N6-methyladenosine (m6A) is a crucial RNA modification involved in various biological activities. Computational methods have been developed for the detection of m6A sites in Saccharomyces cerevisiae at base-resolution due to their cost-effectiveness and efficiency. However, the generalization of these methods has been hindered by limited base-resolution datasets. Additionally, RMBase contains a vast number of low-resolution m6A sites for Saccharomyces cerevisiae, and base-resolution sites are often inferred from these low-resolution results through post-calibration. We propose MTTLm6A, a multi-task transfer learning approach for base-resolution mRNA m6A site prediction based on an improved transformer. First, the RNA sequences are encoded by using one-hot encoding. Then, we construct a multi-task model that combines a convolutional neural network with a multi-head-attention deep framework. This model not only detects low-resolution m6A sites, it also assigns reasonable probabilities to the predicted sites. Finally, we employ transfer learning to predict base-resolution m6A sites based on the low-resolution m6A sites. Experimental results on Saccharomyces cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively achieved area under the receiver operating characteristic (AUROC) values of 77.13% and 92.9%, outperforming the state-of-the-art models. At the same time, it shows that the model has strong generalization ability. To enhance user convenience, we have made a user-friendly web server for MTTLm6A publicly available at http://47.242.23.141/MTTLm6A/index.php.
Citation: Honglei Wang, Wenliang Zeng, Xiaoling Huang, Zhaoyang Liu, Yanjing Sun, Lin Zhang. MTTLm6A: A multi-task transfer learning approach for base-resolution mRNA m6A site prediction based on an improved transformer[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 272-299. doi: 10.3934/mbe.2024013
N6-methyladenosine (m6A) is a crucial RNA modification involved in various biological activities. Computational methods have been developed for the detection of m6A sites in Saccharomyces cerevisiae at base-resolution due to their cost-effectiveness and efficiency. However, the generalization of these methods has been hindered by limited base-resolution datasets. Additionally, RMBase contains a vast number of low-resolution m6A sites for Saccharomyces cerevisiae, and base-resolution sites are often inferred from these low-resolution results through post-calibration. We propose MTTLm6A, a multi-task transfer learning approach for base-resolution mRNA m6A site prediction based on an improved transformer. First, the RNA sequences are encoded by using one-hot encoding. Then, we construct a multi-task model that combines a convolutional neural network with a multi-head-attention deep framework. This model not only detects low-resolution m6A sites, it also assigns reasonable probabilities to the predicted sites. Finally, we employ transfer learning to predict base-resolution m6A sites based on the low-resolution m6A sites. Experimental results on Saccharomyces cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively achieved area under the receiver operating characteristic (AUROC) values of 77.13% and 92.9%, outperforming the state-of-the-art models. At the same time, it shows that the model has strong generalization ability. To enhance user convenience, we have made a user-friendly web server for MTTLm6A publicly available at http://47.242.23.141/MTTLm6A/index.php.
[1] | A. Nossent, The epitranscriptome: RNA modifications in vascular remodelling, Atherosclerosis, 374 (2023), 24–33. https://doi.org/10.1016/j.atherosclerosis.2022.11.004 doi: 10.1016/j.atherosclerosis.2022.11.004 |
[2] | H. H. Shi, P. W. Chai, R. B. Jia, X. Q. Fan, Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation, Mol. Cancer, 19 (2020), 1–17. https://doi.org/10.1186/s12943-020-01194-6 doi: 10.1186/s12943-020-01194-6 |
[3] | S. Ramasamy, S. Mishra, S. Sharma, S. S. Parimalam, T. Vaijayanthi, Y. Fujita, et al., An informatics approach to distinguish RNA modifications in nanopore direct RNA sequencing, Genomics, 114 (2022), 1–8. https://doi.org/10.1016/j.ygeno.2022.110372 doi: 10.1016/j.ygeno.2022.110372 |
[4] | S. H. Boo, Y. K. Kim, The emerging role of RNA modifications in the regulation of mRNA stability, Exp. Mol. Med., 52 (2020), 400–408. https://doi.org/10.1038/s12276-020-0407-z doi: 10.1038/s12276-020-0407-z |
[5] | L. Cui, R. Ma, J. Cai, C. Guo, Z. Chen, L. Yao, et al., RNA modifications: Importance in immune cell biology and related diseases, Signal Transduction Targeted Ther., 7 (2022), 1–26. https://doi.org/10.1038/s41392-022-01175-9 doi: 10.1038/s41392-022-01175-9 |
[6] | I. Orsolic, A. Carrier, M. Esteller, Genetic and epigenetic defects of the RNA modification machinery in cancer, Trends Genet., 39 (2023), 74–88. https://doi.org/10.1016/j.tig.2022.10.004 doi: 10.1016/j.tig.2022.10.004 |
[7] | X. Bao, Y. Zhang, H. Li, Y. Teng, L. Ma, Z. Chen, et al., RM2Target: A comprehensive database for targets of writers, erasers and readers of RNA modifications, Nucleic Acids Res., 51 (2023), 269–279. https://doi.org/10.1093/nar/gkac945 doi: 10.1093/nar/gkac945 |
[8] | Y. Yan, J. Peng, Q. Liang, X. Ren, Y. Cai, B. Peng, et al., Dynamic m6A-ncRNAs association and their impact on cancer pathogenesis, immune regulation and therapeutic response, Genes Dis., 10 (2023), 135–150. https://doi.org/10.1016/j.gendis.2021.10.004 doi: 10.1016/j.gendis.2021.10.004 |
[9] | S. Nag, B. Goswami, S. D. Mandal, P. S. Ray, Cooperation and competition by RNA-binding proteins in cancer, Semin. Cancer Biol., 86 (2022), 286–297. https://doi.org/10.1016/j.semcancer.2022.02.023 doi: 10.1016/j.semcancer.2022.02.023 |
[10] | J. W. Wenger, K. Schwartz, G. Sherlock, Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from saccharomyces cerevisiae, Plos Genet., 6 (2010), 1–17. https://doi.org/10.1371/journal.pgen.1000942 doi: 10.1371/journal.pgen.1000942 |
[11] | M. J. Wakefield, Genomics—from Neanderthals to high-throughput sequencing, Genome Biol., 7 (2006), 1–3. https://doi.org/10.1186/gb-2006-7-8-326 doi: 10.1186/gb-2006-7-8-326 |
[12] | J. Hamfjord, A. M. Stangeland, T. Hughes, M. L. Skrede, K. M. Tveit, T. Ikdahl, et al., Differential expression of miRNAs in colorectal cancer: Comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing, Plos One, 7 (2012), 1–9. https://doi.org/10.1371/journal.pone.0034150 doi: 10.1371/journal.pone.0034150 |
[13] | F. Ahmed, P. X. Zhao, A comprehensive analysis of isomirs and their targets using high-throughput sequencing data for Arabidopsis thaliana, J. Nat. Sci. Biol. Med., 2 (2011), 1414–1429. |
[14] | Y. Wang, A. Li, L. Zhang, M. Waqas, K. Mehmood, M. Iqbal, et al., Probiotic potential of Lactobacillus on the intestinal microflora against Escherichia coli induced mice model through high-throughput sequencing, Microb. Pathogenesis, 137 (2019), 1–9. https://doi.org/10.1016/j.micpath.2019.04.020 doi: 10.1016/j.micpath.2019.04.020 |
[15] | Z. Zhang, L. Q. Chen, Y. L. Zhao, C. G. Yang, I. A. Roundtree, Z. Zhang, et al., Single-base mapping of m(6)A by an antibody-independent method, Sci. Adv., 5 (2019), 1–12. https://doi.org/10.1126/sciadv.aax0250 doi: 10.1126/sciadv.aax0250 |
[16] | B. Linder, A. V. Grozhik, A. O. Olarerin-George, C. Meydan, C. E. Mason, S. R. Jaffrey, Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome, Nat. Methods, 12 (2015), 1–8. https://doi.org/10.1038/nmeth.3453 doi: 10.1038/nmeth.3453 |
[17] | J. S. Abebe, R. Verstraten, D. P. Depledge, Nanopore-based detection of viral RNA modifications, Mbio, 13 (2022), 1–15. https://doi.org/10.1128/mbio.03702-21 doi: 10.1128/mbio.03702-21 |
[18] | M. Ramezanpour, S. S. W. Leung, K. H. Delgado-Magnero, B. Y. M. Bashe, J. Thewalt, Tieleman DP: Computational and experimental approaches for investigating nanoparticle-based drug delivery systems, Bba-Biomembranes, 1858 (2016), 1688–1709. https://doi.org/10.1016/j.bbamem.2016.02.028 doi: 10.1016/j.bbamem.2016.02.028 |
[19] | S. Albaradei, M. Thafar, A. Alsaedi, C. V. Neste, X. Gao, Machine learning and deep learning methods that use omics data for metastasis prediction, Comput. Struct. Biotechnol. J., 1 (2021), 5008–5018. https://doi.org/10.1016/j.csbj.2021.09.001 doi: 10.1016/j.csbj.2021.09.001 |
[20] | R. P. Bonidia, L. D. H. Sampaio, D. S. Domingues, A. R. Paschoal, F. M. Lopes, A. de Carvalho, et al., Feature extraction approaches for biological sequences: A comparative study of mathematical features, Brief Bioinf., 22 (2021), 1–42. https://doi.org/10.1093/bib/bbab011 doi: 10.1093/bib/bbab011 |
[21] | R. Wang, Y. Jiang, J. Jin, C. Yin, H. Yu, F. Wang, et al., DeepBIO: An automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis, Nucleic Acids Res., 51 (2023), 3017–3029. https://doi.org/10.1093/nar/gkad055 doi: 10.1093/nar/gkad055 |
[22] | W. S. Noble, What is a support vector machine?, Nat. Biotechnol., 2006 (2006), 1565–1567. https://doi.org/10.1038/nbt1206-1565 doi: 10.1038/nbt1206-1565 |
[23] | M. A. Hall, Correlation-Based Feature Selection for Machine Learning, Ph.D thesis, The University of Waikato, 1999. |
[24] | H, Motoda, H. Liu, Feature selection, extraction and construction, Commun. IICM, 5 (2002), 2. |
[25] | H. Iuchi, T. Matsutani, K. Yamada, N. Iwano, S. Sumi, S. Hosoda, et al., Representation learning applications in biological sequence analysis, Comput. Struct. Biotechnol. J., 19 (2021), 3198–3208. https://doi.org/10.1016/j.csbj.2021.05.039 doi: 10.1016/j.csbj.2021.05.039 |
[26] | H. L. Li, Y. H. Pang, B. Liu, BioSeq-BLM: A platform for analyzing DNA, RNA and protein sequences based on biological language models, Nucleic Acids Res., 49 (2021), 1–17. https://doi.org/10.1093/nar/gkaa1112 doi: 10.1093/nar/gkaa1112 |
[27] | M. Leinonen, L. Salmela, Extraction of long k-mers using spaced seeds, IEEE/ACM Trans. Comput. Biol. Bioinf., 19 (2022), 3444–3455. https://doi.org/10.1109/TCBB.2021.3113131 doi: 10.1109/TCBB.2021.3113131 |
[28] | N. Ferruz, M. Heinzinger, M. Akdel, A. Goncearenco, L. Naef, C. Dallago, From sequence to function through structure: Deep learning for protein design, Comput. Struct. Biotechnol. J., 21 (2023), 238–250. https://doi.org/10.1016/j.csbj.2022.11.014 doi: 10.1016/j.csbj.2022.11.014 |
[29] | D. Ofer, N. Brandes, M. Linial, The language of proteins: NLP, machine learning & protein sequences, Comput. Struct. Biotechnol. J., 19 (2021), 1750–1758. https://doi.org/10.1016/j.csbj.2021.03.022 doi: 10.1016/j.csbj.2021.03.022 |
[30] | C. H. Yu, W. Chen, Y. H. Chiang, K. Guo, Z. M. Moldes, D. L. Kaplan, et al., End-to-end deep learning model to predict and design secondary structure content of structural proteins, ACS Biomater. Sci. Eng., 8 (2022), 1156–1165. https://doi.org/10.1021/acsbiomaterials.1c01343 doi: 10.1021/acsbiomaterials.1c01343 |
[31] | L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, J. Big Data-Ger., 8 (2021), 1–74. https://doi.org/10.1186/s40537-020-00387-6 doi: 10.1186/s40537-020-00387-6 |
[32] | L. Zhang, G. S. Li, X. Y. Li, H. L. Wang, S. T. Chen, H. Liu, EDLm(6)APred: Ensemble deep learning approach for mRNA m(6)A site prediction, BMC Bioinf., 22 (2021), 1–15. https://doi.org/10.1186/s12859-020-03881-z doi: 10.1186/s12859-020-03881-z |
[33] | T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, preprint, arXiv: 1301.3781. https://doi.org/10.48550/arXiv.1301.3781 |
[34] | F. Wu, R. T. Yang, C. J. Zhang, L. N. Zhang, A deep learning framework combined with word embedding to identify DNA replication origins, Sci. Rep. UK, 11 (2021), 1–19. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8 |
[35] | S. Okada, M. Ohzeki, S. Taguchi, Efficient partition of integer optimization problems with one-hot encoding, Sci. Rep. UK, 9 (2019), 1–12. https://doi.org/10.1038/s41598-018-37186-2 doi: 10.1038/s41598-018-37186-2 |
[36] | F. Weninger, J. Bergmann, B. Schuller, Introducing CURRENNT: The munich open-source CUDA RecurREnt neural network toolkit, J. Mach. Learn. Res., 16 (2015), 547–551. |
[37] | H. L. Wang, H. Liu, T. Huang, G. S. Li, L. Zhang, Y. J. Sun, EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction, BMC Bioinf., 23 (2022), 1–22. https://doi.org/10.1186/s12859-021-04477-x doi: 10.1186/s12859-021-04477-x |
[38] | Y. Su, A parallel computing and mathematical method optimization of CNN network convolution, Microprocess Microsy, 80 (2021), 1–7. https://doi.org/10.1016/j.micpro.2020.103571 doi: 10.1016/j.micpro.2020.103571 |
[39] | K. Ma, C. H. Tang, W. J. Zhang, B. K. Cui, K. Ji, Z. X. Chen, et al., DC-CNN: Dual-channel convolutional neural networks with attention-pooling for fake news detection, Appl. Intell., 53 (2023), 8354–8369. https://doi.org/10.1007/s10489-022-03910-9 doi: 10.1007/s10489-022-03910-9 |
[40] | M. Tahir, M. Hayat, K. T. Chong, Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations, Neural Networks, 129 (2020), 385–391. https://doi.org/10.1016/j.neunet.2020.05.027 doi: 10.1016/j.neunet.2020.05.027 |
[41] | Z. Chen, P. Zhao, F. Y. Li, Y. N. Wang, A. I. Smith, G. I. Webb, et al., Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences, Briefings Bioinf., 21 (2020), 1676–1696. https://doi.org/10.1093/bib/bbz112 doi: 10.1093/bib/bbz112 |
[42] | Y. Huang, N. N. He, Y. Chen, Z. Chen, L. Li, BERMP: A cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach, Int. J. Biol. Sci., 14 (2018), 1669–1677. https://doi.org/10.7150/ijbs.27819 doi: 10.7150/ijbs.27819 |
[43] | Z. Chen, P. Zhao, F. Y. Li, T. T. Marquez-Lago, A. Leier, J. Revote, et al., iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data, Briefings Bioinf., 21 (2020), 1047–1057. https://doi.org/10.1093/bib/bbz041 doi: 10.1093/bib/bbz041 |
[44] | M. Riva, P. Gori, F. Yger, I. Bloch, Is the U-NET directional-relationship aware?, in 2022 IEEE International Conference on Image Processing (ICIP), (2022), 1–5. https://doi.org/10.1109/ICIP46576.2022.9897715 |
[45] | Q. H. Vo, H. T. Nguyen, B. Le, M. L. Nguyen, Multi-channel LSTM-CNN model for Vietnamese sentiment analysis, in 2017 9th International Conference on Knowledge and Systems Engineering, (2017), 24–29. https://doi.org/10.1109/KSE.2017.8119429 |
[46] | Y. Q. Zhang, M. Hamada, DeepM6ASeq: Prediction and characterization of m6A-containing sequences using deep learning, BMC Bioinf., 19 (2018), 1–11. https://doi.org/10.1186/s12859-017-2006-0 doi: 10.1186/s12859-017-2006-0 |
[47] | T. Song, X. D. Zhang, M. Ding, A. Rodriguez-Paton, S. D. Wang, G. Wang, DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions, Methods, 204 (2022), 269–277. https://doi.org/10.1016/j.ymeth.2022.02.007 doi: 10.1016/j.ymeth.2022.02.007 |
[48] | Z. T. Song, D. Y. Huang, B. W. Song, K. Q. Chen, Y. Y. Song, G. Liu, et al., Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications, Nat. Commun., 12 (2021), 1–11. https://doi.org/10.1038/s41467-020-20314-w doi: 10.1038/s41467-020-20314-w |
[49] | D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, preprint, arXiv: 1409.0473. https://doi.org/10.48550/arXiv.1409.0473 |
[50] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, Adv. Neural Inf. Process. Syst., 30 (2017), 1–15. |
[51] | T. Shen, J. Jiang, T. Y. Zhou, S. R. Pan, G. D. Long, C. Q. Zhang, DiSAN: Directional self-attention network for RNN/CNN-free language understanding, in Proceedings of the AAAI Conference on Artificial Intelligence, (2018), 5446–5455. https://doi.org/10.1609/aaai.v32i1.11941 |
[52] | Y. Zhang, F. Ge, F. Li, X. Yang, J. Song, D. J. Yu, Prediction of multiple types of RNA modifications via biological language model, IEEE/ACM Trans. Comput. Biol. Bioinf., 2023 (2023), 3205–3214. https://doi.org/10.1109/TCBB.2023.3283985 doi: 10.1109/TCBB.2023.3283985 |
[53] | H. Shi, S. Li, X. Su, Plant6mA: A predictor for predicting N6-methyladenine sites with lightweight structure in plant genomes, Methods, 204 (2022), 126–131. https://doi.org/10.1016/j.ymeth.2022.02.009 doi: 10.1016/j.ymeth.2022.02.009 |
[54] | P. Shaw, J. Uszkoreit, A. Vaswani, Self-attention with relative position representations, in 2018 Conference of the North American Chapter of the Association for Computational Linguistics, (2018), 464–468. https://doi.org/10.18653/v1/N18-2074 |
[55] | C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, et al., Exploring the limits of transfer learning with a unified text-to-text transformer, J. Mach. Learn. Res., 21 (2020), 1–67. |
[56] | G. Ke, D. He, T. Y. Liu, Rethinking the positional encoding in language pre-training, in International Conference on Learning Representations 2021, (2021), 1–14. |
[57] | W. Chen, H. Tran, Z. Liang, H. Lin, L. Zhang, Identification and analysis of the N(6)-methyladenosine in the Saccharomyces cerevisiae transcriptome, Sci. Rep., 5 (2015), 1–8. https://doi.org/10.1038/srep13859 doi: 10.1038/srep13859 |
[58] | W. Chen, H. Tang, H. Lin: MethyRNA, A web server for identification of N(6)-methyladenosine sites, J. Biomol. Struct. Dyn., 35 (2017), 683–687. https://doi.org/10.1080/07391102.2016.1157761 doi: 10.1080/07391102.2016.1157761 |
[59] | R. G. Govindaraj, S. Subramaniyam, B. Manavalan, Extremely-randomized-tree-based prediction of N(6)-methyladenosine sites in saccharomyces cerevisiae, Curr. Genomics, 21 (2020), 26–33. https://doi.org/10.2174/1389202921666200219125625 doi: 10.2174/1389202921666200219125625 |
[60] | L. Y. Wei, H. R. Chen, R. Su, M6APred-EL: A sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning, Mol. Ther-Nucl. Acids, 12 (2018), 635–644. https://doi.org/10.1016/j.omtn.2018.07.004 doi: 10.1016/j.omtn.2018.07.004 |
[61] | W. Chen, H. Ding, X. Zhou, H. Lin, K. C. Chou, iRNA(m6A)-PseDNC: Identifying N-6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., 561 (2018), 59–65. https://doi.org/10.1016/j.ab.2018.09.002 doi: 10.1016/j.ab.2018.09.002 |
[62] | Y. Song, Y. Wang, X. Wang, D. Huang, A. Nguyen, J. Meng, Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes, Briefings Bioinf., 24 (2023), 1–12. https://doi.org/10.1093/bib/bbad105 doi: 10.1093/bib/bbad105 |
[63] | W. J. Sun, J. H. Li, S. Liu, J. Wu, H. Zhou, L. H. Qu, et al., RMBase: A resource for decoding the landscape of RNA modifications from high-throughput sequencing data, Nucleic Acids Res., 44 (2016), 1–7. https://doi.org/10.1093/nar/gkw472 doi: 10.1093/nar/gkw472 |
[64] | J. J. Xuan, W. J. Sun, P. H. Lin, K. R. Zhou, S. Liu, L. L. Zheng, et al., RMBase v2.0: Deciphering the map of RNA modifications from epitranscriptome sequencing data, Nucleic Acids Res., 46 (2018), 327–334. https://doi.org/10.1093/nar/gkx934 doi: 10.1093/nar/gkx934 |
[65] | Y. Tang, K. Chen, B. Song, J. Ma, X. Wu, Q. Xu, et al., M6A-Atlas: A comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome, Nucleic Acids Res., 49 (2021), 134–143. https://doi.org/10.1093/nar/gkaa692 doi: 10.1093/nar/gkaa692 |
[66] | D. Huang, B. Song, J. Wei, J. Su, F. Coenen, J. Meng, Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data, Bioinformatics, 37 (2021), i222–i230. ttps://doi.org/10.1093/bioinformatics/btab278 |
[67] | H. Wang, S. H. Zhao, Y. C. Cheng, S. D. Bi, X. L. Zhu, MTDeepM6A-2S: A two-stage multi-task deep learning method for predicting RNA N6-methyladenosine sites of saccharomyces cerevisiae, Front. Microbiol., 13 (2022), 1–14. https://doi.org/10.3389/fmicb.2022.999506 doi: 10.3389/fmicb.2022.999506 |
[68] | L. Fu, B. Niu, Z. Zhu, S. Wu, W. Li, CD-HIT: Accelerated for clustering the next-generation sequencing data, Bioinformatics, 28 (2012), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 doi: 10.1093/bioinformatics/bts565 |
[69] | Z. Chen, P. Zhao, F. Li, Y. Wang, A. I. Smith, G. I. Webb, et al., Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences, Brief Bioinf., 21 (2019), 1676–1696. https://doi.org/10.1093/bib/bbz112 doi: 10.1093/bib/bbz112 |
[70] | Z. Chen, P. Zhao, C. Li, F. Y. Li, D. X. Xiang, Y. Z. Chen, et al., iLearnPlus: A comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization, Nucleic Acids Res., 49 (2021), 1–19. https://doi.org/10.1093/nar/gkaa1112 doi: 10.1093/nar/gkaa1112 |
[71] | A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 1–14. |
[72] | S. Ruder, An overview of multi-task learning in deep neural networks, preprint, arXiv: 170605098. https://doi.org/10.48550/arXiv.1706.05098 |