Review Special Issues

Strategies for the treatment of breast cancer: from classical drugs to mathematical models

  • Received: 20 April 2021 Accepted: 13 July 2021 Published: 21 July 2021
  • Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.

    Citation: Ana Costa, Nuno Vale. Strategies for the treatment of breast cancer: from classical drugs to mathematical models[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6328-6385. doi: 10.3934/mbe.2021316

    Related Papers:

  • Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.



    加载中


    [1] M. M. Bahaddin, A comparative study between Ki67 positive versus Ki67 negative females with breast cancer: Cross sectional study, Ann. Med. Surg., 60 (2020), 232-235. https://doi.org/10.1016/j.amsu.2020.10.049. doi: 10.1016/j.amsu.2020.10.049
    [2] G. A. Colditz, K. Bohlke, Priorities for the primary prevention of breast cancer, CA. Cancer J. Clin., 64 (2014), 186-194. https://doi.org/10.3322/caac.21225. doi: 10.3322/caac.21225
    [3] Q. Mu, H. Wang, M. Zhang, Nanoparticles for imaging and treatment of metastatic breast cancer, Exp. Opin. Drug Deliv., 14 (2017), 123-136. https://doi.org/10.1080/17425247.2016.1208650.Nanoparticles. doi: 10.1080/17425247.2016.1208650.Nanoparticles
    [4] A. W. Maksymiuk, P. S. Tappia, D. S. Sitar, P. S. Akhtar, N. Khatun, R. Parveen, et al., Use of amantadine as substrate for SSAT-1 activity as a reliable clinical diagnostic assay for breast and lung cancer, Futur. Sci. OA., 5 (2018), 1-14. https://doi.org/10.4155/fsoa-2018-0106.
    [5] M. Riis, Modern surgical treatment of breast cancer, Ann. Med. Surg., 56 (2020), 95-107. https://doi.org/10.1016/j.amsu.2020.06.016. doi: 10.1016/j.amsu.2020.06.016
    [6] M. B. Serafin, A. Bottega, T. F. da Rosa, C. S. Machado, V. S. Foletto, S. S. Coelho, et al., Drug Repositioning in Oncology, Am. J. Ther., (2019), 1-7. https://doi.org/10.1097/MJT.0000000000000906.
    [7] B. Weigelt, F. C. Geyer, J. S. Reis-Filho, Histological types of breast cancer: How special are they?, Mol. Oncol., 4 (2010), 192-208. https://doi.org/10.1016/j.molonc.2010.04.004. doi: 10.1016/j.molonc.2010.04.004
    [8] V. O. Sviderskiy, L. Blumenberg, E. Gorodetsky, T. R. Karakousi, N. Hirsh, S. W. Alvarez, et al., Hyperactive CDK2 activity in basal-like breast cancer imposes a genome integrity liability that can be exploited by targeting DNA polymerase ε, Mol. Cell, 80 (2020), 682-698. https://doi.org/10.1016/j.molcel.2020.10.016.
    [9] Y. Zhang, J. Tian, C. Qu, Y. Peng, J. Lei, L. Sun, et al., A look into the link between centrosome amplification and breast cancer, Biomed. Pharmacother., 132 (2020), 1-10. https://doi.org/10.1016/j.biopha.2020.110924.
    [10] L. Zhao, X. Han, J. Lu, D. McEachern, S. Wang, A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo, Neopl. (United States), 22 (2020), 522-532. https://doi.org/10.1016/j.neo.2020.07.002. doi: 10.1016/j.neo.2020.07.002
    [11] S. Li, H. Jia, Z. Zhang, D. Wu, LncRNA GAS6-AS1 facilitates the progression of breast cancer by targeting the miR-324-3p/SETD1A axis to activate the PI3K/AKT pathway, Eur. J. Cell Biol., 99 (2020), 1-10. https://doi.org/10.1016/j.ejcb.2020.151124. doi: 10.1016/j.ejcb.2020.151124
    [12] L. Y. Yu, J. Tang, C. M. Zhang, W. J. Zeng, H. Yan, M. P. Li, et al., New immunotherapy strategies in breast cancer, Int. J. Environ. Res. Pub. Heal., 14 (2017), 1-18. https://doi.org/10.3390/ijerph14010068.
    [13] L. Xing, X. Tang, K. Wu, X. Huang, Y. Yi, J. Huan, TRIM27 functions as a novel oncogene in non-triple-negative breast cancer by blocking cellular senescence through p21 ubiquitination, Mol. Ther. -Nucl. Aci., 22 (2020), 910-923. https://doi.org/10.1016/j.omtn.2020.10.012. doi: 10.1016/j.omtn.2020.10.012
    [14] A. A. Lewin, L. Moy, P. Baron, A. D. Didwania, R. M. diFlorio-Alexander, J. H. Hayward, et al., ACR Appropriateness CriteriaⓇ stage I breast cancer: Initial workup and surveillance for local recurrence and distant metastases in asymptomatic women, J. Am. Coll. Radiol., 16 (2019), S428-S439. https://doi.org/10.1016/j.jacr.2019.05.024.
    [15] J. Li, W. Zeng, Y. Huang, Q. Zhang, P. Hu, S. D. Rabkin, et al., Treatment of breast cancer stem cells with oncolytic herpes simplex virus, Cancer Gene Ther., 19 (2012), 707-714. https://doi.org/10.1038/cgt.2012.49.
    [16] M. Mahoney, F. A. Holmes, B. Cho, Leptomeningeal metastatic hormone receptor positive, HER2 and PD-L1 negative, breast cancer responds after pembrolizumab added to abemaciclib: A case study, Curr. Probl. Cancer Case Rep., 2 (2020), 1-5. https://doi.org/10.1016/j.cpccr.2020.100033.
    [17] R. C. Jankowitz, S. Oesterreich, A. V. Lee, N. E. Davidson, New strategies in metastatic hormone receptor-positive breast cancer: Searching for biomarkers to tailor endocrine and other targeted therapies, Clin. Cancer Res., 23 (2017), 1126-1131. https://doi.org/10.1158/1078-0432.CCR-16-0591.New. doi: 10.1158/1078-0432.CCR-16-0591.New
    [18] F. Cardoso, S. Paluch-Shimon, E. Senkus, G. Curigliano, M. S. Aapro, F. André, et al., 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5), Ann. Oncol., 31 (2020), 1623-1649. https://doi.org/10.1016/j.annonc.2020.09.010.
    [19] Y. Pang, L. Su, Y. Fu, F. Jia, C. Zhang, X. Cao, et al., Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis, Bioact. Mater., 6 (2021), 712-720. https://doi.org/10.1016/j.bioactmat.2020.09.006.
    [20] S. Akhtartavan, M. Karimi, K. Karimian, N. Azarpira, M. Khatami, H. Heli, Evaluation of a self-nanoemulsifying docetaxel delivery system, Biomed. Pharmacother., 109 (2019), 2427-2433. https://doi.org/10.1016/j.biopha.2018.11.110. doi: 10.1016/j.biopha.2018.11.110
    [21] A. C. Garrido-Castro, N. U. Lin, K. Polyak, Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment, Cancer Discov., 9 (2019), 176-198. https://doi.org/10.1158/2159-8290.CD-18-1177.Insights. doi: 10.1158/2159-8290.CD-18-1177.Insights
    [22] I. A. Mayer, V. G. Abramson, B. D. Lehmann, J. A. Pietenpol, New strategies for triple negative breast cancer—deciphering the heterogeneity, Clin. Cancer Res., 20 (2014), 782-790. https://doi.org/10.1158/1078-0432.CCR-13-0583.NEW. doi: 10.1158/1078-0432.CCR-13-0583.NEW
    [23] Q. Liu, J. Zhai, X. Kong, X. Wang, Z. Wang, Y. Fang, et al., Comprehensive analysis of the expression and prognosis for TDO2 in breast cancer, Mol. Ther. Onco., 17 (2020), 153-168. https://doi.org/10.1016/j.omto.2020.03.013.
    [24] F. Cardoso, N. Harbeck, C. H. Barrios, J. Bergh, J. Cortés, N. El Saghir, et al., Research needs in breast cancer, Ann. Oncol., 28 (2017), 208-217. https://doi.org/10.1093/annonc/mdw571.
    [25] K. L. Maughan, M. A. Lutterbie, P. S. Ham, Treatment of breast cancer, Am. Fam. Phys., 81 (2010), 1339-1346. https://doi.org/10.1056/nejm199810013391407.
    [26] S. Chainitikun, S. Saleem, B. Lim, V. Valero, N. T. Ueno, Update on systemic treatment for newly diagnosed inflammatory breast cancer, J. Adv. Res., (2020), 1-14. https://doi.org/10.1016/j.jare.2020.08.014.
    [27] Y. Zhu, X. Yu, S. D. Thamphiwatana, Y. Zheng, Z. Pang, Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy, Acta Pharm. Sin. B., 10 (2020), 2054-2074. https://doi.org/10.1016/j.apsb.2020.08.010. doi: 10.1016/j.apsb.2020.08.010
    [28] T. T. Nguyen, T. T. D. Nguyen, Q. T. H. Ta, V. G. Vo, Advances in non and minimal-invasive transcutaneous delivery of immunotherapy for cancer treatment, Biomed. Pharmacother., 131 (2020), 1-13. https://doi.org/10.1016/j.biopha.2020.110753. doi: 10.1016/j.biopha.2020.110753
    [29] S. Tan, D. Li, X. Zhu, Cancer immunotherapy: Pros, cons and beyond, Biomed. Pharmacother., 124 (2020), 1-11. https://doi.org/10.1016/j.biopha.2020.109821.
    [30] D. Liu, X. Zhao, A. Tang, X. Xu, S. Liu, L. Zha, et al., CRISPR screen in mechanism and target discovery for cancer immunotherapy, Biochim. Biophys. Acta Rev. Cancer, 1874 (2020), 1-15.
    [31] M. K. Saadeldin, A. K. Abdel-Aziz, A. Abdellatif, Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis, Med. Hypo., (2020), 1-12. https://doi.org/10.1016/j.mehy.2020.110365.
    [32] T. Sugie, Immunotherapy for metastatic breast cancer, Chin. Clin. Oncol., 7 (2018), 1-9. https://doi.org/10.21037/cco.2018.05.05. doi: 10.21037/cco.2018.05.05
    [33] W. J. Lesterhuis, J. B. A. G. Haanen, C. J. A. Punt, Cancer immunotherapy-revisited, Nat. Rev. Drug Discov., 10 (2011), 591-600. https://doi.org/10.1038/nrd3500.
    [34] J. Raja, J. M. Ludwig, S. N. Gettinger, K. A. Schalper, H. S. Kim, Oncolytic virus immunotherapy: Future prospects for oncology, J. Immunother. Cancer, 6 (2018), 1-13. https://doi.org/10.1186/s40425-018-0458-z. doi: 10.1186/s40425-018-0458-z
    [35] M. J. V. Vähä-Koskela, J. E. Heikkilä, A. E. Hinkkanen, Oncolytic viruses in cancer therapy, Cancer Lett., 254 (2007), 178-216. https://doi.org/10.1016/j.canlet.2007.02.002.
    [36] M. Schuster, A. Nechansky, H. Loibner, R. Kircheis, Cancer immunotherapy, Biotechnol. J., 1 (2006), 138-147. https://doi.org/10.1002/biot.200500044.
    [37] R. S. Riley, C. H. June, R. Langer, M. J. Mitchell, Delivery technologies for cancer immunotherapy, Nat. Rev. Drug Discov., 18 (2019), 175-196. https://doi.org/10.1038/s41573-018-0006-z. doi: 10.1038/s41573-018-0006-z
    [38] H. Fukuhara, Y. Ino, T. Todo, Oncolytic virus therapy: A new era of cancer treatment at dawn, Cancer Sci., 107 (2016), 1373-1379. https://doi.org/10.1111/cas.13027. doi: 10.1111/cas.13027
    [39] G. Marelli, A. Howells, N. R. Lemoine, Y. Wang, Oncolytic viral therapy and the immune system: A double-edged sword against cancer, Front. Immunol., 9 (2018), 1-8. https://doi.org/10.3389/fimmu.2018.00866. doi: 10.3389/fimmu.2018.00866
    [40] J. Béguin, J. Foloppe, C. Maurey, E. Laloy, J. Hortelano, V. Nourtier, et al., Preclinical evaluation of the Oncolytic Vaccinia Virus TG6002 by translational research on canine breast cancer, Mol. Ther. Onco., 19 (2020), 57-66. https://doi.org/10.1016/j.omto.2020.08.020.
    [41] L. Q. Fu, S. B. Wang, M. H. Cai, X. J. Wang, J. Y. Chen, X. M. Tong, et al., Recent advances in oncolytic virus-based cancer therapy, Virus Res., 270 (2019), 1-9. https://doi.org/10.1016/j.virusres.2019.197675.
    [42] S. Bishnoi, R. Tiwari, S. Gupta, S. N. Byrareddy, D. Nayak, Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in cancer therapy, Viruses, 10 (2018), 1-20. https://doi.org/10.3390/v10020090. doi: 10.3390/v10020090
    [43] M. Y. Jung, C. P. Offord, M. K. Ennis, I. Kemler, C. Neuhauser, D. Dingli, In vivo estimation of oncolytic virus populations within tumors, Cancer Res., 78 (2018), 5992-6000. https://doi.org/10.1158/0008-5472.CAN-18-0447. doi: 10.1158/0008-5472.CAN-18-0447
    [44] M. Zheng, J. Huang, A. Tong, H. Yang, Oncolytic Viruses for cancer therapy: Barriers and recent advances, Mol. Ther. Onco., 15 (2019), 234-247. https://doi.org/10.1016/j.omto.2019.10.007. doi: 10.1016/j.omto.2019.10.007
    [45] N. T. Martin, J. C. Bell, Oncolytic Virus Combination Therapy: Killing one bird with two stones, Mol. Ther., 26 (2018), 1414-1422. https://doi.org/10.1016/j.ymthe.2018.04.001. doi: 10.1016/j.ymthe.2018.04.001
    [46] V. Kemp, M. L. M. Lamfers, G. van der Pluijm, B. G. van den Hoogen, R. C. Hoeben, Developing oncolytic viruses for clinical use: A consortium approach, Cyt. Grow. Fac. Rev., 56 (2020), 133-140. https://doi.org/10.1016/j.cytogfr.2020.06.010.
    [47] M. F. Leber, S. Neault, E. Jirovec, R. Barkley, A. Said, J. C. Bell, et al., Engineering and combining oncolytic measles virus for cancer therapy, Cyt. Grow. Fac. Rev., 56 (2020), 39-48. https://doi.org/10.1016/j.cytogfr.2020.07.005.
    [48] L. Guerra, L. Bonetti, D. Brenner, Metabolic modulation of immunity: A new concept in cancer immunotherapy, Cell. Rep., 32 (2020), 107848. https://doi.org/10.1016/j.celrep.2020.107848.
    [49] X. Zheng, N. Zhang, L. Qian, X. Wang, P. Fan, J. Kuai, et al., CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils, Int. J. Cancer, 146 (2020), 1730-1740.
    [50] R. Carretero, I. M. Sektioglu, N. Garbi, O. C. Salgado, P. Beckhove, G. J. Hammerling, Eosinophils orchestrate cancer rejection by normal- izing tumor vessels and enhancing infiltration of CD8(+) T cells, Nat. Immunol., 16 (2015), 609-617. doi: 10.1038/ni.3159
    [51] C. R. Gurbatri, I. Lia, R. Vincent, C. Coker, S. Castro, M. Treuting, et al., Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies, Sci. Transl. Med., 12 (2020), 1-26. https://doi.org/10.1126/scitranslmed.aax0876.Engineered.
    [52] W. Chen, Y. Yuan, X. Jiang, Antibody and antibody fragments for cancer immunotherapy, J. Cont. Rel., 328 (2020), 395-406. https://doi.org/10.1016/j.jconrel.2020.08.021. doi: 10.1016/j.jconrel.2020.08.021
    [53] S. Zhou, W. Chen, J. Cole, G. Zhu, Delivery of nucleic acid therapeutics for cancer immunotherapy, Med. Drug Discov., 6 (2020), 1-9. https://doi.org/10.1016/j.medidd.2020.100023. doi: 10.1016/j.medidd.2020.100023
    [54] A. Rajagopalan, A. Berezhnoy, B. Schrand, Y. Puplampu-Dove, E. Gilboa, Aptamer-targeted attenuation of IL-2 signaling in CD8+ T cells enhances antitumor immunity, Mol. Ther., 25 (2017), 54-61. https://doi.org/10.1016/j.ymthe.2016.10.021. doi: 10.1016/j.ymthe.2016.10.021
    [55] M. R. Knisely, Y. P. Conley, K. M. Kober, B. Smoot, S. M. Paul, J. D. Levine, et al., Associations between catecholaminergic and serotonergic genes and persistent breast pain phenotypes after breast cancer surgery, J. Pain., 19 (2018), 1130-1146. https://doi.org/10.1016/j.jpain.2018.04.007.
    [56] L. Clément-Demange, P. L. Mulcrone, T. Q. Tabarestani, J. A. Sterling, F. Elefteriou, β2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1β and selectin-dependent manner, J. Bone Oncol., 13 (2018), 1-10. https://doi.org/10.1016/j.jbo.2018.09.002. doi: 10.1016/j.jbo.2018.09.002
    [57] A. Chang, C. P. Le, A. K. Walker, S. J. Creed, C. K. Pon, S. Albold, et al., β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer, Brain. Behav. Immun., 57 (2016), 106-115. https://doi.org/10.1016/j.bbi.2016.06.011.
    [58] A. H. Zahalka, P. S. Frenette, Nerves in cancer, Nat. Rev. Cancer, 20 (2020), 143-157. https://doi.org/10.1038/s41568-019-0237-2.
    [59] C. R. Cardwell, A. Pottegård, E. Vaes, H. Garmo, L. J. Murray, C. Brown, et al., Propranolol and survival from breast cancer: A pooled analysis of European breast cancer cohorts, Breast Cancer Res., 18 (2016), 1-11. https://doi.org/10.1186/s13058-016-0782-5.
    [60] B. Boilly, S. Faulkner, P. Jobling, H. Hondermarck, Nerve dependence: From regeneration to cancer, Cancer Cell, 31 (2017), 342-354. https://doi.org/10.1016/j.ccell.2017.02.005. doi: 10.1016/j.ccell.2017.02.005
    [61] N. Kuol, L. Stojanovska, V. Apostolopoulos, K. Nurgali, Role of the nervous system in cancer metastasis, J. Exp. Clin. Cancer Res., 37 (2018), 1-12. https://doi.org/10.1186/s13046-018-0674-x. doi: 10.1186/s13046-018-0674-x
    [62] A. Montoya, C. N. Amaya, A. Belmont, N. Diab, R. Trevino, G. Villanueva, et al., Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer, Oncotarget, 8 (2017), 6446-6460. https://doi.org/10.18632/oncotarget.14119.
    [63] M. E. Sales, A. J. Español, A. R. Salem, P. M. Pulido, Y. Sanchez, F. Sanchez, Role of Muscarinic Acetylcholine Receptors in Breast Cancer: Design of Metronomic Chemotherapy, Curr. Clin. Pharmacol., 14 (2019), 91-100. https://doi.org/10.2174/1574884714666181203095437. doi: 10.2174/1574884714666181203095437
    [64] M. H. Kim, J. E. Oh, S. Park, J. H. Kim, K. Y. Lee, S. J. Bai, et al., Tramadol use is associated with enhanced postoperative outcomes in breast cancer patients: A retrospective clinical study with in vitro confirmation, Br. J. Anaesth., 123 (2019), 865-876. https://doi.org/10.1016/j.bja.2019.09.004.
    [65] S. Rahman, A. Archana, D. Dutta, V. Kumar, J. Kim, A. T. Jan, et al., The onus of cannabinoids in interrupting the molecular odyssey of breast cancer: A critical perspective on UPR ER and beyond, Sau. Pharm. J., 27 (2019), 437-445. https://doi.org/10.1016/j.jsps.2019.01.005.
    [66] P. Fernández-Nogueira, A. Noguera-Castells, G. Fuster, L. Recalde-Percaz, N. Moragas, A. López-Plana, et al., Histamine receptor 1 inhibition enhances antitumor therapeutic responses through extracellular signal-regulated kinase (ERK) activation in breast cancer, Cancer Lett., 424 (2018), 70-83. https://doi.org/10.1016/j.canlet.2018.03.014.
    [67] R. Zúñiga, G. Concha, A. Cayo, R. Cikutović-Molina, B. Arevalo, W. González, et al., Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3, Biomed. Pharmacother., 129 (2020), 1-10. https://doi.org/10.1016/j.biopha.2020.110383.
    [68] X. Hou, C. Shou, M. He, J. Xu, Y. Cheng, Z. Yuan, et al., A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy, Acta Pharm. Sin. B., 10 (2020), 1741-1753. https://doi.org/10.1016/j.apsb.2020.04.010.
    [69] X. Chen, J. Zou, K. Zhang, J. Zhu, Y. Zhang, Z. Zhu, et al., Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment, Acta Pharm. Sin. B., 11 (2021), 271-282. https://doi.org/10.1016/j.apsb.2020.08.009.
    [70] Y. Su, T. Yu, W. Chiang, H. Chiu, C. Chang, Hierarchically targeted and penetrated delivery of drugs to tumors by size-changeable graphene quantum dot nanoaircrafts for photolytic therapy, Adv. Funct. Mater., 12 (2017), 1-12. https://doi.org/10.1002/adfm.201700056. doi: 10.1002/adfm.201700056
    [71] H. P. Sun, J. H. Su, Q. S. Meng, Q. Yin, Z. W. Zhang, H. J. Yu, et al., Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro, Acta Pharmacol. Sin., 37 (2016), 941-949. https://doi.org/10.1038/aps.2016.20.
    [72] W. Sun, Y. Du, X. Liang, C. Yu, J. Fang, W. Lu, et al., Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer, Biomaterials, 217 (2019), 1-13. https://doi.org/10.1016/j.biomaterials.2019.119264.
    [73] R. Hernandez-Delgadillo, C. M. García-Cuéllar, Y. Sánchez-Pérez, N. Pineda-Aguilar, M. A. Martínez-Martínez, E. E. Rangel-Padilla, et al., In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells, Int. J. Nanom., 13 (2018), 6089-6097. https://doi.org/10.2147/IJN.S179095.
    [74] V. Thakur, R. V. Kutty, Recent advances in nanotheranostics for triple negative breast cancer treatment, J. Exp. Clin. Cancer Res., 38 (2019), 1-22. https://doi.org/10.1186/s13046-019-1443-1. doi: 10.1186/s13046-019-1443-1
    [75] P. H. Wu, Y. Onodera, Y. Ichikawa, E. B. Rankin, A. J. Giaccia, Y. Watanabe, et al., Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells, Int. J. Nanom., 12 (2017), 5069-5085. https://doi.org/10.2147/IJN.S137833.
    [76] H. Yamaguchi, K. Hayama, I. Sasagawa, Y. Okada, T. Kawase, N. Tsubokawa, et al., HER2-targeted multifunctional silica nanoparticles specifically enhance the radiosensitivity of HER2-overexpressing breast cancer cells, Int. J. Mol. Sci., 19 (2018), 1-13. https://doi.org/10.3390/ijms19030908.
    [77] P. Liu, Z. Huang, Z. Chen, R. Xu, H. Wu, F. Zang, et al., Silver nanoparticles: A novel radiation sensitizer for glioma?, Nanoscale, 5 (2013), 11829-31186.
    [78] M. Do, K. Stinson, R. George, Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells, Biochem. Biophys. Rep., 22 (2020), 1-6. https://doi.org/10.1016/j.bbrep.2020.100745. doi: 10.1016/j.bbrep.2020.100745
    [79] M. Ahmed, M. Douek, The role of magnetic nanoparticles in the localization and treatment of breast cancer, Biomed Res. Int., 2013 (2013), 1-11. https://doi.org/10.1155/2013/281230. doi: 10.1155/2013/281230
    [80] M. A. Oghabian, M. Jeddi-Tehrani, A. Zolfaghari, F. Sham-sipour, S. Khoei, S. Amanpour, Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI, J. Nanosci. Nanotechnol., (2011), 5340-5344.
    [81] D. Artemov, N. Mori, B. Okollie, Z. M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles, Magn. Reson. Med." 49 (2003), 403-408. https://doi.org/10.1002/mrm.10406.
    [82] C. Prashant, M. Dipak, C. T. Yang, K. H. Chuang, D. Jun, S. S. Feng, Superparamagnetic iron oxide—loaded poly (lactic acid)-d-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent, Biomaterials, 31 (2010), 5588-5597. doi: 10.1016/j.biomaterials.2010.03.070
    [83] F. M. Kievit, Z. R. Stephen, O. Veiseh, H. Arami, T. Wang, V. P. Lai, et al., Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs, ACS Nano., 6 (2012), 2591-2601. https://doi.org/10.1021/nn205070h.Targeting.
    [84] T. K. Jain, S. P. Foy, B. Erokwu, S. Dimitrijevic, C. A. Flask, V. Labhasetwar, Biomaterials Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice, Biomaterials, 30 (2009), 6748-6756. https://doi.org/10.1016/j.biomaterials.2009.08.042. doi: 10.1016/j.biomaterials.2009.08.042
    [85] N. Kohler, C. Sun, J. Wang, M. Zhang, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir, 21 (2005), 8858-8864. doi: 10.1021/la0503451
    [86] E. Alp, F. Damkaci, E. Guven, M. Tenniswood, Starch nanoparticles for delivery of the histone deacetylase inhibitor cg-1521 in breast cancer treatment, Int. J. Nanom., 14 (2019), 1335-1346. doi: 10.2147/IJN.S191837
    [87] X. Tang, W. S. Loc, C. Dong, G. L. Matters, P. J. Butler, M. Kester, et al., The use of nanoparticulates to treat breast cancer, Nanomedicine, 12 (2017), 2367-2388. https://doi.org/10.2217/nnm-2017-0202.
    [88] Q. Wang, Y. Zhong, W. Liu, Z. Wang, L. Gu, X. Li, et al., Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid, Drug Deliv., 26 (2019), 12-22. https://doi.org/10.1080/10717544.2018.1507057.
    [89] K. Sun, W. Yu, B. Ji, C. Chen, H. Yang, Y. Du, et al., Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy, Appl. Mater. Tod., 18 (2020), 1-12. https://doi.org/10.1016/j.apmt.2019.100505.
    [90] G. Zheng, M. Zheng, B. Yang, H. Fu, Y. Li, Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo, Biomed. Pharmacother., 116 (2019), 1-10. https://doi.org/10.1016/j.biopha.2019.109006.
    [91] W. Dai, F. Yang, L. Ma, Y. Fan, B. He, Q. He, et al., Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer, Biomaterials, 35 (2014), 5347-5358.
    [92] G.-K. Feng, R.-B. Liu, M.-Q. Zhang, X.-X. Ye, Q. Zhong, Y.-F. Xia, et al., SPECT and near-infrared fluorescence imaging of breast cancer with a neuropilin-1- targeting peptide., J. Cont. Rel., 192 (2014), 236-242.
    [93] P. Wang, X. H. Zhao, Z. Y. Wang, M. Meng, X. Li, Q. Ning, Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment, Cancer Lett., 298 (2010), 34-49. https://doi.org/10.1016/j.canlet.2010.06.001. doi: 10.1016/j.canlet.2010.06.001
    [94] J. Finlay, C. M. Roberts, G. Lowe, J. Loeza, J. J. Rossi, C. A. Glackin, RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis, Biomed. Res. Int., 2015 (2015), 1-12. https://doi.org/10.1155/2015/382745. doi: 10.1155/2015/382745
    [95] S. Taurin, H. Nehoff, J. Diong, L. Larsen, R. Rosengren, K. Greish, Curcumin-derivative nanomicelles for the treatment of triple negative breast cancer, J. Drug Targ., 21 (2013), 675-683. doi: 10.3109/1061186X.2013.796955
    [96] R. Kutty, S.-S. Feng, Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers, Biomaterials, 34 (2013) 10160-10171.
    [97] M. Muthu, R. Kutty, Z. Luo, J. Xie, S.-S. Feng, Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters, Biomaterials, 39 (2015), 234-248. doi: 10.1016/j.biomaterials.2014.11.008
    [98] Y. Sun, W. Zou, S. Bian, Y. Huang, Y. Tan, J. Liang, et al., Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma, Biomaterials, 34 (2013), 6818-6828.
    [99] M. Setyawati, R. Kutty, C. Tay, X. Yuan, D. T. Leong, Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus, ACS Appl. Mater. Inter., 6 (2014), 21822-21831. doi: 10.1021/am404847d
    [100] X. Li, W. Zhang, L. Liu, Z. Zhu, G. Ouyang, Y. An, In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging, Anal Chem., 86 (2014), 6596-603. doi: 10.1021/ac501205q
    [101] K. Čáňová, L. Rozkydalová, E. Rudolf, Anthelmintic flubendazole and its potential use in anticancer therapy, Acta Med. (Hra. Kral.), 60 (2017), 5-11. https://doi.org/10.14712/18059694.2017.44. doi: 10.14712/18059694.2017.44
    [102] A. E. Guerini, L. Triggiani, M. Maddalo, M.L. Bonù, F. Frassine, A. Baiguini, et al., Mebendazole as a candidate for drug repurposing in oncology: An extensive review of current literature, Cancer (Basel)., 11 (2019), 1-22. https://doi.org/10.3390/cancers11091284.
    [103] J. Nath, R. Paul, S. K. Ghosh, J. Paul, B. Singha, N. Debnath, Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects, Life Sci., 258 (2020), 118189. https://doi.org/10.1016/j.lfs.2020.118189.
    [104] P. Banovic, S. Stankov, N. Vranjes, O. Zurkovic, I. Capo, D. Lalosevic, Drug repurposing: Mebendazole as effective antitumor agent. Are we seeing the whole story?, J. B.U.ON., 23 (2018), 1904-1911.
    [105] A. Correia, D. Silva, A. Correia, M. Vilanova, F. Gärtner, N. Vale, Study of new therapeutic strategies to combat breast cancer using drug combinations, Biomolecules, 8 (2018), 1-23. https://doi.org/10.3390/biom8040175. doi: 10.3390/biom8040175
    [106] M. Gnant, B. Mlineritsch, W. Schippinger, G. Luschin-Ebengreuth, S. Pö stlberger, C. Menzel, et al., Endocrine therapy plus zoledronic acid in premenopausal breast cancer, N. Engl. J. Med., 360 (2009), 679-691. https://doi.org/10.1097/01.ogx.0000349780.90268.9d.
    [107] Q. Ma, Y. Gao, P. Xu, K. Li, X. Xu, J. Gao, et al., Atorvastatin inhibits breast cancer cells by downregulating PTEN/AKT pathway via promoting Ras Homolog Family Member B (RhoB), Biomed Res. Int., 2019 (2019), 1-15. https://doi.org/10.1155/2019/3235021.
    [108] T. Alarcon Martinez, N. D. Zeybek, S. Müftüoğlu, Evaluation of the cytotoxic and autophagic effects of atorvastatin on mcf-7 breast cancer cells, Bal. Med. J., 35 (2018), 256-262. https://doi.org/10.4274/balkanmedj.2017.0604. doi: 10.4274/balkanmedj.2017.0604
    [109] D. Chen, J. Xie, R. Fiskesund, W. Dong, X. Liang, J. Lv, et al., Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype, Nat. Commun., 9 (2018), 1-15. https://doi.org/10.1038/s41467-018-03225-9.
    [110] C. M. Furtado, M. C. Marcondes, M. Sola-Penna, M. L. S. de Souza, P. Zancan, Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis, PLos One, 7 (2012), 1-10. https://doi.org/10.1371/journal.pone.0030462.
    [111] N. C. Yip, I. S. Fombon, P. Liu, S. Brown, V. Kannappan, A. L. Armesilla, et al., Disulfiram modulated ROS-MAPK and NFB pathways and targeted breast cancer cells with cancer stem cell-like properties, Br. J. Cancer, 104 (2011), 1564-1574. https://doi.org/10.1038/bjc.2011.126.
    [112] P. Liu, I. S. Kumar, S. Brown, V. Kannappan, P. E. Tawari, J. Z. Tang, et al., Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells, Br. J. Cancer, 109 (2013), 1876-1885. https://doi.org/10.1038/bjc.2013.534.
    [113] S. Khalilieh, K.L. Yee, R.I. Sanchez, I. Triantafyllou, L. Fan, N. Maklad, et al., Results of a Doravirine-Atorvastatin Drug-Drug Interaction Study, Antimic. Age Chemother., 61 (2017), 1-8.
    [114] Z.J. Hou, X. Luo, W. Zhang, F. Peng, B. Cui, S.J. Wu, et al., Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells, Oncotarget, 6 (2015), 6326-6340. https://doi.org/10.18632/oncotarget.3436.
    [115] H. Tsubamoto, T. Ueda, K. Inoue, K. Sakata, H. Shibahara, T. Sonoda, Repurposing itraconazole as an anticancer agent (Review), Oncol. Lett., 14 (2017), 1240-1246. https://doi.org/10.3892/ol.2017.6325. doi: 10.3892/ol.2017.6325
    [116] S. H. Bae, J. H. Park, H. G. Choi, H. Kim, S. H. Kim, Imidazole antifungal drugs inhibit the cell proliferation and invasion of human breast cancer cells, Biomol. Ther., 26 (2018), 494-502. https://doi.org/10.4062/biomolther.2018.042. doi: 10.4062/biomolther.2018.042
    [117] K. Wang, W. Gao, Q. Dou, H. Chen, Q. Li, E. C. Nice, et al., Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer, Autophagy, 12 (2016), 2498-2499. https://doi.org/10.1080/15548627.2016.1231494.
    [118] Q. Dou, H.N. Chen, K. Wang, K. Yuan, Y. Lei, K. Li, et al., Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt Axis in breast cancer, Cancer Res., 76 (2016), 4457-4469. https://doi.org/10.1158/0008-5472.CAN-15-2887.
    [119] M. Juarez, A. Schcolnik-Cabrera, G. Dominguez-Gomez, A. Chavez-Blanco, J. Diaz-Chavez, A. Duenas-Gonzalez, Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug, Cancer Chemother. Pharmacol., 85 (2020), 1153-1163. https://doi.org/10.1007/s00280-020-04041-z. doi: 10.1007/s00280-020-04041-z
    [120] M. Yu, R. Li, J. Zhang, Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer, Biochem. Biophys. Res. Commun., 471 (2016), 639-645. https://doi.org/10.1016/j.bbrc.2016.02.072. doi: 10.1016/j.bbrc.2016.02.072
    [121] Y. Huang, G. Sun, X. Sun, F. Li, L. Zhao, R. Zhong, et al., The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment, Cancer (Basel)., 12 (2020), 1-25. https://doi.org/10.3390/cancers12113332.
    [122] M. Bodmer, C. Meier, S. Krähenbühl, S. S. Jick, C. R. Meier, Long-term metformin use is associated with decreased risk of breast cancer, Diab. Care., 33 (2010), 1304-1308. https://doi.org/10.2337/dc09-1791. doi: 10.2337/dc09-1791
    [123] G. Talarico, S. Orecchioni, K. Dallaglio, F. Reggiani, P. Mancuso, A. Calleri, et al., Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells, Sci. Rep., 6 (2016), 1-10. https://doi.org/10.1038/srep18673.
    [124] C. J. Currie, C. D. Poole, E. A. M. Gale, The influence of glucose-lowering therapies on cancer risk in type 2 diabetes, Diabetologia, 52 (2009), 1766-1777. https://doi.org/10.1007/s00125-009-1440-6. doi: 10.1007/s00125-009-1440-6
    [125] G. W. D. Landman, N. Kleefstra, K. J. J. Van Hateren, K.H. Groenier, R. O. B. Gans, H. J. G. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: Zodiac-16, Diab. Care., 33 (2010), 322-326. https://doi.org/10.2337/dc09-1380. doi: 10.2337/dc09-1380
    [126] V. N. Anisimov, L. M. Berstein, P. A. Egormin, T. S. Piskunova, I. G. Popovich, M. A. Zabezhinski, et al., Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice, Exp. Gerontol., 40 (2005), 685-693. https://doi.org/10.1016/j.exger.2005.07.007.
    [127] A. R. Vortherms, H. N. Dang, R. P. Doyle, Anticancer conjugates and cocktails based on methotrexate and nucleoside synergism, Clin. Med. Oncol., 2009 (2009), 19-26. https://doi.org/10.4137/cmo.s2113. doi: 10.4137/cmo.s2113
    [128] Y. C. Wang, T. K. Chao, C. C. Chang, Y. Te Yo, M. H. Yu, H. C. Lai, Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells, PLos One, 8 (2013), 1-10. https://doi.org/10.1371/journal.pone.0074538. doi: 10.1371/journal.pone.0074538
    [129] E. D. Wiklund, V. S. Catts, S. V. Catts, T. F. Ng, N.J. Whitaker, A. J. Brown, et al., Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target, Int. J. Cancer, 126 (2010), 28-40. https://doi.org/10.1002/ijc.24813.
    [130] C. K. Osborne, Tamoxifen in the treatment of breast cancer, N. Engl. J. Med., 339 (1998), 1609-1618. http://www.ncbi.nlm.nih.gov/pubmed/11027744.
    [131] R. Brady, H. Enderling, Mathematical models of cancer: When to predict novel therapies, and when not to, Bull. Math. Biol., 81 (2019), 3722-3731. https://doi.org/10.1007/s11538-019-00640-x.
    [132] D. S. Rodrigues, P. F. A. Mancera, T. Carvalho, L. F. Gonçalves, A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia, Appl. Math. Comput., 349 (2019), 118-133. https://doi.org/10.1016/j.amc.2018.12.008. doi: 10.1016/j.amc.2018.12.008
    [133] D. Kirschner, J. C. Panetta, Modeling immunotherapy of the tumor - immune interaction, J. Math. Biol., 37 (1998), 235-252. doi: 10.1007/s002850050127
    [134] M. A. Kuznetsov, I. A. Makalkin, T. And, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. doi: 10.1016/S0092-8240(05)80260-5
    [135] C. DeLisi, A. Rescigno, Immune surveillance and neoplasia - I: A minimal mathematical model, Bull. Math. Biol., 39 (1977), 201-221.
    [136] J. A. Adam, Effects of vascularization on lymphocyte/tumor cell dynamics: Qualitative features., Math. Comput. Model., 23 (1996), 1-10.
    [137] F. K. Nani, M. N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy, IMA J. Math. Appl. Med. Biol., 11 (1994), 107-147. doi: 10.1093/imammb/11.2.107
    [138] S. A. Rosenberg, M. T. Lotze, Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes, Annu. Rev. Immunol., 4 (1986), 681-709. doi: 10.1146/annurev.iy.04.040186.003341
    [139] R. J. DeBoer, P. Hogeweg, H. F. J. Dullens, R. A. DeWeger, D. Willem, Macrophage T Lymphocyte interactions in the anti-tumor immune response: A mathematical model, J. Immunol., 134 (1985), 2748-2758.
    [140] J. C. Arciero, T. L. Jackson, D. E. Kirschner, A mathematical model of tumor-immune evasion and sirna treatment, Discret. Contin. Dyn. Syst. B., 4 (2004), 39-58.
    [141] S. Banerjee, Immunotherapy with Interleukin-2: A study based on mathematical modeling, Int. J. Appl. Math. Comput. Sci., 6 (2008), 389-398. https://doi.org/10.2478/v10006-008-0035-6. doi: 10.2478/v10006-008-0035-6
    [142] J. Malinzi, K. Bosire, S. Padidar, H. Ademola, Prospect for application of mathematical models in combination cancer treatments, Inf. Med. Unlo., 23 (2021), 100534. https://doi.org/10.1016/j.imu.2021.100534.
    [143] K. Fujimori, D. G. Covel, J. E. Fletcher, J. N. Weinstein, Modeling analysis of the global and microscopic distribution of immunoglobulin G, F (ab')2, and fab in tumors, Cancer Res., 49 (1989), 5656-5663.
    [144] W. van Osdol, K. Fujimori, J. N. Weinstein, An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a "binding site barrier, Cancer Res., 51 (1991), 4776-4784.
    [145] J. A. O'Donoghue, G. Sgouros, C. R. Divgi, J. L. Humm, Single-dose versus fractionated radioimmunotherapy: Model comparisons for uniform tumor dosimetry, J. Nucl. Med., 41 (2000), 538-547.
    [146] D. Kumar, S. Kumar, A mathematical model of radioimmunotherapy for tumor treatment., Afr. J. Math. Comput. Sci. Res., 3 (2010) 101-106.
    [147] G. D. Flux, S. Webb, R. J. Ott, S. J. Chittenden, R. Thomas, Three-dimensional dosimetry for intralesional radionuclide therapy using mathematical modeling and multimodality imaging, J. Nucl. Med., 38 (1997), 1059-1066.
    [148] R. Serre, S. Benzekry, L. Padovani, C. Meille, N. André, J. Ciccolini, et al., Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy, Cancer Res., 76 (2016), 4931-4940.
    [149] A. Friedman, X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLos One, 13 (2018), e0192449.
    [150] K. J. Mahasa, A. Eladdadi, P. de Pillis, R. Ouifki, Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. a mathematical modelling approach, PLos One, 12 (2017), e0184347.
    [151] Y. Tao, Q. Guo, A free boundary problem modelling cancer radiovirotherapy, Math. Model. Meth. Appl. Sci., 17 (2007), 1241-1259. doi: 10.1142/S0218202507002261
    [152] L. H. Abbott, F. Michor, Mathematical models of targeted cancer therapy, Br. J. Cancer, 95 (2006), 1136-1141 doi: 10.1038/sj.bjc.6603310
    [153] X. Sun, J. Bao, Y. Shao, Mathematical modeling of therapy-induced cancer drug resistance: Connecting cancer mechanisms to population survival rates, Sci. Rep., 6 (2016), 22498.
    [154] M. R. Owen, I. J. Stamper, M. Muthana, G.W. Richardson, J. Dobson, C. E. Lewis, H. M. Byrne, Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy, Cancer Res., 71 (2011), 2826-2837.
    [155] A. M. Jarrett, A. Shah, M. J. Bloom, M. T. Mckenna, D. A. H. Ii, T. E. Yankeelov, et al., Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer, Sci. Rep., (2019), 1-12. https://doi.org/10.1038/s41598-019-49073-5.
    [156] M. Chappel, V. Chelliah, M. Cherkaoui, G. Derks, T. Dumortier, N. Evans, et al., Mathematical modelling for combinations of immuno-oncology and anti-cancer therapies, Quant. Syst. Pharmacol., (2015).
    [157] L. Deng., H. Liang, B. Burnette, M. Beckett, T. Darga, R. Weichselbaum, et al., Irradiation and anti-pd-l1 treatment synergis- tically promote antitumor immunity in mice, J. Clin. Invest., 2 (2014), 687-695.
    [158] J. Malinzi, A. Eladdadi, P. Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, J. Biol Dynam., 11 (2017), 244-274. doi: 10.1080/17513758.2017.1328079
    [159] J. Malinzi, R. Ouifki, A. Eladdadi, D. Torres, K. White, Enhancement of chemotherapy using oncolytic virotherapy: mathematical and optimal control analysis, Math. Biosci. Eng., 15 (2018), 1435.
    [160] J. Malinzi, Mathematical analysis of a mathematical model of chemovirotherapy: Effect of drug infusion method, Comput. Math. Meth. Med., 2019 (2019).
    [161] J. H. Goldie, A. J. Coldman, V. Ng, H. A. Hopkins, W. B. Looney, A mathematical and computer-based model of alternating chemotherapy and radiation therapy in experimental neoplasms 1, Treat. Mod. Lung Cancer, 41 (1988), 11-20.
    [162] D. R. Beil, L. M. Wein, Sequencing surgery, radiotherapy and chemotherapy: Insights from a mathematical analysis, Breast Cancer Res. Treat., 74 (2002), 279-286.
    [163] A. Ergun, K. Camphausen, L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. Math. Biol., 65 (2003), 407-424. doi: 10.1016/S0092-8240(03)00006-5
    [164] A. Ghaffari, B. Bahmaie, M. Nazari, A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis, Math. Meth. Appl. Sci., 39 (2016), 4603-4617. doi: 10.1002/mma.3887
    [165] J. Tang, L. Karhinen, T. Xu, A. Szwajda, B. Yadav, K. Wennerberg, Target inhibition network: Predicting selective combinations of druggable targets to block cancer survival pathways, PLos Comput. Biol., 9 (2013), 1-16. https://doi.org/10.1371/journal.pcbi.1003226. doi: 10.1371/journal.pcbi.1003226
    [166] J. Tang, P. Gautam, A. Gupta, L. He, S. Timonen, Y. Akimov, et al., Network pharmacology modeling identifies synergistic aurora b and zak interaction in triple-negative breast cancer., NPJ Syst. Biol. Appl., 5 (2019), 1-10.
    [167] P. Dogra, J.D. Butner, Y. Chuang, S. Caserta, S. Goel, C.J. Brinker, et al., Mathematical modeling in cancer nanomedicine: A review, Biomed. Microd., 21 (2019), 1-23.
    [168] M. Dell'Orco, C. Lundqvist, T. Oslakovic, S. Cedervall, Linse, Modeling the time evolution of the nanoparticle-protein corona in a body fluid, PLos One, 5 (2010), e10949. https://doi.org/10.1371/journal.pone.0010949.
    [169] F. D. Sahneh, C. Scoglio, J. Riviere, Dynamics of nanoparticle-protein corona complex formation: Analytical results from population balance equations, PLos One, 8 (2013), e64690. https://doi.org/10.1371/journal.pone.0064690.
    [170] V.P. Zhdanov, N.-J. Cho, Kinetics of the formation of a protein corona around nanoparticles, Math. Biosci., 282 (2016), 82-90. https://doi.org/10.1016/j.mbs.2016.09.018. doi: 10.1016/j.mbs.2016.09.018
    [171] S. Angioletti-Uberti, M. Ballauff, J. Dzubiella, Dynamic density functional theory of protein adsorption on polymer-coated nanoparticles., Soft Matter., 10 (2014), 7932-7945. doi: 10.1039/C4SM01170H
    [172] P. Decuzzi, F. Causa, M. Ferrari, P.A. Netti, The effective dispersion of nanovectors within the tumor microvasculature, Ann. Biomed., 34 (2006), 633-641. doi: 10.1007/s10439-005-9072-6. doi: 10.1007/s10439-005-9072-6
    [173] K. M. Tsoi, M. S. A., X.-Z. Ma, V. N. Spetzler, J. Echeverri, B. Ouyang, S. M. Fadel, et al., Mechanism of Hard-Nanomaterial Clearance by the liver, Nat. Mater., 15 (2016), 1212-1221.
    [174] P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari, A theoretical model for the margination of particles within blood vessels, Ann. Biomed. Eng., 33 (2005), 179-190. DOI: 10.1007/s10439-005-8976-5. doi: 10.1007/s10439-005-8976-5
    [175] T.-R. Lee, M. Choi, A. M. Kopacz, S.-H. Yun, W. K. Liu, P. Decuzzi, On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better, Sci. Rep., 3 (2013), 1-8. DOI: 10.1038/srep02079. doi: 10.1038/srep02079
    [176] E. P. Furlani, K. C. Ng, Analytical model of magnetic nanoparticle transport and capture in the microvasculature, Phys. Rev., 73, (2006), 1-10. DOI: 10.1103/PhysRevE.73.061919.
    [177] J. Tan, S. Shah, T. Antony, Ou-Yang, H. Daniel, Y. Liu, The influence of size, shape and vessel geometry on nanoparticle distribution, Microfl. Nanofl., 14 (2013), 77-87. https://doi:10.1007/s10404-012-1024-5.
    [178] E. A. Sykes, J. Chen, G. Zheng, W. C. W. Chan, Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency, ACS Nano., 8 (2014), 5696-5706. https://doi.org/10.1021/nn500299p. doi: 10.1021/nn500299p
    [179] M. M. Schmidt, K. D. Wittrup, A modeling analysis of the effects of molecular size and binding affinity on tumor targeting, Mol. Cancer Ther., 8 (2009), 2861-2871. https://doi:10.1158/1535-7163.MCT-09-0195. doi: 10.1158/1535-7163.MCT-09-0195
    [180] G. Jin, S. T. C. Wong, Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines, Drug Discov. Tod., 19 (2014), 637-644. https://doi.org/10.1016/j.drudis.2013.11.005. doi: 10.1016/j.drudis.2013.11.005
    [181] M. Ávalos-Moreno, A. López-Tejada, J. L. Blaya-Cánovas, F. E. Cara-Lupiañez, A. González-González, J. A. Lorente, et al., Drug repurposing for triple-negative breast cancer, J. Pers. Med., 10 (2020), 1-34. https://doi.org/10.3390/jpm10040200.
    [182] J. Chan, X. Wang, J. A. Turner, N. E. Baldwin, J. Gu, Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing, Bioinformatics, 35 (2019), 2818-2826. https://doi.org/10.1093/bioinformatics/btz006.
    [183] E. W. Su, T. M. Sanger, Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov, Peer J., 2017 (2017), 1-9. https://doi.org/10.7717/peerj.3154. doi: 10.7717/peerj.3154
    [184] Q. Vanhaelen, P. Mamoshina, A. M. Aliper, A. Artemov, K. Lezhnina, I. Ozerov, et al., Design of efficient computational workflows for in silico drug repurposing, Drug Discov. Tod., 22 (2017), 210-222. https://doi.org/10.1016/j.drudis.2016.09.019.
    [185] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, et al., The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease, Science, 313 (2006), 1929-1935. https://doi.org/10.1126/science.1132939.
    [186] T. Zhou, Z. Kuscsik, J. G. Liu, M. Medo, J. R. Wakeling, Y. C. Zhang, Solving the apparent diversity-accuracy dilemma of recommender systems, Proc. Natl. Acad. Sci. U. S. A., 107 (2010), 4511-4515. https://doi.org/10.1073/pnas.1000488107. doi: 10.1073/pnas.1000488107
    [187] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, et al., Prediction of drug-target interactions and drug repositioning via network-based inference, PLos Comput. Biol., 8 (2012), 1-12. https://doi.org/10.1371/journal.pcbi.1002503.
    [188] N. M. Glick, J. W. Davies, J. L. Jenkins, Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases, J. Chem. Inf. Mod., 46 (2006), 1124-1133. https://doi.org/10.1021/ci060003g. doi: 10.1021/ci060003g
    [189] G. H. Fernald, R. B. Altman, Using molecular features of xenobiotics to predict hepatic gene expression response, J. Chem. Inf. Mod., 53 (2013), 2765-2773. https://doi.org/10.1021/ci3005868. doi: 10.1021/ci3005868
    [190] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, Bioinformatics, 24 (2008), 232-240. https://doi.org/10.1093/bioinformatics/btn162. doi: 10.1093/bioinformatics/btn162
    [191] W. Dai, X. Liu, Y. Gao, L. Chen, J. Song, D. Chen, et al., Matrix factorization-based prediction of novel drug indications by integrating genomic space, Comput. Math. Meth. Med., 2015 (2015), 1-10. https://doi.org/10.1155/2015/275045.
    [192] J. P. Mei, C. K. Kwoh, P. Yang, X. L. Li, J. Zheng, Drug-target interaction prediction by learning from local information and neighbors, Bioinformatics, 29 (2013), 238-245. https://doi.org/10.1093/bioinformatics/bts670. doi: 10.1093/bioinformatics/bts670
    [193] T. van Laarhoven, S.B. Nabuurs, E. Marchiori, Gaussian interaction profile kernels for predicting drug-target interaction, Bioinformatics, 27 (2011), 3036-3043. https://doi.org/10.1093/bioinformatics/btr500. doi: 10.1093/bioinformatics/btr500
    [194] S. I. Oke, M. B. Matadi, S. S. Xulu, Optimal control analysis of a mathematical model for breast cancer, Math. Comput. Appl., 23 (2018), 1-28. https://doi.org/10.3390/mca23020021. doi: 10.3390/mca23020021
    [195] L. G. DE Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Mod., 7177 (2003), 1221-1244. PⅡ: SO895-7177(03)00133-X
    [196] F. A. Rihan, N. F. Rihan, Cancer science & therapy dynamics of cancer-immune system with external treatment and optimal control, J. Cancer Sci Ther., 8 (2016), 257-261. https://doi.org/10.4172/1948-5956.1000423. doi: 10.4172/1948-5956.1000423
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4997) PDF downloads(390) Cited by(4)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog