Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results of gene enrichment analysis confirmed the good prediction performance for enriched signatures in cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators.
Citation: Jihong Yang, Hao Xu, Congshu Li, Zhenhao Li, Zhe Hu. An explorative study for leveraging transcriptomic data of embryonic stem cells in mining cancer stemness genes, regulators, and networks[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13949-13966. doi: 10.3934/mbe.2022650
Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results of gene enrichment analysis confirmed the good prediction performance for enriched signatures in cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators.
[1] | Y. M. Tsui, L. K. Chan, I. O. Ng, Cancer stemness in hepatocellular carcinoma: Mechanisms and translational potential, Br. J. Cancer, 122 (2020), 1428–1440. https://doi.org/10.1038/s41416-020-0823-9 doi: 10.1038/s41416-020-0823-9 |
[2] | P. M. Aponte, A. Caicedo, Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment, Stem Cells Int., 2017 (2017), 5619472. https://doi.org/10.1155/2017/5619472 doi: 10.1155/2017/5619472 |
[3] | A. Z. Ayob, T. S. Ramasamy, Cancer stem cells as key drivers of tumour progression, J. Biomed. Sci., 25 (2018), 20. https://doi.org/10.1186/s12929-018-0426-4 doi: 10.1186/s12929-018-0426-4 |
[4] | T. Huang, X. Song, D. Xu, D. Tiek, A. Goenka, B. Wu, et al., Stem cell programs in cancer initiation, progression, and therapy resistance, Theranostics, 10 (2020), 8721–8743. https://doi.org/10.7150/thno.41648 doi: 10.7150/thno.41648 |
[5] | I. Ben-Porath, M. W. Thomson, V. J. Carey, R. Ge, G. W. Bell, A. Regev, et al., An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors, Nat. Genet., 40 (2008), 499–507. https://doi.org/10.1038/ng.127 doi: 10.1038/ng.127 |
[6] | H. Okuda, F. Xing, P. R. Pandey, S. Sharma, M. Watabe, S. K. Pai, et al., miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4, Cancer Res., 73 (2013), 1434–1444. https://doi.org/10.1158/0008-5472.CAN-12-2037 doi: 10.1158/0008-5472.CAN-12-2037 |
[7] | J. F. Ning, M. Stanciu, M. R. Humphrey, J. Gorham, H. Wakimoto, R. Nishihara, et al., Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma, Nat. Commun., 10 (2019), 2910. https://doi.org/10.1038/s41467-019-10993-5 doi: 10.1038/s41467-019-10993-5 |
[8] | Y. Li, H. A. Rogoff, S. Keates, Y. Gao, S. Murikipudi, K. Mikule, et al., Suppression of cancer relapse and metastasis by inhibiting cancer stemness, Proc. Natl. Acad. Sci. U. S. A., 112 (2015), 1839–1844. https://doi.org/10.1073/pnas.1424171112 doi: 10.1073/pnas.1424171112 |
[9] | C. Saygin, D. Matei, R. Majeti, O. Reizes, J. D. Lathia, Targeting cancer stemness in the clinic: From hype to hope, Cell Stem Cell, 24 (2019), 25–40. https://doi.org/10.1016/j.stem.2018.11.017 doi: 10.1016/j.stem.2018.11.017 |
[10] | A. Kreso, P. van Galen, N. M. Pedley, E. Lima-Fernandes, C. Frelin, T. Davis, et al., Self-renewal as a therapeutic target in human colorectal cancer, Nat. Med., 20 (2014), 29–36. https://doi.org/10.1038/nm.3418 doi: 10.1038/nm.3418 |
[11] | S. Prasad, S. Ramachandran, N. Gupta, I. Kaushik, S. K. Srivastava, Cancer cells stemness: A doorstep to targeted therapy, Biochim. Biophys. Acta Mol. Basis Dis., 1866 (2020), 165424. https://doi.org/10.1016/j.bbadis.2019.02.019 doi: 10.1016/j.bbadis.2019.02.019 |
[12] | L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, et al., Targeting cancer stem cell pathways for cancer therapy, Signal Transduct. Target. Ther., 5 (2020), 8. https://doi.org/10.1038/s41392-020-0110-5 doi: 10.1038/s41392-020-0110-5 |
[13] | M. Castellan, A. Guarnieri, A. Fujimura, F. Zanconato, G. Battilana, T. Panciera, et al., Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in Glioblastoma, Nat. Cancer, 2 (2021), 174–188. https://doi.org/10.1038/s43018-020-00150-z doi: 10.1038/s43018-020-00150-z |
[14] | K. Murakami, Y. Terakado, K. Saito, Y. Jomen, H. Takeda, M. Oshima, et al., A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells, Proc. Natl. Acad. Sci. U. S. A., 118 (2021), e2016806118. https://doi.org/10.1073/pnas.2016806118 doi: 10.1073/pnas.2016806118 |
[15] | T. M. Malta, A. Sokolov, A. J. Gentles, T. Burzykowski, L. Poisson, J. N. Weinstein, et al., Machine learning identifies stemness features associated with oncogenic dedifferentiation, Cell, 173 (2018), 338–354. https://doi.org/10.1016/j.cell.2018.03.034 doi: 10.1016/j.cell.2018.03.034 |
[16] | K. Borziak, J. Finkelstein, Identification of liver cancer stem cell stemness markers using a comparative analysis of public data sets, Stem Cells Cloning, 14 (2021), 9–17. https://doi.org/10.2147/SCCAA.S307043 doi: 10.2147/SCCAA.S307043 |
[17] | C. Huang, C. G. Hu, Z. K. Ning, J. Huang, Z. M. Zhu, Identification of key genes controlling cancer stem cell characteristics in gastric cancer, World J. Gastrointest. Surg., 12 (2020), 442–459. https://doi.org/10.4240/wjgs.v12.i11.442 doi: 10.4240/wjgs.v12.i11.442 |
[18] | H. D. Suo, Z. Tao, L. Zhang, Z. N. Jin, X. Y. Li, W. Ma, et al., Coexpression network analysis of genes related to the characteristics of tumor stemness in triple-negative breast cancer, Biomed. Res. Int., 2020 (2020), 7575862. https://doi.org/10.1155/2020/7575862 doi: 10.1155/2020/7575862 |
[19] | Z. Wang, D. Wu, Y. Xia, B. Yang, T. Xu, Identification of hub genes and compounds controlling ovarian cancer stem cell characteristics via stemness indices analysis, Ann. Transl. Med., 9 (2021), 379. https://doi.org/10.21037/atm-20-3621 doi: 10.21037/atm-20-3621 |
[20] | M. Baker, Cancer and embryonic stem cells share genetic fingerprints, Nat. Rep. Stem Cells, 2008 (2008), 1. https://doi.org/10.1038/stemcells.2008.62 doi: 10.1038/stemcells.2008.62 |
[21] | O. Dreesen, A. H. Brivanlou, Signaling pathways in cancer and embryonic stem cells, Stem Cell Rev., 3 (2007), 7–17. https://doi.org/10.1007/s12015-007-0004-8 doi: 10.1007/s12015-007-0004-8 |
[22] | H. Lu, Y. Xie, L. Tran, J. Lan, Y. Yang, N. L. Murugan, et al., Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness, J. Clin. Invest., 130 (2020), 4607–4623. https://doi.org/10.1172/JCI138577 doi: 10.1172/JCI138577 |
[23] | K. Ganguly, S. R. Krishn, S. Rachagani, R. Jahan, A. Shah, P. Nallasamy, et al., Secretory mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness, Cancer Res., 81 (2021), 91–102. https://doi.org/10.1158/0008-5472.CAN-20-1293 doi: 10.1158/0008-5472.CAN-20-1293 |
[24] | M. A. Mamun, K. Mannoor, J. Cao, F. Qadri, X. Song, SOX2 in cancer stemness: Tumor malignancy and therapeutic potentials, J. Mol. Cell Biol., 12 (2020), 85–98. https://doi.org/10.1093/jmcb/mjy080 doi: 10.1093/jmcb/mjy080 |
[25] | Y. Liu, C. Zhu, L. Tang, Q. Chen, N. Guan, K. Xu, et al., MYC dysfunction modulates stemness and tumorigenesis in breast cancer, Int. J. Biol. Sci., 17 (2021), 178–187. https://doi.org/10.7150/ijbs.51458 doi: 10.7150/ijbs.51458 |
[26] | J. Zhang, L. A. Espinoza, R. J. Kinders, S. M. Lawrence, T. D. Pfister, M. Zhou, et al., NANOG modulates stemness in human colorectal cancer, Oncogene, 32 (2013), 4397–4405. https://doi.org/10.1038/onc.2012.461 doi: 10.1038/onc.2012.461 |
[27] | A. Lackner, R. Sehlke, M. Garmhausen, G. Stirparo, M. Huth, F. Titz-Teixeira, et al., Cooperative genetic networks drive embryonic stem cell transition from naive to formative pluripotency, EMBO J., 40 (2021), e105776. https://doi.org/10.15252/embj.2020105776 doi: 10.15252/embj.2020105776 |
[28] | M. D. Robinson, A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 11 (2010), R25. https://doi.org/10.1186/gb-2010-11-3-r25 doi: 10.1186/gb-2010-11-3-r25 |
[29] | M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26 (2010), 139–140. https://doi.org/10.1093/bioinformatics/btp616 doi: 10.1093/bioinformatics/btp616 |
[30] | A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 15545–15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102 |
[31] | C. Yan, N. Saleh, J. Yang, C. A. Nebhan, A. E. Vilgelm, E. P. Reddy, et al., Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade, Mol. Cancer, 20 (2021), 85. https://doi.org/10.1186/s12943-021-01366-y doi: 10.1186/s12943-021-01366-y |
[32] | A. Mathison, A. Salmonson, M. Missfeldt, J. Bintz, M. Williams, S. Kossak, et al., Combined AURKA and H3K9 methyltransferase targeting inhibits cell growth by inducing mitotic catastrophe, Mol. Cancer Res., 15 (2017), 984–997. https://doi.org/10.1158/1541-7786.MCR-17-0063 doi: 10.1158/1541-7786.MCR-17-0063 |
[33] | N. J. Raynal, E. M. Da Costa, J. T. Lee, V. Gharibyan, S. Ahmed, H. Zhang, et al., Repositioning FDA-approved drugs in combination with epigenetic drugs to reprogram colon cancer epigenome, Mol. Cancer Ther., 16 (2017), 397–407. https://doi.org/10.1158/1535-7163.MCT-16-0588 doi: 10.1158/1535-7163.MCT-16-0588 |
[34] | Q. Duan, C. Flynn, M. Niepel, M. Hafner, J. L. Muhlich, N. F. Fernandez, et al., LINCS Canvas Browser: Interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures, Nucleic Acids Res., 42 (2014), W449–W460. https://doi.org/10.1093/nar/gku476 doi: 10.1093/nar/gku476 |
[35] | A. D. Rouillard, G. W. Gundersen, N. F. Fernandez, Z. Wang, C. D. Monteiro, M. G. McDermott, et al., The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins, Database, 2016 (2016), 1–16. https://doi.org/10.1093/database/baw100 doi: 10.1093/database/baw100 |
[36] | A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo, J. P. Mesirov, Molecular signatures database (MSigDB) 3.0, Bioinformatics, 27 (2011), 1739–1740. https://doi.org/10.1093/bioinformatics/btr260 doi: 10.1093/bioinformatics/btr260 |
[37] | J. Jia, F. Zhu, X. Ma, Z. Cao, Z. W. Cao, Y. Li, et al., Mechanisms of drug combinations: Interaction and network perspectives, Nat. Rev. Drug Discov., 8 (2009), 111–128. https://doi.org/10.1038/nrd2683 doi: 10.1038/nrd2683 |
[38] | Z. Xie, A. Bailey, M. V. Kuleshov, D. J. B. Clarke, J. E. Evangelista, S. L. Jenkins, et al., Gene set knowledge discovery with enrichr, Curr. Protoc., 1 (2021), e90. https://doi.org/10.1002/cpz1.90 doi: 10.1002/cpz1.90 |
[39] | E. S. Demitrack, L. C. Samuelson, Notch regulation of gastrointestinal stem cells, J. Physiol., 594 (2016), 4791–4803. https://doi.org/10.1113/JP271667 doi: 10.1113/JP271667 |
[40] | S. Boumahdi, G. Driessens, G. Lapouge, S. Rorive, D. Nassar, M. Le Mercier, et al., SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma, Nature, 511 (2014), 246–250. https://doi.org/10.1038/nature13305 doi: 10.1038/nature13305 |
[41] | K. Rycaj, D. G. Tang, Cell-of-Origin of cancer versus cancer stem cells: Assays and interpretations, Cancer Res., 75 (2015), 4003–4011. https://doi.org/10.1158/0008-5472.CAN-15-0798 doi: 10.1158/0008-5472.CAN-15-0798 |
[42] | F. Papaccio, F. Paino, T. Regad, G. Papaccio, V. Desiderio, V. Tirino, Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development, Stem Cells Transl. Med., 6 (2017), 2115–2125. https://doi.org/10.1002/sctm.17-0138 doi: 10.1002/sctm.17-0138 |
[43] | S. Floor, W. C. van Staveren, D. Larsimont, J. E. Dumont, C. Maenhaut, Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: Distinct, overlapping or same populations, Oncogene, 30 (2011), 4609–4621. https://doi.org/10.1038/onc.2011.184 doi: 10.1038/onc.2011.184 |
[44] | H. Y. Lee, X. Gao, M. I. Barrasa, H. Li, R. R. Elmes, L. L. Peters, et al., PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal, Nature, 522 (2015), 474–477. https://doi.org/10.1038/nature14326 doi: 10.1038/nature14326 |
[45] | K. N. Grise, N. X. Bautista, K. Jacques, B. L. K. Coles, D. van der Kooy, Glucocorticoid agonists enhance retinal stem cell self-renewal and proliferation, Stem Cell Res. Ther., 12 (2021), 83. https://doi.org/10.1186/s13287-021-02136-9 doi: 10.1186/s13287-021-02136-9 |
[46] | H. Karvonen, M. Arjama, L. Kaleva, W. Niininen, H. Barker, R. Koivisto-Korander, et al., Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness, Cell Death Dis., 11 (2020), 790. https://doi.org/10.1038/s41419-020-03009-4 doi: 10.1038/s41419-020-03009-4 |
[47] | P. Agrawal, J. Reynolds, S. Chew, D. A. Lamba, R. E. Hughes, DEPTOR is a stemness factor that regulates pluripotency of embryonic stem cells, J. Biol. Chem., 289 (2014), 31818–31826. https://doi.org/10.1074/jbc.M114.565838 doi: 10.1074/jbc.M114.565838 |
[48] | S. Wang, P. Xia, B. Ye, G. Huang, J. Liu, Z. Fan, Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency, Cell Stem Cell, 13 (2013), 617–625. https://doi.org/10.1016/j.stem.2013.10.005 doi: 10.1016/j.stem.2013.10.005 |
[49] | L. Mousazadeh, E. Alizadeh, N. Zarghami, S. Hashemzadeh, S. F. Aval, L. Hasanifard, et al., Histone deacetylase inhibitor (Trapoxin A) enhances stemness properties in adipose tissue derived mesenchymal stem cells, Drug Res., 68 (2018), 450–456. https://doi.org/10.1055/s-0044-102007 doi: 10.1055/s-0044-102007 |
[50] | T. Zhan, G. Ambrosi, A. M. Wandmacher, B. Rauscher, J. Betge, N. Rindtorff, et al., MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer, Nat. Commun., 10 (2019), 2197.https://doi.org/10.1038/s41467-019-09898-0 doi: 10.1038/s41467-019-09898-0 |
[51] | A. Robles-Perez, J. Dorca, I. Castellvi, J. M. Nolla, M. Molina-Molina, J. Narvaez, Rituximab effect in severe progressive connective tissue disease-related lung disease: Preliminary data, Rheumatol. Int., 40 (2020), 719–726. https://doi.org/10.1007/s00296-020-04545-0 doi: 10.1007/s00296-020-04545-0 |
[52] | Y. Murakami, K. Sonoda, H. Abe, K. Watari, D. Kusakabe, K. Azuma, et al., The activation of SRC family kinases and focal adhesion kinase with the loss of the amplified, mutated EGFR gene contributes to the resistance to afatinib, erlotinib and osimertinib in human lung cancer cells, Oncotarget, 8 (2017), 70736–70751. https://doi.org/10.18632/oncotarget.19982 doi: 10.18632/oncotarget.19982 |
[53] | M. R. Girotti, M. Pedersen, B. Sanchez-Laorden, A. Viros, S. Turajlic, D. Niculescu-Duvaz, et al., Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma, Cancer Discov., 3 (2013), 158–167. https://doi.org/10.1158/2159-8290.CD-12-0386 doi: 10.1158/2159-8290.CD-12-0386 |
[54] | D. Szklarczyk, A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, et al., The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res., 49 (2021), D605–D612. https://doi.org/10.1093/nar/gkaa1074 doi: 10.1093/nar/gkaa1074 |
[55] | J. Verigos, D. Kordias, S. Papadaki, A. Magklara, Transcriptional profiling of tumorspheres reveals trpm4 as a novel stemness regulator in breast cancer, Biomedicines, 9 (2021), 1368. https://doi.org/10.3390/biomedicines9101368 doi: 10.3390/biomedicines9101368 |
[56] | P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498–2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303 |
[57] | P. Huang, A. Chen, W. He, Z. Li, G. Zhang, Z. Liu, et al., BMP-2 induces EMT and breast cancer stemness through Rb and CD44, Cell Death Discov., 3 (2017), 17039. https://doi.org/10.1038/cddiscovery.2017.39 doi: 10.1038/cddiscovery.2017.39 |
[58] | Y. Liang, J. Hu, J. Li, Y. Liu, J. Yu, X. Zhuang, et al., Epigenetic activation of TWIST1 by MTDH promotes cancer stem-like cell traits in breast cancer, Cancer Res., 75 (2015), 3672–3680. https://doi.org/10.1158/0008-5472.CAN-15-0930 doi: 10.1158/0008-5472.CAN-15-0930 |
[59] | J. M. Yu, W. Sun, Z. H. Wang, X. Liang, F. Hua, K. Li, et al., TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription, Nat. Commun., 10 (2019), 5720. https://doi.org/10.1038/s41467-019-13700-6 doi: 10.1038/s41467-019-13700-6 |
[60] | P. R. Dandawate, D. Subramaniam, R. A. Jensen, S. Anant, Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy, Semin. Cancer Biol., 40–41 (2016), 192–208. https://doi.org/10.1016/j.semcancer.2016.09.001 doi: 10.1016/j.semcancer.2016.09.001 |
[61] | J. A. Clara, C. Monge, Y. Yang, N. Takebe, Targeting signalling pathways and the immune microenvironment of cancer stem cells—a clinical update, Nat. Rev. Clin. Oncol., 17 (2020), 204–232. https://doi.org/10.1038/s41571-019-0293-2 doi: 10.1038/s41571-019-0293-2 |
[62] | H. Liu, W. Zhang, Y. Song, L. Deng, S. Zhou, HNet-DNN: Inferring new drug-disease associations with deep neural network based on heterogeneous network features, J. Chem. Inf. Model., 60 (2020), 2367–2376. https://doi.org/10.1021/acs.jcim.9b01008 doi: 10.1021/acs.jcim.9b01008 |
[63] | P. Ding, C. Shen, Z. Lai, C. Liang, G. Li, J. Luo, Incorporating multisource knowledge to predict drug synergy based on graph co-regularization, J. Chem. Inf. Model., 60 (2020), 37–46. https://doi.org/10.1021/acs.jcim.9b00793 doi: 10.1021/acs.jcim.9b00793 |
[64] | H. Iwata, R. Sawada, S. Mizutani, M. Kotera, Y. Yamanishi, Large-scale prediction of beneficial drug combinations using drug efficacy and target profiles, J. Chem. Inf. Model., 55 (2015), 2705–2716. https://doi.org/10.1021/acs.jcim.5b00444 doi: 10.1021/acs.jcim.5b00444 |
[65] | F. Cheng, I. A. Kovacs, A. L. Barabasi, Network-based prediction of drug combinations, Nat. Commun., 10 (2019), 1197. https://doi.org/10.1038/s41467-019-09186-x doi: 10.1038/s41467-019-09186-x |
[66] | J. Yang, Z. Li, X. Fan, Y. Cheng, Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization, J. Chem. Inf. Model., 54 (2014), 2562–2569. https://doi.org/10.1021/ci500340n doi: 10.1021/ci500340n |
[67] | M. Ester, H. P. Kriegel, J. Sander, X. Xu, Density-based spatial clustering of applications with noise, in Int. Conf. Knowledge Discovery and Data Mining, 1996. |
[68] | X. He, D. Cai, Y. Shao, H. Bao, J. Han, Laplacian regularized gaussian mixture model for data clustering, IEEE Trans. Knowl. Data Eng., 23 (2010), 1406–1418. https://doi.org/10.1109/TKDE.2010.259 doi: 10.1109/TKDE.2010.259 |
[69] | T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, ACM Sigmod Rec., 25 (1996), 103–114. doi: 10.1145/235968.233324 |
[70] | S. Yue, P. Li, P. Hao, SVM classification: Its contents and challenges, Appl. Math. A J. Chin. Univ., 18 (2003), 332–342. doi: 10.1007/s11766-003-0059-5 |
[71] | C. Kwak, A. Clayton-Matthews, Multinomial logistic regression, Nurs. Res., 51 (2002), 404–410. doi: 10.1097/00006199-200211000-00009 |
mbe-19-12-650-supplementary.xlsx |