Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Trajectorial asset models with operational assumptions

  • The paper addresses the problem of providing a framework and an algorithm to evaluate super and sub replicating prices, for European options, having interesting risk-reward characteristics. A general operational framework is put forward and illustrated by an algorithmic construction of one-dimensional models for option pricing. Asset models are defined based on a class of investors characterized by how they operate on financial data leading to potential portfolio rebalances. Once observable variables are selected for modeling, necessary conditions constraining these variables and resulting from the operational setup are derived. Future uncertainty is then reflected in the construction of combinatorial trajectory spaces satisfying such constraints. As the risky asset unfolds, it can be tested dynamically for the validity of observable sufficient conditions that rigorously imply the validity of the models. The paper describes the resulting algorithmic construction of such trajectory spaces and, in the absence of probability assumptions, a minmax algorithm that is available to evaluate the super and sub replicating prices.

    Citation: Sebastian Ferrando, Andrew Fleck, Alfredo Gonzalez, Alexey Rubtsov. Trajectorial asset models with operational assumptions[J]. Quantitative Finance and Economics, 2019, 3(4): 661-708. doi: 10.3934/QFE.2019.4.661

    Related Papers:

    [1] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
    [2] Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875
    [3] Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438
    [4] Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015
    [5] Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010
    [6] Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359
    [7] Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217
    [8] Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216
    [9] H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268
    [10] Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303
  • The paper addresses the problem of providing a framework and an algorithm to evaluate super and sub replicating prices, for European options, having interesting risk-reward characteristics. A general operational framework is put forward and illustrated by an algorithmic construction of one-dimensional models for option pricing. Asset models are defined based on a class of investors characterized by how they operate on financial data leading to potential portfolio rebalances. Once observable variables are selected for modeling, necessary conditions constraining these variables and resulting from the operational setup are derived. Future uncertainty is then reflected in the construction of combinatorial trajectory spaces satisfying such constraints. As the risky asset unfolds, it can be tested dynamically for the validity of observable sufficient conditions that rigorously imply the validity of the models. The paper describes the resulting algorithmic construction of such trajectory spaces and, in the absence of probability assumptions, a minmax algorithm that is available to evaluate the super and sub replicating prices.


    Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].

    One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.

    Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.

    The fractional derivative of Caputo-Fabrizio for the function x(t) is defined as [33]

    CFDα0x(t)=B(α)1αt0dds(x(s)) eα1α(ts)ds, (1.1)

    and its corresponding fractional integral is

    CFIαx(t)=1αB(α)x(t)+αB(α)t0x (s)ds,    0<α<1, (1.2)

    where x(t) be continuous and differentiable on [0, T]. Also, in the above definition, the function B(α)>0 is a normalized function which satisfy the condition B(0)=B(1)=0. The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by

    (CFIα0)(CFDα0f(t))=f(t)f(a). (1.3)

    In this section, we will introduce a multidimentional FDE subject to the initial condition. Let α(0,1], 0<α1<α2<...,αm<1, and m is integer real number,

    CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, (2.1)

    where x=x(t),tJ=[0,T],TR+,xC(J).

    To facilitate the equation and make it easy for the calculation, we let x(t)=c0+X(t) so Eq (2.1) can be witten as

    CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. (2.2)

    the algorithm depends on converting the initial condition from a constant c0 to 0.

    Let CFDαX=y(t) then X=CFIαy, so we have

    CFDαiX= CFIααi CFDαX= CFIααiy,  i=1,2,...,m. (2.3)

    Substituting in Eq (2.2) we obtain

    y=f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy). (2.4)

    Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,

    |f(t,y0,y1,...,ym)||f(t,z0,z1,...,zm)|Lmi=0|yizi|, (2.5)

    which implies

    |f(t,c0+CFIαy,CFIαα1y,..,CFIααmy)f(t,c0+CFIαz,CFIαα1z,..,CFIααmz)|Lmi=0| CFIααiy CFIααiz|. (2.6)

    The solution algorithm of Eq (2.4) using ADM is,

    y0(t)=a(t)yn+1(t)=An(t), j0. (2.7)

    where a(t) pocesses all free terms in Eq (2.4) and An are the Adomian polynomials of the nonlinear term which takes the form [34]

    An=f(Sn)n1i=0Ai, (2.8)

    where f(Sn)=ni=0Ai. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,

    y(t)=i=0yi(t). (2.9)

    lastly, the solution of the Eq (2.4) takes the form

    x(t)=c0+X(t)=c0+ CFIαy(t). (2.10)

    At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of the original Eq (2.1).

    Define a mapping F:EE where E=(C[J],) is a Banach space of all continuous functions on J with the norm x= max.

    Theorem 3.1. Equation (2.4) has a unique solution whenever 0 < \phi < 1 where \phi = L\left(\sum_{i = 0}^{m}\frac{\left[ \left(\alpha-\alpha _{i}\right) \left(T-1\right) \right] +1}{B\left(\alpha -\alpha_{i}\right) }\right) .

    Proof. First, we define the mapping F:E\rightarrow E as

    \begin{equation*} Fy = f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y). \end{equation*}

    Let y and z\in E are two different solutions of Eq (2.4). Then

    \begin{equation*} Fy-Fz = f(t,c_{0}+^{CF}I^{\alpha }y,^{CF}I^{\alpha -\alpha _{1}}y,..,^{CF}I^{\alpha -\alpha _{m}}y)-f(t,c_{0}+^{CF}I^{\alpha }z,^{CF}I^{\alpha -\alpha _{1}}z,...,^{CF}I^{\alpha -\alpha _{m}}z) \end{equation*}

    which implies that

    \begin{eqnarray*} \left\vert Fy-Fz\right\vert & = &\left\vert f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y)\right. \\ &&-\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }z,\text{ }^{CF}I^{\alpha -\alpha _{1}}z,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}z)\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}y-\text{ }^{CF}I^{\alpha -\alpha _{i}}z\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( y-z\right) +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( y-z\right) ds\right\vert \\ \left\Vert Fy-Fz\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert y-z\right\vert +\frac{\alpha -\alpha _{i}}{ B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{\max }\left\vert y-z\right\vert \int_{0}^{t}ds \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert T \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert y-z\right\Vert . \end{eqnarray*}

    under the condition 0 < \phi < 1, the mapping F is contraction and hence there exists a unique solution y\in C\left[ J\right] for the problem Eq (2.4) and this completes the proof.

    Theorem 3.2. The series solution of the problem Eq (2.4)converges if \left\vert y_{1}\left(t\right) \right\vert < c and c isfinite.

    Proof. Define a sequence \left\{ S_{p}\right\} such that S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) is the sequence of partial sums from the series solution \sum_{i = 0}^{\infty }y_{i}\left(t\right), we have

    \begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y) = \sum\limits_{i = 0}^{\infty }A_{i}, \end{equation*}

    So

    \begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p}) = \sum\limits_{i = 0}^{p}A_{i}, \end{equation*}

    From Eq (2.7) we have

    \begin{equation*} \sum\limits_{i = 0}^{\infty }y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{\infty }A_{i-1} \end{equation*}

    let S_{p}, S_{q} be two arbitrary sums with p\geqslant q . Now, we are going to prove that \left\{ S_{p}\right\} is a Caushy sequence in this Banach space. We have

    \begin{eqnarray*} S_{p} & = &\sum\limits_{i = 0}^{p}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{p}A_{i-1,} \\ S_{q} & = &\sum\limits_{i = 0}^{q}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{q}A_{i-1.} \end{eqnarray*}
    \begin{eqnarray*} S_{p}-S_{q} & = &\sum\limits_{i = 0}^{p}A_{i-1}-\sum\limits_{i = 0}^{q}A_{i-1} = \sum\limits_{i = q+1}^{p}A_{i-1} = \sum\limits_{i = q}^{p-1}A_{i-1} \\ & = &f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})- \\ &&f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1}) \end{eqnarray*}
    \begin{eqnarray*} \left\vert S_{p}-S_{q}\right\vert & = &\left\vert f(t,c_{0}+\text{ } ^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},..., \text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})-\right. \\ &&\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1})\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{p-1}- \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{q-1}\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( S_{p-1}-S_{q-1}\right) +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( S_{p-1}-S_{q-1}\right) ds\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left \vert S_{p-1}-S_{q-1}\right\vert ds \end{eqnarray*}
    \begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{ \max }\left\vert S_{p-1}-S_{q-1}\right\vert \int_{0}^{t}ds \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \sum\limits_{i = 0}^{m}\left( \frac{ 1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+ \frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert S_{p}-S_{q}\right\Vert \end{eqnarray*}

    let p = q+1 then,

    \begin{equation*} \left\Vert S_{q+1}-S_{q}\right\Vert \leq \phi \left\Vert S_{q}-S_{q-1}\right\Vert \leq \phi ^{2}\left\Vert S_{q-1}-S_{q-2}\right\Vert \leq ...\leq \phi ^{q}\left\Vert S_{1}-S_{0}\right\Vert \end{equation*}

    From the triangle inequality we have

    \begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &\left\Vert S_{q+1}-S_{q}\right\Vert +\left\Vert S_{q+2}-S_{q+1}\right\Vert +...\left\Vert S_{p}-S_{p-1}\right\Vert \\ &\leq &\left[ \phi ^{q}+\phi ^{q+1}+...+\phi ^{p-1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ 1+\phi +...+\phi ^{p-q+1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ \frac{1-\phi ^{p-q}}{1-\phi }\right] \left\Vert y_{1}\left( t\right) \right\Vert \end{eqnarray*}

    Since 0 < \phi < 1, p\geqslant q then \left(1-\phi ^{p-q}\right) \leq 1 . Consequently

    \begin{equation} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\left\Vert y_{1}\left( t\right) \right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ \forall t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} (3.1)

    but \left\vert y_{1}\left(t\right) \right\vert < \infty and as q\rightarrow \infty then, \left\Vert S_{p}-S_{q}\right\Vert \rightarrow 0 and hence, \left\{ S_{p}\right\} is a Caushy sequence in this Banach space then the proof is complete.

    Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be \underset{t\epsilon J}{\max }\left\vert y\left(t\right)-\sum_{i = 0}^{q}y_{i}\left(t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left(t\right) \right\vert

    Proof. From the convergence theorm inequality (Eq 3.1) we have

    \begin{equation*} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*}

    but, S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) as p\rightarrow \infty then, S_{p}\rightarrow y\left(t\right) so,

    \begin{equation*} \left\Vert y\left( t\right) -S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi } \underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*}

    so, the maximum absolute truncated error in the interval J is,

    \begin{equation} \underset{t\epsilon J}{\max }\left\vert y\left( t\right) -\sum\limits_{i = 0}^{q}y_{i}\left( t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} (3.2)

    and this completes the proof.

    In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.

    Example 4.1. Application of linear FDE

    \begin{equation} ^{CF}Dx\left( t\right) +2a^{CF}D^{1/2}x\left( t\right) +bx\left( t\right) = 0, { \ \ \ \ \ \ \ }x\left( 0\right) = 1. \end{equation} (4.1)

    A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]

    Set

    \begin{equation*} X\left( t\right) = x\left( t\right) -1 \end{equation*}

    Equation (4.1) will be

    \begin{equation} ^{CF}DX\left( t\right) +2a^{CF}D^{1/2}X\left( t\right) +bX\left( t\right) = 0, { \ \ \ \ \ \ \ }X\left( 0\right) = 0. \end{equation} (4.2)

    Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,

    \begin{equation} y = -\frac{1}{2}-2I^{1/2}y-\frac{1}{2}I\text{ }y \end{equation} (4.3)

    Appling ADM to Eq (4.3), we find the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2}\text{ } ^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} (4.4)

    Appling Picard solution to Eq (4.2), we find the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-\frac{1}{2}-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2} \text{ }^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} (4.5)

    From Eq (4.4), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q} y_{i}} \left(t\right) while from Eq (4.5), the solution using Picard technique is given by y\left(t\right) = \; \underset{i\rightarrow \infty }{ Lim} \; y_{i}\left(t\right) . Lately, the solution of the original problem Eq (4.2), is

    \begin{equation*} x\left( t\right) = 1+\text{ }^{CF}I\text{ }y\left( t\right) . \end{equation*}

    One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.

    Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.

    Figure 1.  ADM and Picard solution of Ex. 4.1.

    Example 4.2. Consider the following nonlinear FDE [35]

    \begin{eqnarray} ^{CF}D^{1/2}x & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}D^{1/4}x+\frac{ 1}{4}x^{2},\text{ } \\ x\left( 0\right) & = &0. \end{eqnarray} (4.6)

    Appling Eq (2.3) to Eq (4.6), and using initial condition,

    \begin{equation} y = \frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4} \right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}I^{1/4}y+\frac{1}{4}\left( ^{CF}I^{1/2}y\right) ^{2}. \end{equation} (4.7)

    Appling ADM to Eq (4.7), we find the solution algorithm will be become

    \begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &\frac{1}{8}\text{ }^{CF}I^{1/4}y_{i-1}+\frac{1}{4} \left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1. \end{eqnarray} (4.8)

    at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.

    Appling Picard solution to Eq (4.7), we find the the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{8}\text{ } ^{CF}I^{1/4}y_{i-1}+\frac{1}{4}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} (4.9)

    From Eq (4.8), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.9), the solution using Picard technique is given by y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.7), is.

    \begin{equation*} x\left( t\right) = \text{ }^{CF}I^{1/2}y. \end{equation*}

    One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.

    Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):

    Table 1.  Max. absolute error.
    q max. absolute error
    2 0.114548
    5 0.099186
    10 0.004363

     | Show Table
    DownLoad: CSV

    Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.

    Figure 2.  ADM and Picard solution of Ex. 4.2.

    Example 4.3. Consider the following nonlinear FDE [35]

    \begin{eqnarray} ^{CF}D^{\alpha }x & = &3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}D^{1/2}x\right) ^{2}, \\ x\left( 0\right) & = &0. \end{eqnarray} (4.10)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    \begin{equation} y = 3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}I^{1/2}y\right) ^{2} \end{equation} (4.11)

    Appling ADM to Eq (4.11), we find the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &\frac{1}{10}\left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1 \end{eqnarray} (4.12)

    at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.

    Then appling Picard solution to Eq (4.11), we find the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{10}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} (4.13)

    From Eq (4.12), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.13), the solution is y\left(t\right) = \underset{i\rightarrow \infty }{Lim}y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.11), is

    \begin{equation*} x\left( t\right) = ^{CF}Iy\left( t\right) . \end{equation*}

    One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.

    Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):

    Table 2.  Max. absolute error.
    q max. absolute error
    2 0.00222433
    5 0.0000326908
    10 2.88273*10 ^{-8}

     | Show Table
    DownLoad: CSV

    Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with \alpha = 1 .

    Figure 3.  ADM and Picard solution where of Ex. 4.3.

    Example 4.4. Consider the following nonlinear FDE [35]

    \begin{eqnarray} ^{CF}D^{\alpha }x & = &t^{2}+\frac{1}{2}\text{ }^{CF}D^{\alpha _{1}}x+\frac{1}{ 4}\text{ }^{CF}D^{\alpha _{2}}x+\frac{1}{6}\text{ }^{CF}D^{\alpha 3}x+\frac{1 }{8}x^{4}, \\ x\left( 0\right) & = &0. \end{eqnarray} (4.14)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    \begin{equation} y = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4} \left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y\right) ^{4}, \end{equation} (4.15)

    Appling ADM to Eq (4.15), we find the solution algorithm become

    \begin{eqnarray} y_{0}\left( t\right) & = &t^{2}, \\ y_{i}\left( t\right) & = &\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{ 1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}A_{i-1},{ \ \ }i\geq 1 \end{eqnarray} (4.16)

    where A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{\alpha }y\right) ^{4}.

    Then appling Picard solution to Eq (4.15), we find the solution algorithm become

    y_{0}\left( t\right) = t^{2}, \\ y_{i}\left( t\right) = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y_{i-1}\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y_{i-1}\right) \\+\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y_{i-1}\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y_{i-1}\right) ^{4}\ \ \ \ \ i\geq 1. (4.17)

    From Eq (4.16), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.17), the solution using Picard technique is y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.14), is

    \begin{equation*} x\left( t\right) = ^{CF}I^{\alpha }y\left( t\right) . \end{equation*}

    One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 at \; \alpha = 0.7, \; \alpha _{1} = 0.1, \alpha _{2} = 0.3, \alpha _{3} = 0.5.

    Figure 4.  ADM and Picard solution where of Ex. 4.4.

    The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.

    The authors declare there is no conflict of interest.



    [1] Brigo D, Mercurio F (2006) Interest rate models-theory and practice: with smile, inflation and credit.
    [2] Britten-Jones M, Neuberger A (1996) Arbitrage pricing with incomplete markets. App Math Financ 3: 347-363. doi: 10.1080/13504869600000016
    [3] Campbell JY, Lo AW, MacKinlay CA, et al. (1997) The Econometrics of financial markets, Princeton, NJ: Princeton University Press.
    [4] Carassus L, Gobet E, Temam E (2006) A class of financial products and models where superreplication prices are explicit. Proceedings of the Ritsumeikan International Symposium on Stochastic Processes and Applications to Mathematical Finance, 67-84.
    [5] Carassus L, Vargiolu T (2018) Super-replication price: it can be ok. Esaim Proc Surv 64: 54-64.
    [6] Crisci D (2019) Trajectory based market models for two stocks. MSc. Thesis, Mathematics, Ryerson University.
    [7] Cutland NJ, Roux A (2012) Derivative pricing in discrete time.
    [8] Degano IL, Ferrando SE, González AL (2018) Trajectory based models. evaluation of minmax pricing bounds. Dyn Cont Discrete Impulsive Ser B Appl & Algorithms 25: 97-128.
    [9] Eberlein E, Jacod J (1997) On the range of option prices. Financ Stoch 1: 131-140.
    [10] Feng L, Li B, Podobnik B, et al. (2012) Linking agent-based models and stochastic models of financial markets. Proceedings of the National Academy of Sciences of the United States of America 109: 347-363.
    [11] Ferrando S, et al. (2019a) Appendix 1: Algorithm, trajectorial asset models in matlab. Supplementary material to: "Trajectorial Asset Models with Operational Assumptions".
    [12] Ferrando S, et al. (2019b) Appendix 2: Matlab software bundle implementing trajectorial models. file: Operational root.zip. Supplementary material to: "Trajectorial Asset Models with Operational Assumptions".
    [13] Ferrando SE, González AL, Degano IL, et al. (2019) Trajectorial market models: arbitrage and pricing intervals. Revista de la Unión Matemática Argentina 60: 149-185.
    [14] Föllmer H, Schied A (2013) Stochastic finance:an introduction in discrete time. third edition, 3.
    [15] Gilboa I (2009) Theory of decision under uncertainty.
    [16] Kahalé N (2017) Super-replication of financial derivatives via convex programming. Manage Sci 63: 2323-2339.
    [17] Merton R (1973) Theory of rational option pricing. Bell J Econ Manage Sci 4: 141-183.
    [18] Pfleiderer P (2014) Chameleons: the misuse of theoretical models in finance and economics. Revista de Econ Institucional 16: 23-60.
    [19] Rebonato R (2012) Volatility and correlation: The perfect hedger and the fox, second edition.
    [20] Schoutens W, Simons E, Tistaert J (2006) A perfect calibration! now what? Best Wilmott 2: 281-304.
    [21] Sniedovich M (2016) From statistical decision theory to robust optimization: A maximin perspective on robust decision-making, Robustness Analysis in Decision Aiding, Optimization and Analytics. Editors, M. Doumpos, C. Zopounidis and E. Grigoroudis., International Series in Operations Research & Management: 59-85.
  • This article has been cited by:

    1. Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894
    2. H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630
    3. Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006
    4. A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064
    5. Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3829) PDF downloads(403) Cited by(1)

Figures and Tables

Figures(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog