Research article

A vertically transmitted epidemic model with two state-dependent pulse controls


  • Received: 01 August 2022 Revised: 09 September 2022 Accepted: 15 September 2022 Published: 22 September 2022
  • Vertical transmission refers to the process in which a mother transmits bacteria or viruses to her offspring through childbirth, and this phenomenon takes place commonly in nature. This paper formulates an SIR epidemic model where the impact of vertical transmission and two state-dependent pulse controls are both taken into consideration. Using the $ Poincar\acute{e}\; map $, an analogue of $ Poincar\acute{e} $ criterion and the method of related qualitative analysis, the existence and the stability of a positive order-1 or order-2 periodic solution for the epidemic model are proved. Furthermore, phase diagrams are demonstrated by means of numerical simulations, illustrating the feasibility and correctness of our main results. It can be further implied that the epidemic can be controlled to a certain extent, with vertical transmission reduced and timely state-dependent pulse controls carried out.

    Citation: Xunyang Wang, Canyun Huang, Yuanjie Liu. A vertically transmitted epidemic model with two state-dependent pulse controls[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13967-13987. doi: 10.3934/mbe.2022651

    Related Papers:

  • Vertical transmission refers to the process in which a mother transmits bacteria or viruses to her offspring through childbirth, and this phenomenon takes place commonly in nature. This paper formulates an SIR epidemic model where the impact of vertical transmission and two state-dependent pulse controls are both taken into consideration. Using the $ Poincar\acute{e}\; map $, an analogue of $ Poincar\acute{e} $ criterion and the method of related qualitative analysis, the existence and the stability of a positive order-1 or order-2 periodic solution for the epidemic model are proved. Furthermore, phase diagrams are demonstrated by means of numerical simulations, illustrating the feasibility and correctness of our main results. It can be further implied that the epidemic can be controlled to a certain extent, with vertical transmission reduced and timely state-dependent pulse controls carried out.



    加载中


    [1] B. Shulgin, L. Stone, Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998), 1123–1148. https://doi.org/10.1016/S0092-8240(98)90005-2 doi: 10.1016/S0092-8240(98)90005-2
    [2] M. Y. Li, H. L. Smith, L. C. Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58–69. https://doi.org/10.1016/j.chaos.2007.08.035 doi: 10.1016/j.chaos.2007.08.035
    [3] B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious disease, J. Biol. Syst., 19 (2011), 263–279. https://doi.org/10.1142/S0218339011003853 doi: 10.1142/S0218339011003853
    [4] S. N. Busenberg, K. L. Cooke, M. A. Pozio, Analysis of a model of a vertically transmitted disease, J. Math. Biol., 17 (1983), 305–329. https://doi.org/10.1007/BF00276519 doi: 10.1007/BF00276519
    [5] L. X. Qi, J. A. Cui, The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay, Appl. Math. Comput., 221 (2013), 360–366. https://doi.org/10.1016/j.amc.2013.06.023 doi: 10.1016/j.amc.2013.06.023
    [6] X. Z. Meng, J. J. Jiao, L. S. Chen, Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination, Chaos Solitons Fractals, 40 (2009), 2114–2125. https://doi.org/10.1016/j.chaos.2007.09.096 doi: 10.1016/j.chaos.2007.09.096
    [7] S. N. Busenberg, K. L. Cooke, The population dynamics of two vertically transmitted infections, Theor. Popul. Biol., 33 (1988), 181–198. https://doi.org/10.1016/0040-5809(88)90012-3 doi: 10.1016/0040-5809(88)90012-3
    [8] S. N. Busenberg, K. L. Cooke, Vertically transmitted diseases: Models and dynamics, Biomathematics, Springer, Berlin, Germany, 1993.
    [9] X. Zhang, M. Liu, Dynamical analysis of a stochastic delayed SIR epidemic model with vertical transmission and vaccination, Adv. Cont. Discr. Mod., 2022 (2022), 1–18. https://doi.org/10.1186/s13662-022-03707-7 doi: 10.1186/s13662-022-03707-7
    [10] A. Abidemi, K. M. Owolabi, E. Pindza, Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission, Phys. A, 597 (2022), 127259. https://doi.org/10.1016/j.physa.2022.127259 doi: 10.1016/j.physa.2022.127259
    [11] Z. H. Lu, X. B. Chi, L. S. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Model., 36 (2002), 1039–1057. https://doi.org/10.1016/S0895-7177(02)00257-1 doi: 10.1016/S0895-7177(02)00257-1
    [12] Y. Y. He, S. J. Gao, D. H. Xue, An SIR epidemic model with time-varying pulse control schemes and saturated infectious force, Appl. Math. Model., 37 (2013), 8131–8140. https://doi.org/10.1016/j.apm.2013.03.035 doi: 10.1016/j.apm.2013.03.035
    [13] X. Z. Meng, L. S. Chen, B. Wu, A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Anal. Real World Appl., 11 (2010), 88–98. https://doi.org/10.1016/j.nonrwa.2008.10.041 doi: 10.1016/j.nonrwa.2008.10.041
    [14] S. J. Gao, Z. D. Teng, D. H. Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos Solitons Fractals, 40 (2009), 1004–1011. https://doi.org/10.1016/j.chaos.2007.08.056 doi: 10.1016/j.chaos.2007.08.056
    [15] G. P. Pang, L. S. Chen, A delayed SIRS epidemic model with pulse vaccination, Chaos Solitons Fractals, 34 (2007), 1629–1635. https://doi.org/10.1016/j.chaos.2006.04.061 doi: 10.1016/j.chaos.2006.04.061
    [16] Y. Song, Asymptotical behavior of a SIR epidemic model with vertical transmission and impulsive vaccination, Int. J. Inform. Syst. Sci., 5 (2009), 325–331.
    [17] S. Y. Liu, Y. Z. Pei, C. G. Li, L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923–1932. https://doi.org/10.1016/j.apm.2008.05.001 doi: 10.1016/j.apm.2008.05.001
    [18] S. Y. Tang, R. Cheke, State-dependent impulsive models of integrated pest management(IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257–292. https://doi.org/10.1007/s00285-004-0290-6 doi: 10.1007/s00285-004-0290-6
    [19] S. Y. Tang, L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. Series B, 4 (2004), 759–768. https://doi.org/10.3934/dcdsb.2004.4.759 doi: 10.3934/dcdsb.2004.4.759
    [20] M. Reid, T. C. Bulfone, B. Cinthia, Y. Chen, G. W. Rutherford, S. Philip, et al, Factors associated with SARS-CoV-2 transmission in settings of high COVID-19 vaccination coverage: A case-control study, Am. J. Epidemiol., 2022 (2022). https://doi.org/10.1093/aje/kwac045 doi: 10.1093/aje/kwac045
    [21] J. Arnold, K. Winthrop, P. Emery, COVID-19 vaccination and antirheumatic therapy, Rheumatology, 60 (2021), 3496–3502.
    [22] S. Y. Tang, Y. N. Xiao, L. S. Chen, R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005), 115–135. https://doi.org/10.1016/j.bulm.2004.06.005 doi: 10.1016/j.bulm.2004.06.005
    [23] G. R. Jiang, Q. S. Lu, Impulsive state feedback control of a predator-preymodel, J. Comput. Appl. Math., 200 (2007), 193–207. https://doi.org/10.1016/j.cam.2005.12.013 doi: 10.1016/j.cam.2005.12.013
    [24] G. R. Jiang, Q. S. Lu, L. N. Qian, Complex dynamics of a Holling type Ⅱ prey-predator system with state feedback control, Chaos Solitons Fractals, 31(2) (2007), 448–461. https://doi.org/10.1016/j.chaos.2005.09.077 doi: 10.1016/j.chaos.2005.09.077
    [25] L. C. Zhao, L. S. Chen, Q. L. Zhang, The geometrical analysis of a predator-prey model with two state impulses, Math. Biosci., 238 (2012), 55–64. https://doi.org/10.1016/j.mbs.2012.03.011 doi: 10.1016/j.mbs.2012.03.011
    [26] L. F. Nie, Z. D. Teng, L. Hu, J. Peng, Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects, Math. Comput. Simul., 79 (2009), 2122–2134. https://doi.org/10.1016/j.matcom.2008.11.015 doi: 10.1016/j.matcom.2008.11.015
    [27] L. F. Nie, J. G. Peng, Z. D. Teng, L. Hu, Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects, J. Comput. Appl. Math., 224 (2009), 544–555. https://doi.org/10.1016/j.cam.2008.05.041 doi: 10.1016/j.cam.2008.05.041
    [28] L. F. Nie, Z. D. Teng, L. Hu, J. Peng, Qualitative analysis of a modified Leslie-Gower and Holling-type Ⅱ predator-prey model with state dependent impulsive effects, Nonlinear Anal. Real World Appl., 11 (2010), 1364–1373. https://doi.org/10.1016/j.nonrwa.2009.02.026 doi: 10.1016/j.nonrwa.2009.02.026
    [29] L. F. Nie, Z. D. Teng, A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination, Nonlinear Anal. Real World Appl., 13 (2012), 1621–1629. https://doi.org/10.1016/j.nonrwa.2011.11.019 doi: 10.1016/j.nonrwa.2011.11.019
    [30] L. F. Nie, Z. D. Teng, B. Z. Guo, A state dependent pulse control strategy for a SIRS epidemic system, Bull. Math. Biol., 75 (2013), 1697–1715. https://doi.org/10.1007/s11538-013-9865-y doi: 10.1007/s11538-013-9865-y
    [31] Z. L. He, L. F. Nie, Z. D. Teng, Dynamics analysis of two-species competitive model with state-dependent impulsive effects, J. Franklin Inst., 352 (2015), 2090–2112. https://doi.org/10.1016/j.jfranklin.2015.02.021 doi: 10.1016/j.jfranklin.2015.02.021
    [32] G. P. Pang, L. S. Chen, Periodic solution of the system with impulsive state feedback control, Nonlinear Dyn., 78 (2014), 743–753. https://doi.org/10.1007/s11071-014-1473-3 doi: 10.1007/s11071-014-1473-3
    [33] Y. F. Li, D. L. Xie, J. A. Cui, Complex dynamics of a predator-prey model with impulsive state feedback control, Appl. Math. Comput., 230 (2014), 395–490. https://doi.org/10.1016/j.amc.2013.12.107 doi: 10.1016/j.amc.2013.12.107
    [34] W. C. Zhao, Y. L. Liu, T. Q. Zhang, X. Meng, Geometric analysis of an integrated pest management model including two state impulses, Abstr. Appl. Anal., 963072 (2014), 1–18. https://doi.org/10.1155/2014/963072 doi: 10.1155/2014/963072
    [35] C. J. Yuan, D. Q. Jiang, D. O'Regan, R. P. Agarwal, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2501–2516. https://doi.org/10.1016/j.cnsns.2011.07.025 doi: 10.1016/j.cnsns.2011.07.025
    [36] N. M. Gatto, H. Schellhorn, Optimal control of the SIR model in the presence of transmission and treatment uncertainty, Math. Biosci., 333 (2021), 108539. https://doi.org/10.1016/j.mbs.2021.108539 doi: 10.1016/j.mbs.2021.108539
    [37] F. Y. Wang, X. Y. Wang, S. W. Zhang, C. Ding, On pulse vaccine strategy in a periodic stochastic SIR epidemic model, Chaos Solitons Fractals, 66 (2014), 127–135. https://doi.org/10.1016/j.chaos.2014.06.003 doi: 10.1016/j.chaos.2014.06.003
    [38] D. W. Jordan, P. Smith, Nonlinear ordinary differential equatios: An introduction for scientists and engineers, 4th edition, Oxford University, New York, USA, 2007.
    [39] K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 2022 (2022). https://doi.org/10.3390/computation10060097 doi: 10.3390/computation10060097
    [40] K. Hattaf, A. A. Lashari, Y. Louartassi, N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electron. J. Qualitative Theory Differ. Equations, 2013 (2013), 1–9. https://doi.org/10.14232/ejqtde.2013.1.3 doi: 10.14232/ejqtde.2013.1.3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1492) PDF downloads(63) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog