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Abstract: Vertical transmission refers to the process in which a mother transmits bacteria or viruses
to her offspring through childbirth, and this phenomenon takes place commonly in nature. This paper
formulates an SIR epidemic model where the impact of vertical transmission and two state-dependent
pulse controls are both taken into consideration. Using the Poincaré map, an analogue of Poincaré
criterion and the method of related qualitative analysis, the existence and the stability of a positive
order-1 or order-2 periodic solution for the epidemic model are proved. Furthermore, phase diagrams
are demonstrated by means of numerical simulations, illustrating the feasibility and correctness of our
main results. It can be further implied that the epidemic can be controlled to a certain extent, with
vertical transmission reduced and timely state-dependent pulse controls carried out.
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1. Introduction

It’s well-known that infectious diseases are usually transmitted by virtue of various different
mechanisms, for example, by person to person interactions, by insect vectors or via vertical
transmission from parents to their unborn offspring as well. Unfortunately but objectively, the
modelling dynamics of such disease transmission could be very complicated; and therefore, the
development of reasonable strategies for controlling and preventing the spread of these diseases
requires much appropriate mathematical analysis [1]. Through investigating related documents, we
find that many diseases will transfer to new born offspring from an infectious parent, such as hepatitis
B, herpes simplex, rubella, tuberculosis and most notoriously AIDS [1–4]. Hence, with the
transmission character of these infectious diseases considered, the vertical transmission has important
research significance. Over the past few years, the studies of epidemic models in which vertical
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transmission was involved have become some of the most relevant topics in the mathematical theory
of epidemiology [1, 2, 4–8] and some of those have largely been motivated by the works of Busenberg
and Cooke [7, 8]. In those works, the transmission of Keystone virus in the mosquito Aedes atlanticus
and of Rickettsia rickettsii in the tick Dermacentor andersoni were modeled with vertical transmission
being considered, since both of these infections could be transmitted vertically from an infective
parent to newborn offspring as well as horizontally via direct or indirect contacts with infected
individuals. The work on a vertical infection transmission model has made certain progress; for the
latest work on this topic, please refer to [9, 10].

In recent decades, with the pollution and destruction of the ecological environment or for certain
unknown reasons, some viruses that had been controlled or even disappeared in the past have recovered
and spread all over the world again. Therefore, the control of infectious diseases still has been relevant
in many interdisciplinary fields. Of all known and conventional strategies, the most efficient ways to
eliminate or control infectious diseases are still immunization before the onset and effective medical
care after the onset. The standard conventional approach is always constant vaccination or uniform
treatment, as we can see more details in [11]. Nevertheless, when the economic costs and the side
effects of the medications are both taken into consideration, particularly for infants, it is obviously
both expensive and potentially harmful to implement medications for such a large population coverage.
In view of the above reasons, in the actual situation, we naturally prefer to use the impulsive control
strategy, which is easier to manipulate, and the relative expense can be reduced to a certain extent.

The theoretical research on pulse control strategy, which was first introduced by Agur and coauthors
in [1], has become an important topic in mathematical biology and mathematical epidemiology in
recent decades, attracting the research interests of many researchers [12–17]. Especially, the theory
of an epidemic model concerning vertical transmission with pulse control at fixed times has been
deeply investigated [18, 19]. Song [16] discussed an SIR epidemic model with vertical transmission
and impulsive vaccination which may undergo inherent oscillation and acquired conditions about the
existence and global asymptotic stability of the positive disease-free periodic solution. Liu et al. [17]
investigated an SIR epidemic model with a saturated infectious force and vertical transmission, and
they carried out three different vaccination and treatment strategies. In recent years, Covid-19 has
become a global epidemic, and there are also vaccination and treatment strategies against Covid-19 [20,
21]. By comparing these strategies, they draw the conclusion that PTPVS (Pulse Treatment and Pulse
Vaccination Strategies) behaved much better in the elimination and control of the disease than CTPVS
(Continuous Treatment and Pulse Vaccination Strategies).

As previously analyzed, notwithstanding that a fixed-time pulse control strategy is widely
performed in practice, a considerable portion of data shows that it has some defects, regardless of the
effect of the strategy on preventing the spread of certain infectious diseases and the cost of
medication, particularly, for the infectious diseases with vertical transmission, such as AIDS, hepatitis
B and so on. For example, in the case of large infected population and rehabilitation are extremely
urgent, but vaccination and treatment are not performed for it is not the fixed-time. In this regard, a
natural idea is to vaccinate and treat when the observed infected population reaches a certain
threshold size; in essence, it is based on the state feedback control strategy method. This state pulse is
obviously more suitable and reasonable for disease control.

Due to its low cost, high efficiency and practicality, the control strategy with the state-dependent
impulsive feedback has demonstrated applications in many seemingly different and widespread fields,
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especially in science and engineering. Especially, in the ecological surroundings, the control measures
(catching, poisoning, releasing the natural predator, harvesting, etc.) are taken only when the amount of
species reaches a threshold value, rather than the usual pulse fixed-time control strategy. Many papers
have been devoted to the analysis of describing impulsive differential equations models with state-
dependent effects. Tang et al. [18, 19, 22], Jiang et al. [23, 24], Zhao et al. [25] and Nie et al. [26–28]
considered various predator-prey models with state-dependent impulsive effects by poisoning the prey
or releasing the predator, and they analyzed the existence and the stability of positive order-k (k ≥ 3)
period solutions. Particularly, Nie et al. [29–31] introduced the epidemic model with state-dependent
pulse control and considered the existence and stability of positive order-1 or order-2 periodic solutions
by using the Poincaré map, the differential inequality and the analogue of the Poincaré criterion.
Moreover, they showed that there is no positive order-k (k ≥ 3) periodic solutions. For more studies on
state-dependent pulse control, we suggest that the readers refer to [32–35].

Motivated by the above considerations and the dynamic behavior of infectious diseases, in this
paper, we will consider an SIR model in which vertical transmission and two state-dependent pulse
effects are involved. In the next section, we put forward this SIR model and two Poincaré maps,
as well as some basic definitions as preliminaries. Next, the foundational dynamic behaviors of our
model, including the existence and stability of equilibrium are illustrated. By using the Poincaré map,
the analogue of the Poincaré criterion and the method of qualitative analysis, the existence and the
stability of the positive periodic solution of the SIR model are studied in Section 3. Simulations by
virtue of MATLAB are given in Section 4, illustrating the applicability of our main results to the models
studied. At last, we give some conclusions and map out directions for future work.

2. Model formulation and preliminaries

We consider an epidemic in a rather closed environment, for instance, in a university, where the total
population almost stays constant in a short period, that is, the natural birth rate equals the mortality
rate. In a closed environment, an ordinary SIR epidemic model with vertical transmission is of the
following form: 

dS (t)
dt = µ − βS (t) I (t) − µS (t) − µ (1 − δ) I (t) ,

dI(t)
dt = βS (t) I (t) + µ (1 − δ) I (t) − µI (t) − γI (t)
= βS (t) I (t) − δµI (t) − γI (t) ,

dR(t)
dt = γI (t) − µR (t) ,

(2.1)

where µ is the natural birth (and also natural death) rate, β is the transmission rate of disease when
the susceptible contact the infectious, δ(0 ≤ δ ≤ 1) is the proportion of uninfected offspring from
infectious mothers, and γ is the recovery rate. All these parameters are positive constants. The total
population size is normalized to one, i.e., S (t)+I(t)+R(t)=1. About the SIR model, there is also some
new research. For example, [36] discussed Optimal control of the SIR model, which is different from
our work, since we will study pulse vaccination and treatment problems.

According to the simple dynamics analysis of the model (2.1), we get the following theorem.
Theorem 2.1. If the basic reproduction number ℜ0 =

β

δµ+γ
< 1, then the disease-free equilibrium
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P0(1, 0, 0) of System (2.1) is globally asymptotically stable. However, for ℜ0 > 1, there exists an
unstable disease-free equilibrium P0 and an unique endemic equilibrium P∗(S ∗, I∗,R∗), which is
globally asymptotically stable, where S ∗ = δµ+γ

β
, I∗ = µ(β−δµ−γ)

β(γ+µ) , R∗ = γ(β−δµ−γ)
β(γ+µ) .

In practice, considering the impact of the economy and the traits of infectious diseases, a pulse state
feedback control strategy for infectious diseases is often proposed, rather than the usual continuous
control or fixed-time pulse control strategy. When the amount of infected individuals is few, taking into
account secondary actions of the medications, we hope that treatment is taken only for the infectious.
On the other hand, when the infectious diseases have outbreaks, thinking about the effective control, we
hope both vaccination and treatment are taken. Hereby, the control strategy is based on the following
assumptions.
(A1) When the quantity of infected individuals reaches the first hazardous threshold value H1, where
0 < H1 < 1 − S ∗, and the quantity of susceptible S < S ∗ = δµ+γ

β
at the time ti(H1)(i ∈ N+), only

treatment is taken. The quantities of infectious and recovered suddenly turn to (1 − m)I(ti(H1)) and
R(t) + mI(ti(H1)), where m ∈ (0, 1) is the proportion of the infectious cured at ti, which is called the
pulse cure rate, respectively.
(A2) When the quantity of infected individuals reaches the second hazardous threshold value H2, where
0 < H2 < 1−S ∗ and H2 > H1, and the quantity of susceptibles S ≥ S ∗ = δµ+γ

β
at the time ti(H2)(i ∈ N+),

vaccination and medication are taken. The quantities of susceptible, infectious and recovered abruptly
turn to (1 − q)S (ti(H2)), (1 − p)I(ti(H2)) and R(ti(H2)) + pI(ti(H2)) + qS (ti(H2)), respectively, where
q, p ∈ (0, 1) are the proportions of the susceptible vaccinated and the infectious cured successfully
at ti, which are called the pulse vaccination rate and the pulse cure rate. According to the practical
significance of the integrated control model, the condition: H1 < (1 − p)H2 < H2 < I∗ is always given
as such.

According to assumptions (A1) and (A2), a control model of vertical transmission of disease is
proposed, which is described by the following ordinary differential equations with two state-dependent
pulse controls:

dS (t)
dt = µ − βS (t) I (t) − µS (t) − µ (1 − δ) I (t)

dI(t)
dt = βS (t) I (t) − δµI (t) − γI (t)

dR(t)
dt = γI (t) − µR (t)


I , H1,H2,

∆S (t) = S (t+) − S (t) = 0

∆I (t) = I (t+) − I (t) = −mI(t)

∆R (t) = R (t+) − R (t) = mI(t)


I = H1,H1 < (1 − p)H2, S < S ∗,

∆S (t) = S (t+) − S (t) = −qS (t)

∆I (t) = I (t+) − I (t) = −pI(t)

∆R (t) = R (t+) − R (t) = qS (t) + pI(t)


I = H2, S ≥ S ∗.

(2.2)
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We assume, throughout this paper, that ℜ0 =
β

δµ+γ
> 1. That is to say, System (2.2) without pulse

effects has unique globally asymptotically stable equilibrium P∗(S ∗, I∗,R∗). Set R+ = (0, +∞), based
on the biological background of System (2.2), and we only need to consider the region

R3
+ = {(S , I,R) : S , I,R ∈ (0, +∞)} .

Lemma 2.1. Suppose that (S , I, R) is a solution of System (2.2) which starts from the point
(S (t0), I(t0), R(t0)) ∈ R3

+. Then, R3
+ is positively invariant.

Proof. For any initial value (S (t0), I(t0), R(t0)) ∈ R3
+, we discuss all possible cases by the relation of

the solution (S , I, R) to the lines L1 : I = H1 and L2 : I = H2, as follows.
Case 1: The solution (S , I, R) intersects with L1 finitely, while it intersects with L2 infinitely.
In this case, suppose that the solution (S , I, R) intersects with L1 : I = H1 at times t1,i, i =

1, 2, · · · k, k ∈ N+, while it intersects with L2 : I = H2 at times t2, j, j = 1, 2, · · · , and lim
j→∞

t2, j = ∞. If

the result of Lemma 2.1 was not tenable, we should have a t∗ > t0 such that min{S (t∗), I(t∗), R(t∗)} = 0,
and S (t) > 0, I(t) > 0, R(t) > 0 for all t0 < t < t∗. For this t∗, there is a positive integer n(n > k + 1)
such that t2,n−1 < t∗ < t2,n. There are three possible cases.
(i) I(t∗) = 0, S (t∗) ≥ 0, R(t∗) ≥ 0. Without loss of generality, we suppose the solution (S , I, R)
initially intersects with L1 and then with L2. For this case, the result follows from the second, fifth and
eighth equations of System (2.2), that

I(t∗) = (1 − m)k(1 − p)n−1I(t0) exp{
∫ t∗

t0
[βS (τ) − δµ − γ]dτ} > 0,

contradicting with I(t∗) = 0.
(ii) R(t∗) = 0, S (t∗) ≥ 0, I(t∗) ≥ 0. For this case, the result follows from the third, sixth and ninth
equations of System (2.2), that

R(t∗) ≥ R(t0) exp[µ(t0 − t∗)]
+mh1

{
exp[µ(t1,1 − t1,k)] + exp[µ(t1,2 − t1,k)] + · · · + exp[µ(t1,k−1 − t1,k)]

}
+ph2

{
exp[µ(t2,1 − t∗)] + exp[µ(t2,2 − t∗)] + · · · + exp[µ(t2,k−1 − t∗)]

}
> 0,

contradicting with R(t∗) = 0.
(ii) S (t∗) = 0, I(t∗) ≥ 0, R(t∗) ≥ 0. For this case, from the first and seventh equations of System (2.2),
we have

S (t∗) ≥
µδ

β + µ
{1 − exp[−(β + µ)(t∗ − t2,n−1)]}

+(1 − p)n−1 µδ

β + µ
{1 − exp[−(β + µ)(t∗ − t0)]}

+(1 − p)n−1S (t0) exp[−(β + µ)(t∗ − t0)] > 0,

contradicting with S (t∗) = 0.
Therefore, we have S (t) > 0, I(t) > 0, R(t) > 0 for all t ≥ t0.
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Case 2: The solution (S , I, R) intersects with L1 and L2 infinitely.
By an argument similar to the above, it is easy to obtain an identical conclusion. Therefore, it

follows that R3
+ is a positive invariant set not only for the solution (S , I, R) that intersects with L1

finitely and with L2 infinitely but also for the solution (S , I, R) that intersects with L1 and L2 infinitely.
The proof is complete. □

From System (2.2), the third equation is independent of the variables S and I, and the total population
has a constant size, which is normalized to unity such that

S (t) + I(t) + R(t) = 1.

Therefore, the dynamics of System (2.2) are qualitatively equivalent to the dynamics of the system
given by 

dS (t)
dt = µ − βS (t) I (t) − µS (t) − µ (1 − δ) I (t)

dI(t)
dt = βS (t) I (t) − δµI (t) − γI (t)

 I , H1, H2,

∆S (t) = S (t+) − S (t) = 0

∆I (t) = I (t+) − I (t) = −mI(t)

 I = H1, H1 < (1 − p)H2, S < S ∗,

∆S (t) = S (t+) − S (t) = −qS (t)

∆I (t) = I (t+) − I (t) = −pI(t)

 I = H2, S ≥ S ∗.

(2.3)

Firstly, in order to obtain some results, we introduce the basic knowledge of the state impulsive
differential equations. Consider the state impulsive differential equation:

dx(t)
dt = f (x, y), dy(t)

dt = g(x, y), φ(x, y) , 0,

∆x = ξ(x, y), ∆y = η(x, y), φ(x, y) = 0,
(2.4)

where f (x, y) and g(x, y) are continuous differential functions defined on R2
+ = {(x, y) : x, y ∈ (0, +∞)},

and φ(x, y) is a sufficiently smooth function with ∇φ , 0.
Now, we give the notion of distance between a point and a set. Let Γ be an arbitrary set in R2

+ and Y
be an arbitrary point in R2

+. Then, the distance between point Y and Γ is denoted by

d(Y,Γ) = inf
Y0∈Γ
|Y − Y0|.

Let X = (S , I) be any solution of System (2.3) through the point X0 = (S 0, I0) ∈ R2
+. Then, positive

trajectory Π(X0, t0) for t ≥ t0 is defined by

Π(X0, t0) = {X(t) ∈ R2
+ : X(t) = (S t, It), t ≥ t0, X(t0) = X0}.
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Definition 2.1. (Orbital stability [34]) An orbit Π(x0, t0) of System (2.4) is said to be orbitally stable if
for any given ε > 0, there exists a constant δ = δ(ε) > 0 such that for any other solution x∗(t) of
System (2.4), when |x∗(0) − x0| < δ, one has d(x∗(t),Π(x0, t0)) < ε for all t > 0.

Definition 2.2. (Orbital asymptotical stability [34]) An orbit Π(x0, t0) of System (2.4) is said to be
orbitally asymptotically stable if it is orbitally stable, and there exists a constant η > 0 such that for
any other solution x∗(t) of System (2.4), when |x∗(0) − x0| < η, lim

t→∞
d(x∗(t),Π(x0, t0)) = 0.

Lemma 2.2. (Analogue of Poincaré criterion) If the Floquet multiplier µ satisfies |µ| < 1, where

µ =

n∏
j=1

κ j exp
{∫ T

0
[
∂ f (ϕ(t), ψ(t))

∂x
+
∂g(ϕ(t), ψ(t))

∂y
]dt
}

with

κ j =
(∂η
∂y

∂φ

∂x −
∂η

∂x
∂φ

∂y +
∂φ

∂x ) f+ + ( ∂ξ
∂x

∂φ

∂y −
∂ξ

∂y
∂φ

∂x +
∂φ

∂y )g+
∂φ

∂x f + ∂φ

∂y g

and f , g, ∂ξ

∂x ,
∂ξ

∂y ,
∂η

∂x ,
∂η

∂y ,
∂φ

∂x and ∂φ

∂y are calculated at the point (ϕ(τ j), ψ(τ j)), f+ = f (ϕ(τ+j ), ψ(τ+j )), g+ =
g(ϕ(τ+j ), ψ(τ+j )) and τ j( j ∈ N) is the time of the j-th jump, then, (ϕ(τ j), ψ(τ j)) is orbitally asymptotically
stable.

Secondly, in order to analyze the dynamics of the System (2.3), we define four cross-sections:

M1 = {(S , I) ∈ R2
+|0 < S ≤

δµ + γ

β
, I = H1},

N1 = {(S , I) ∈ R2
+|0 < S ≤

δµ + γ

β
, I = (1 − m)H1}

and

M2 = {(S , I) ∈ R2
+|0 < S ≤ 1 − h2, I = H2},

N2 = {(S , I) ∈ R2
+|0 < S ≤ 1 − (1 − p)h2, I = (1 − p)H2}.

For any point Dn(S Dn ,H2), suppose that the orbit Π(Dn, tn) starting from the initial point Dn intersects
set M2 infinitely, that is, the orbit Π(Dn, tn) jumps to point D+n ((1 − q)S n, (1 − p)H2) on N2 due to the
impacts of impulses △S (t) = −qS (t) and △I(t) = −pS (t). Further, the orbit Π(Dn, tn) intersects set M1

at point En(S En ,H1) and then jumps to E+n (S En , (1 − m)H1) due to the impact of impulse
△I(t) = −mS (t). Furthermore, the orbit Π(Dn, tn) intersects set M2 at point Dn+1(S Dn+1 ,H2) and then
jumps to point D+n+1((1 − q)S Dn+1 , (1 − p)H2) on N2. Then, the orbit Π(Dn, tn) intersects set M1 at point
En+1(S En+1 ,H1) and then jumps to point E+n+1(S Dn+1 , (1 − m)H1) on N1 again. Repeating this process,
we have four impulsive point sequences {Dn(S Dn ,H2)}∞n=1, {D+n ((1 − q)S Dn , (1 − p)H2)}∞n=1 and
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{En(S En ,H1)}∞n=1, {E+n (S En , (1 − m)H1)}∞n=1, where S Dn+1 and S En+1 are determined by
S n, p, q, m, H1, H2, and n = 1, 2, · · · . Thus, we define the Poincaré map of M2 as follows:

S Dn+1 = P1(S Dn ,m, p, q,H1,H2). (2.5)

Furthermore, if the orbit Π(Dn, tn) does not intersect set M1, we defined the Poincaré map of M2 as
follows:

S Dn+1 = P1(S Dn , p, q,H2). (2.6)

On the other hand, for any S Dn having a unique S En(n = 0, 1, 2, · · · ), let

F : R+ → R+ (2.7)

where the mapping F is continuous and invertible. Then, we have S En = F(S Dn) and

S En+1 = F(S Dn+1) = F{P1(Dn,m, p, q,H1,H2)} = F{P1(F−1(S En),m, p, q,H1,H2)}.

Let
P2(S Ek ,m, p, q,H1,H2) = F{P1(F−1(S Ek),m, p, q,H1,H2)}. (2.8)

Then, another Poincaré map can be obtained for M1:

S En+1 = P2(S En ,m, p, q,H1,H2). (2.9)

Definition 2.3. (Order-k periodic solution) An orbit Π(Dn, tn) of System (2.3) is said to be order-k
periodic if there exists a positive integer k ≥ 1 such that k is the smallest integer forS Dn+k = S Dn .

3. Existence and stability of periodic solution

The task ahead is to consider System (2.3) under the condition I < I∗. For definiteness and without
loss of generality, we just discuss the case that the orbitΠ(K0, t) starting from K0(0, (1−p)H2) intersects
M1 at K1(S K1 ,H1) where S K1 < S ∗. Then, by the existence and uniqueness theorem of differential
equations, there exists a unique point Q0(S Q0 , (1− p)H2) on N2 such that the orbitΠ(Q0, t) starting from
Q0 is tangent to M1 at point P(S P,H1), where S P = S ∗. Therefore, if (1 − q)(1 − H2) < S Q0 , then the
orbit Π(A0, t) where A0(S A0 , IA0) intersects both set M1 and M2 infinitely. However, if (1−q)(δµ+γ)

β
> S Q0 ,

the orbit Π(A0, t) starting from the initial point A0(S A0 , IA0) will just intersect set M2 infinitely, while it
will intersect set M1 finitely. In this section, we will give some sufficient conditions for the existence
and stability of positive periodic solutions in the cases of (1 − q)(1 − H2) < S Q0 and (1−q)(δµ+γ)

β
> S Q0 ,

respectively.
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3.1. The case o f (1 − q)(1 − H2) < S Q0

Theorem 3.1. For any m, p ∈ (0, 1), (1 − q)(1 − H2) < S Q0 , System (2.3) has a positive order-1
periodic solution.

Proof. Let the point A1(α1, (1−m)H1) on N1 where α1 is sufficiently small with α1 < (1− q)(1−H2) <
S Q0 . In view of the geometrical construction of the phase of the System (2.3), the orbit Π(A1, t) of
the system starting from the initial A1 will intersect the impulsive set M2 at point B1(θ1,H2), where
θ1 > S ∗. Then, B1 jumps to the point B+1 ((1 − q)θ1, (1 − p)H2) on N2 due to the impacts of impulses
∆S (t) = −qS (t) and ∆I(t) = −pI(t). Further, the orbit Π(A1, t) intersects the impulsive set M1 at the
point C1(γ1,H1). At the state C1, the orbit Π(A1, t) is subjected by impulsive effects to jumping to
the point C+1 (γ1, (1 − m)H1). Furthermore, the orbit Π(A1, t) intersects M2, N2, M1, N1 at the points
B2(θ2,H2), B+2 ((1 − q)θ2, (1 − p)H2), C2(γ2,H1), C+2 (γ2, (1 − m)H1), respectively.

Since α1 < (1 − q)(1 − H2) < S Q0 , B2 is on the left of B1. In fact, if B2 is on the right of B1, then
the orbits Â1B1 and Ĉ+1 B2 intersect at same point D(S 0, I0). This shows that there are two different
solutions which start from the same initial point D(S 0, I0). This contradicts the uniqueness of solutions
for System (2.3). Correspondingly, we have that B+2 is on the left of B+1 . Similarly, C2 is on the left of
C1, and C+2 is on the left of C+1 due to the impact of impulse ∆I(t) = −mI(t). Therefore, following from
the Poincaré map (2.5) of set M2, we have θ2 = P1(θ1,m, p, q,H1,H2), and

P1(θ1,m, p, q,H1,H2) − θ1 = θ2 − θ1 < 0. (3.1)

On the other hand, the curve L : βS I − µI − γI = 0 intersects set N1 at point E0( b+γ
β
, (1 − m)H1).

Then, the orbit Π(E0, t) starting from the initial point E0 hits the impulsive set M2 at point F1(θ1,H2)
and then jumps to F+1 ((1− q)θ1, (1− p)H2) on N2. Further, the orbit Π(E0, t) hits the set M1 at the point
G1(γ1,H1). At the start G1, the orbit Π(E0, t) is subjected by impulsive effects to jump to the point
G+1 (γ1, (1 − m)H1). Furthermore, the orbit Π(E0, t) intersects the sets M2, N2 and M1, N1 at the points
F2(θ2,H2), F+2 ((1 − q)θ2, (1 − p)H2) and G2(γ2,H1), G+2 (γ2, (1 − m)H1).

Since (1 − q)(1 − h2) < S Q0 , similarly, in view of the geometrical construction of the phase of the
system, we obtain that F2 is on the right of F1, and therefore it follows from the Poincaré map that
θ2 = P1(θ1,m, p, q,H1,H2), and

P1(θ1,m, p, q,H1,H2) − θ1 = θ2 − θ1 > 0. (3.2)

From the above considerations (3.1) and (3.2), it follows that the Poincaré map has a fixed point,
that is, System (2.3) has a positive order-1 periodic solution. The proof is complete. □

Next, about orbital asymptotical stability of a positive order-1 or order-2 periodic solution of
System (2.3), we have the following result.

Theorem 3.2. For any m, p ∈ (0, 1), (1 − q)(1 − H2) < S Q0 , System (2.3) has a positive order-1 or
order-2 periodic solution, which is orbitally asymptotically stable. Furthermore, the System (2.3) has
no order-k (k ≥ 3) periodic solution.
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Proof. In view of the geometric construction of the phase space of System (2.3), the orbit which starts
from A0(S A0 , (1 − m)H1) will intersect with M1 and M2 infinitely due to the impacts of impulses for S
and I.

Suppose the orbit Π(D0, t) of System (2.3) starting from the initial point D0(S 0,H2)(S 0 ∈ (S ∗, 1 −
H2)) on M2 jumps to point D+0 (Ŝ 0, (1− p)H2), where Ŝ 0 < S Q0 , due to the condition of (1−q)(1−H2) <
S Q0 on set N2. Afterwards, the orbit Π(D0, t) intersects set M1 at the point C0(γ0,H1) and jumps to the
point C+0 (γ0, (1−m)H1) on N1 due to the impact of impulse ∆I (t) = −mI(t), and it then reaches set M2 at
point D1(S 1,H2) where S 1 ∈ (S ∗, 1−H2). Further, the orbitΠ(D0, t) jumps to point D+1 (Ŝ 1, (1−p)H2) on
M2 and intersects set M1 at point C1(γ1,H1), then jumps to point C+1 (γ1, (1−m)H1), and finally reaches
set M2 again at point D2(S 2,H2) where S 2 ∈ (S ∗, 1−H2). Therefore, by the Poincaré map (2.9) of set
M1, we have γk+1 = P2(γk,m, p, q,H1,H2).

On the other hand, under the condition (1 − q)(1 − H2) < S Q0 , for any two points Di(S i,H2) and
D j(S j,H2) on set M2, where S i, S j ∈ (S ∗, 1 − H2) and S i < S j. The points Di((1 − q)S i, (1 − p)H2)
and D j((1 − q)S j, (1 − p)H2) both are on the left of the point Q0. Obviously, from the geometrical
construction of the phase space of System (2.3), we have

S ∗ < S j+1 < S i+1 < 1. (3.3)

Now, for (1 − q)(1 − H2) < S Q0 and any S 0 ∈ (S ∗, 1 − H2), from the Poincaré map (2.5) of set M2, we
have S 1 = P1(S 0,m, p, q,H1,H2), S 2 = P1(S 1,m, p, q,H1,H2) and S k+1 = P1(S k,m, p, q,H1,H2)
(k = 3, 4, · · · ).

According to the relationship between the quantity S 0 and S 1, we discuss the periodic solution by
three cases 1–3 as follows.

1). If S 0 = S 1, then System (2.3) has a positive order-1 periodic solution.
2). If S 0 , S 1, without loss generality, suppose that S 1 < S 0. It follows from (3.3) that S 2 > S 1.
Furthermore, if S 2 = S 0, then System (2.3) has a positive order-1 periodic solution.
3). If S 0 , S 1 , S 2 , · · · , S k−1 (k ≥ 3) and S 0 = S k, then System (2.3) has a positive order-k periodic
solution. In fact, this is impossible. Due to the complexity, next, we discuss this general situation in
four different small cases (i)–(iv) by the relationship among S 0 , S 1 and S 2, as follows.

Case 1. S 0 < S 1. In this case, it follows from (3.3) that S 2 < S 1. So, the relation of S 0, S 1 and S 2

is one of the following two small cases (i) and (ii).

(i) S 2 < S 0 < S 1.
If S 2 < S 0 < S 1, it follows that S 3 > S 1 > S 2 by (3.3). Repeating this process, we have
S ∗ < · · · < S 2k < · · · < S 4 < S 2 < S 0 < S 1 < S 3 < · · · < S 2k+1 < · · · < 1 − H2.

(ii) S 0 < S 2 < S 1.
If S 0 < S 2 < S 1, similar to (i), we have
S 0 < S 2 < S 4 < · · · < S 2k < · · · < S 2k+1 < · · · < S 3 < S 1 < 1 − H2.

Case 2. S 0 > S 1. From (3.3) we obtain that S 1 < S 2. In this case, the relation of S 0, S 1 and S 2 is
one of the following two small cases (iii) and (iv).
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(iii) S 1 < S 0 < S 2.
If S 1 < S 0 < S 2, it follows that S 3 > S 1 > S 2 by (3.3). Repeating this process, we have
S ∗ < · · · < S 2k+1 < · · · < S 3 < S 1 < S 0 < S 2 < S 4 < · · · < S 2k < · · · < 1 − H2.

(iv) S 1 < S 2 < S 0.
If S 1 < S 2 < S 0, similar to (iii), we have
S 1 < S 3 < · · · < S 2k+1 < · · · < S 2k < · · · < S 4 < S 2 < S 0 < 1 − H2.

If there exists a positive order-k (k ≥ 3) periodic solution in System (2.3), then S 0 , S 1 , S 2 , · · · ,

S k−1 (k ≥ 3), and S 0 , S k, which is contradictory to (i)–(iv). So, there exist no order-k (k ≥ 3) periodic
solutions in System (2.3) with (1 − q)(1 − H2) < S Q0 . Further, it follows from (i) that lim

n→∞
S 2k+1 = λ1

and lim
n→∞

S 2k = λ2, where S ∗ < λ2 < λ1 < 1 − H2. Consequently, we have

λ1 = P1(λ2,m, p, q,H1,H2),

and
λ2 = P1(λ1,m, p, q,H1,H2).

Meanwhile, a similarly conclusion on set M1 following from (i) is that lim
n→∞

γ2k+1 = ξ1 and lim
n→∞

γ2k =

ξ2, where 0 < ξ2 < ξ1 < 1 − H2. By the mapping (2.7), we have ξ1 = F(λ1) and ξ2 = F(λ2). Therefore,
by the Poincaré map (2.9) of set M1, we have

ξ1 = P2(ξ2,m, p, q,H1,H2),

and
ξ2 = P2(ξ1,m, p, q,H1,H2).

So, System (2.3) has an orbitally asymptotically stable positive order-2 periodic solution. Similarly, in
(ii) and (iv), System (2.3) has an orbitally asymptotically stable positive order-1 periodic solution. In
(iii), System (2.3) has an orbitally asymptotically stable positive order-2 periodic solution.

From the above, we know that System (2.3) with H2 ≤
µ(β−δµ−γ)
β(γ+µ) and (1 − q)(1 − H2) < S Q0 has an

orbitally asymptotically stable positive order-1 or order-2 periodic solution. The proof is complete. □

3.2. The case of (1−q)(δµ+γ)
β

> S Q0

On the dynamic behavior of System (2.3) with (1−q)(δµ+γ)
β

> S Q0 , we have the following conclusion.

Theorem 3.3. For any m, p ∈ (0, 1), (1−q)(δµ+γ)
β

> S Q0 , System (2.3) has a positive order-1 periodic
solution.
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Proof. The orbit Π(A0, t) on N1 starting from the initial point A0(S A0 , (1 − m)H1)) where S A0 ∈ (0, S ∗)
will intersect set M2 at point C(S C,H2), where S ∗ < S C. Then, it jumps to the point C0(S C0 , (1− p)H2)
on N2 due to the impacts of impulses ∆S (t) = −qS (t), ∆I (t) = −pI(t). Moreover, such (1−q)(δµ+γ)

β
>

S Q0 , then (1 − q)S C > S Q0 , coinciding that the orbit Π(C0, t) starts from the initial point C0(S C0 , (1 −
p)H2), where S C0 > S Q0 . Therefore, let point C0(S C0 , (1 − p)H2) ∈ N2 for sufficiently small ε with
S Q0 < S C0 < S Q0 + ε <

(1−q)(δµ+γ)
β

. In view of the geometrical structure of the phase space of System
(2.3), the orbit Π(C0, t) starting from the initial point C0 will intersect the impulsive set M2 at the point
C1(S C1 ,H2) where S ∗ < S C1 . At point C1, the orbit Π(C0, t) jumps to the point C+1 (S C+1

, (1 − p)H2)
on set N2 due to the impacts of impulses ∆S (t) = −qS (t) and ∆I (t) = −pI(t). Afterwards, since
(1−q)(δµ+γ)

β
> S Q0 , then S C+1

> (1−q)(δµ+γ)
β

apparently. Furthermore, the orbit Π(C0, t) intersects set M2

at point C2(S C2 ,H2) again. Since S Q0 < S C0 <
(1−q)(δµ+γ)

β
, then C0 is on the left of C+1 . Finally, from

the geometrical structure of the phase space of System (2.3), we obtain that point C2 is on the left of
C1, that is, S C2 < S C1 . In fact, if it does not hold, that is, S C2 ≥ S C1 , then C2 is on the right of C1,
or the two points coincide. So, it follows that the orbits Ĉ0C1 and Ĉ+1 C2 intersect at a point (Ŝ , Î),
which contradicts the uniqueness of the solution. Therefore, from the Poincaré map (2.6), we have
S C2 = P1(S C1 , p, q,H2), and

P1(S C1 , p, q, h2) − S C1 = S C2 − S C1 < 0. (3.4)

On the other hand, the curve L : βS I + δµI + γI = 0 intersects section N2 at the point Q( δµ+γ
β
, (1 −

p)H2), and Q is on the right of Q0. Then, the orbit Π(Q, t) starting from the initial point Q intersects
set M2 at point Q1(S Q1 ,H2) where S Q1 > S ∗. Then, it jumps to the point Q+1 (S +Q1

, (1 − p)H2) on set
N2 and finally reaches the point Q2(S Q2 ,H2) on set M2 again. If there is a positive constant q∗ such
that (1 − q∗)S Q1 =

δµ+γ

β
, then Q+1 coincides with Q for q = q∗ ∈ (0, 1), that is, Q1 coincides with Q2.

Otherwise, Q+1 is on the left of Q for (1 − q)Q1 <
δµ+γ

β
and is on the right of Q for (1 − q)Q1 >

δµ+γ

β
.

However, from the geometrical structure of the phase space of System (2.3), Q2 is on the right of Q1

for any q ∈ (0, q∗) ∪ (q∗, 1).
To sum up, we get, from the above discussions, that

(i) When S Q1 = S Q2 , System (2.3) has a positive order-1 periodic solution.
(ii) When S Q1 < S Q2 ,

F(S Q1 , p, q,H2) − S Q1 = S Q2 − S Q1 > 0. (3.5)

By (3.4) and (3.5), it follows that the Poincaré map (2.6) has a fixed point, that is, System (2.3)
has a unique positive order-1 periodic solution in the area Ω1 = {(S , I)|H1 < I < H2}. The proof is
complete. □

Theorem 3.4. For any m, p ∈ (0, 1), (1−q)(δµ+γ)
β

> S Q0 , Let (ϕ(t), ψ(t)) is the positive order-1 periodic
solution of System (2.3) in the area Ω1 = {(S , I)|H1 < I ≤ H2}. If

|µ| = |κ| exp
{
−

∫ T

0
[βψ(t) + µ]dt

}
< 1, (3.6)
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where

κ =
(1 − q)[β(1 − q)ϕ(T ) − δµ − γ]

βϕ(T ) − δµ − γ
,

then the periodic solution (ϕ(t), ψ(t)) is orbitally asymptotically stable.

Proof. Assume that the periodic orbit Π(C0, t) starting from the point C0(ϕ0, (1− p)h2), where ϕ0 > S Q0

moves to the point C1(ϕ(T ), ψ(T )) on impulsive set M2. Since (1−q)(δµ+γ)
β

> S Q0 , then Π(C0,T ) = C1,
C+1 = C0, ϕ(T+) = (1 − q)ϕ(T ), ψ(T+) = (1 − p)ψ(T ). Compared with System (2.4), we get

f (S , I) = µ − βS I − µS − µ(1 − δ)I,

g(S , I) = βS I − δµI − γI,

ξ(S , I) = −qS , η(S , I) = −pI, φ(S , I) = I − H2,

∂ f
∂S
= −βI − µ,

∂g
∂I
= βS − δµ − γ,

∂ξ

∂S
= −q,

∂ξ

∂I
= 0,

∂η

∂S
= 0,

∂η

∂I
= −p,

∂φ

∂S
= 0,

∂φ

∂I
= 1. (3.7)

Thus,

κ1 =
(∂η
∂I

∂φ

∂S −
∂η

∂S
∂φ

∂I +
∂φ

∂S ) f+ + ( ∂ξ
∂S

∂φ

∂I −
∂ξ

∂I
∂φ

∂S +
∂φ

∂I )g+
∂φ

∂S f + ∂φ

∂I g

=
(1 − q)g+(ϕ(T+), ψ(T+))

g(ϕ(T ), ψ(T ))

=
(1 − p)(1 − q)[β(1 − q)ϕ(T ) − δµ − γ]

βϕ(T ) − δµ − γ

and

µ = κ1 exp
{∫ T

0
[βϕ(t) − δµ − γ − (βψ(t) + µ)]dt

}
.

On the other hand, integrating both sides of the second equation of System (2.3) along the orbit
Ĉ+1 C1, we have

ln
1

1 − p
=

∫ H2

(1−p)H2

dI
I
=

∫ T

0
[βS (t) − δµ − γ]dt =

∫ T

0
[βϕ(t) − δµ − γ]dt.

Then, by simple calculation, it follows that

µ = κ1 exp
{∫ T

0
[βϕ(t) − δµ − γ − (βψ(t) + µ)]dt

}
=

(1 − p)(1 − q)[β(1 − q)ϕ(T ) − δµ − γ]
βϕ(T ) − δµ − γ

1
1 − p
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× exp
{
−

∫ T

0
[βψ(t) + µ]dt

}
= |

(1 − q)[β(1 − q)ϕ(T ) − δµ − γ]
βϕ(T ) − δµ − γ

| exp
{
−

∫ T

0
[βψ(t) + µ]dt

}
= |κ| exp

{
−

∫ T

0
[βψ(t) + µ]dt

}
.

By condition (3.6), System (2.3) satisfies all conditions of Lemma 2.2. Therefore the positive order-
1 periodic solution (ϕ(t), ψ(t)) of System (2.3) is orbitally asymptotically stable. This completes the
proof. □

4. Numerical simulations

In this section, we test the correctness of our conclusions by numerical simulation. Let
µ = 0.15, β = 0.6, δ = 0.9, γ = 0.1, H1 = 0.1084, H2 = 0.2, p = 0.4, m = 0.2. By calculation, we
obtain that the orbit Π(K0, t) starting from K0(0, 0.12) intersects M1 at K1(0.0671, 0.1084), where
S K1 = 0.0671 < S ∗ = 0.3917. Therefore, we get S P = 0.3917, P(0.3917, 0.1084) and the point
Q0(0.22, 0.12) which the orbit Π(Q0, t) starting from on N2 is also unique confirmed. Then, we
consider the following SIR epidemic system with two state-dependent pulse controls:

dS (t)
dt = 0.15 − 0.6S (t) I (t) − 0.15S (t) − 0.015I (t)

dI(t)
dt = 0.6S (t) I (t) − 0.135I (t) − 0.1I (t)

dR(t)
dt = 0.1I (t) − 0.15R (t)


I , 0.1084, I , 0.2,

∆S (t) = S (t+) − S (t) = 0

∆I (t) = I (t+) − I (t) = −0.02168

∆R (t) = R (t+) − R (t) = 0.02168


I = 0.1084, S < 0.3917,

∆S (t) = S (t+) − S (t) = −qS (t)

∆I (t) = I (t+) − I (t) = −0.08

∆R (t) = R (t+) − R (t) = qS (t) + 0.08


I = 0.2, S ≥ 0.3917.

(4.1)

Obviously, if R0 > 1, System (4.1) without the pulse effects has a unique endemic equilibrium
(S ∗, I∗, R∗) = (0.3917, 0.365, 0.2433) which is globally asymptotically stable.

Case 1. Since (1 − q)(1 − h2) < S Q0 , then q > 0.725. Let q = 0.75, and the initial point is (0.2,
0.08672, 0.71328). According to Theorem 3.1 or Theorem 3.2, we know System (4.1) has a positive
order-1 periodic solution (see Figure 1(a)–(c)). Furthermore, the positive order-1 periodic solution is
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orbitally asymptotically stable and has the asymptotic phase property, which is shown in Figure 1(d).
Because H2 <

µ(β−δµ−γ)
β(γ+µ) , we also note that system (4.1) always has an orbitally asymptotically stable

positive order-1 or order-2 periodic solution (Figure 1(e),(f)). Therefore, infectious disease may be
prevented and reduced to a very low level through adjustment of the pulse immunization rate m, q, the
pulse treatment rate p and the hazardous threshold values H1 and H2.

(a) (b)

(c) (d)

(e) (f)

Figure 1. The trajectories of System (4.1) with q = 0.75, p = 0.4 and m = 0.2.

Case 2. Since (1−q)(δµ+γ)
β

> S Q0 , then q < 0.4383. Let q = 0.43, and the initial point is (0.2, 0.08672,
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0.71328). From Theorem 3.3, we know System (4.1) has a unique positive order-1 periodic solution
in the area Ω1 = {(S , I)|H1 < I ≤ H2}, which is shown in Figure 2(a)–(c). Further, the positive order-1
periodic solution is orbitally asymptotically stable and has the asymptotic phase property (see Figure
2(d)–(f)).

(a) (b)

(c) (d)

(e) (f)

Figure 2. The trajectories of system (4.1) with q = 0.43, p = 0.4 and m = 0.2.

In addition, we compare the state-dependent pulse control strategy and PTPVS. From the numerical
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(a) (b)

Figure 3. The state dependent pulse control strategy and the fixed pulse control strategy,
where q = 0.75, p = 0.4 and m = 0.2.

simulation, we note that infectious disease could decline quickly to a very low level by two state-
dependent pulse controls. This is well explained in Figure 3. Assume that the hazardous threshold
is 0.2, and the initial value is (0.2, 0.1084, 0.6916). When the infected group is controlled to within
0.2, the solution tends quickly to a stable periodic solution due to the state feedback control strategies,
that is, the disease is completely controlled. However, in order to attain the same goal, the fixed time
pulse controls are not efficient (see Figure 3(a)). For the same initial value (0.2, 0.1084, 0.6916), if we
take control measures ∆I(t) = −0.2H1 at fixed time t = nT

2 and ∆S (t) = −0.75S (t), ∆I(t) = −0.4H2

at fixed time t = nT , where T = 15 and n = 1, 2, · · · , the density of infected population can not be
controlled under the hazardous threshold 0.2, and hence the disease will be spreading.

Furthermore, if we take control measures with T = 12, it slightly frequent than the state-dependent
control, but the control cost obviously is higher, and it is difficult to achieve the expected purpose.
We also can obtain that the two state-dependent pulse control strategies are more effective than the
state-dependent pulse control which is just one time (see Figure 3(b)).

5. Conclusions and discussion

This paper has formulated an SIR epidemic model with vertical transmission and two
state-dependent pulse controls, while the dynamical behaviors have been investigated. Given a basic
reproduction, the steady state of System (2.1) without impulsive effects has the disease present. By
using the Poincaré map, an analogue of the Poincaré criterion and the qualitative analysis method,
some sufficient conditions are presented on the existence and the orbital asymptotical stability of a
positive order-1 or order-2 periodic solution of System (2.3). This means that we can control the
density of infectious disease at a low level over a long period of time by adjusting immune or
medicated strength. It reveals the significant role that the pulse vaccination rate plays in System (2.3).
When pulse vaccination q > 1 −

βS Q0
δµ+γ

(S Q0 depends on the hazardous threshold value H1), the disease

period is relatively long, but it is short with q < 1 −
S Q0

1−H2
. It is concluded that the two state-dependent
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pulse control strategies, particularly for an epidemic with vertical transmission, are more feasible,
effective and importantly, easily implemented than the state-dependent pulse control which is just one
time or the fixed-time pulse control.

In this paper, the incidence rate is assumed to have the form f (S , I) = βS I, but many investigations
have been done to extend this law in order to model the contagion process better. Mainly, the attention
has been focused on modeling non-linear dependencies on S , such as βS pI, βS

1+αS I and so on. In
addition, it is well known that the environment is generally influenced by random factors. Hence the
deterministic theory has not meet the needs of the reality of study well. Epidemic models are inevitably
affected by environmental white noise, which often plays an important role in the real world, since
it can provide an additional degree of realism compared to their deterministic counterparts [37, 38].
Therefore, compared to our epidemic model, stochastic differential systems are more reasonable and
realistic. These works will be left as our future consideration.

Additionally, we notice a phenomen on that when a disease spreads within a community, individuals
will acquire knowledge about this disease. It will be more interesting to investigate the memory effect
on the dynamics of our model by using the new generalized fractional derivative presented in [38]
instead of the classical derivative used in (2.3). Therefore, in the future, we can refer to the practice
of [39, 40] to study the memory effect on the dynamics of our model.
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