaches a relative low level.

3.3. Chemotherapy-induced oscillations

Above analyses show that chemotherapy may induce oscillatory dynamics through Hopf
bifurcation when µ1 takes proper values. Here, we further analyze the condition for Hopf bifurcation,
and identify how clinical conditions may affect the chemotherapy-induced oscillations [46].
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Figure 3. Dependence of the steady state Q∗ with chemotherapy dose µ1. Black lines show
the steady state, with solid line for the stable steady state, and dashed line for the unstable
steady state. Red lines show the upper and lower bounds of the oscillation solutions when
the steady state is unstable.

Hematopoiesis can exhibit oscillations in one or several circulating cell types and show symptoms of
periodic hematological diseases [43, 53]. Here, we show the conditions to induce oscillations, and try
to identify the criteria to avoid therapy-induced oscillations in cancer treatments.

Using the previously introduced notations β̄ and f in (3.14), the bifurcation curve (3.9) can be
rewritten as 

β̂crit = −
( f + 1)(secωτ − 1)

f + 1 − secωτ
β̄,

ω = −β̄
f ( f + 1) tanωτ
f + 1 − secωτ

,
(3.19)

and hence
β̂crit = ω

1 − cosωτ
f sinωτ

. (3.20)

Moreover, from equation (3.15), we have

β̄ =
κ

f
, β̂ = −β′(Q∗)Q∗ = n(

κ

f
− β1)(1 −

κ/ f − β1

β0
). (3.21)

Hence, from (3.19)–(3.21), and the bifurcation condition β̂crit = β̂, we obtain the bifurcation curve in
terms of f and κ (defined by a parameter ω > 0) as

ω
1 − cosωτ

f sinωτ
= n(

κ

f
− β1)(1 −

κ/ f − β1

β0
),

ω = −
κ( f + 1) tanωτ
f + 1 − secωτ

.
(3.22)

Thus, given the parameter β0, β1, n, τ, equation (3.22) defines a bifurcation curve in the κ- f plane when
ω varies over the region in (3.10).

Figure 4 shows the bifurcation curves obtained from (3.22). For any κ > 0, there exist an upper
bound f and a lower bound f , so that the positive steady state (if exists) is stable when f < f < f .
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Moreover, when the self-sustained proliferation rate β1 increases, the lower bound f is independent of

β1, while the upper bound f decreases with β1. Here, we note that f depends on the dose parameter µ1

through (3.14), these results provide a strategy to quantitatively control the chemotherapy dose to avoid
therapy-induced oscillation, i.e., try to take values from the gray region for different differentiation rate
κ.

κ
0 0.1 0.2 0.3 0.4

f

0

0.2

0.4

0.6

0.8

1

stable

unstable β
1
=0

β
1
=0.05

Figure 4. Hopf bifurcation curve in the κ- f plane. The black solid lines are obtained from
(3.22) with β0 = 0, the blue dashed line is obtained from (3.22) with β1 = 0.05. Gray shadow
shows the parameter region of stable steady state.

4. Discussion

The era of chemotherapy has been ruled by the routine use of dose-intense protocols based on
the “maximum-tolerate dose” concept. This protocol plays a prominent role in veterinary oncology,
however there are many debates on using the high dose chemotherapy because of the side effects and
recurrence rates [54]. Chromosome recombination induced by chemotherapy is a source to produce
chaotic genome in cancer cells and may lead to drug resistance. Here, we present a mathematical
model to consider cell population dynamics in response to chemotherapy with occasional occurrence of
chromosome recombination. Model analyses show that maximum-tolerate dose may not always result
in the best outcome when the probability of chromosome recombination is dependent on the dose;
there is an optimal dose within a tolerated dose so that the steady state tumor cell number reaches
a relative low level. Moreover, sustained administration of high dose chemotherapy may induced
oscillatory cell population dynamics through Hopf bifurcation. Clinically, the long period oscillation
can be considered as the frequent recurrence of tumor cells, which is a result of drug-resistant or
chemotherapy-induced dynamical disease. For instance, the periodic chronic myelogenous leukemia
show obvious oscillations in circulating blood cells [55]. We identify the parameter regions for the
occurrence of oscillation dynamics, which is valuable when we try to avoid the frequent recurrence.
To our knowledge, this is the first try to quantitatively study the tumor cell population dynamics in
response to chemotherapy when chromosome recombination is induced. Genome chaotic has been
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widely reported in studies of genomic structure of cancer cells, however how genome chaotic play
roles in cancer development and drug resistance is not well documented. The current study is the first
try to consider this issue. Here, the proposed model only consider the main effect of cell survival from
C-Frag through chromosome recombination. Nevertheless, many other effects should be included for a
complete understanding of drug resistance due to the chromosome changes induced by cancer therapy.
Moreover, the cell heterogeneity can also play important roles in drug resistance. These effects should
be extended to the current model in order to obtain an optimal dose of chemotherapy.
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