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Abstract: The paper addresses the problem of providing a framework and an algorithm to evaluate
super and sub replicating prices, for European options, having interesting risk-reward characteristics.
A general operational framework is put forward and illustrated by an algorithmic construction of
one-dimensional models for option pricing. Asset models are defined based on a class of investors
characterized by how they operate on financial data leading to potential portfolio rebalances. Once
observable variables are selected for modeling, necessary conditions constraining these variables and
resulting from the operational setup are derived. Future uncertainty is then reflected in the construction
of combinatorial trajectory spaces satisfying such constraints. As the risky asset unfolds, it can be
tested dynamically for the validity of observable sufficient conditions that rigorously imply the validity
of the models. The paper describes the resulting algorithmic construction of such trajectory spaces
and, in the absence of probability assumptions, a minmax algorithm that is available to evaluate the
super and sub replicating prices.
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1. Introduction

It is well known (see Eberlein and Jacod (1997) and Carassus et al. (2006)) that a large class of
stochastic models put forward in the literature, and in order to obtain financial options’ prices, provide
non informative super and sub replicating bounds. More specifically, these bounds degenerate into
absolute bounds. The latter refers to bounds that hold for all possible no arbitrage models and hence,
are non informative (Merton (1973)).
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Here, we address the following problem: can we justify simple models for asset evolution where
we can evaluate sub and super replication prices and, in such a way that these quantities have useful
risk-rewards characteristics?

An algorithmic construction, and its mathematical justification, that evaluates such bounds has
already been provided in Degano et al. (2018). The said algorithm operates in a general
probability-free context. To motivate such a setting, we point out that the support of an stochastic
process is an offshoot of its assumed probability distribution and implicitly incorporates several
analytical constraints. As such, it can include paths which can never appear as a rebalancing stock
value (e.g. Brownian Motion has infinite speed). One speculates, from our perspective, that this latter
feature is the cause for worst case bounds to degenerate into absolute bounds.

The issue at stake is the meaning of a price provided by a stochastic model (e.g. the Black and
Scholes model): can you superhedge pathwise (in particular perfectly hedge) with such a price? The
answer is no and this is so for several reasons: the price assumes continuous time rebalancing, market
conditions for the applicability of the model are not spelled out, it is not clear how and when
unfolding chart paths will correspond to a process’s path, etc. The same issues are also present when
superhedging is replaced by risk-taking investment, the above list of reasons will make the meaning
of the model’s profit and loss profile unclear. In this paper, we propose models that are robust, the
superhedging property is then expected to be uphold for future unfolding trajectories. Superhedging is
what you aim for as the cheaper alternative of exact hedging is not available given that real markets
are incomplete (we are not allowing to use options for hedging). So it boils to a question on how
robust and realistic the proposed models are and how tight the computed prices are. The whole paper
is an attempt to address these issues.

The above reasoning suggests to place emphasis in, well justified, scenario construction as a prior
step to imposing a probability distribution. Proceeding with this motivation, we show, by example,
models with realistic bounds and useful risk-reward characteristics. The paper Carassus and Vargiolu
(2018), using a completely different approach but emphasizing properties of the support of the process,
does provide examples of useful price bounds. On the other hand, Kahalé (2017) employs convex
programming for the estimation of bounds in a context of trading with a larger pool of assets.

We provide an implementation of the general algorithm from Degano et al. (2018). Most
importantly, we put forward a general methodology, based on financial operations, observations and
worst case estimation, to algorithmically construct a non-probabilistic asset model evolution. We
show, via simple examples, how an operational approach based on observable variables can be put to
work to price an option written on a single risky asset. The paper could be considered to provide a
proof of concept by introducing an alternative approach to asset model construction and it is here
illustrated in specific models. The methodology is general as it is based on constructing scenarios
(trajectories), from a worst case perspective, and superhedging a future obligation. The mathematical
framework is presented in Ferrando et al. (2019) and Degano et al. (2018). The financial setting is the
most basic one, namely a riskless bank account paying zero interest rates and a risky asset with no
transaction costs (in particular there is no bid-ask spread). The goal is to define models based on
observable quantities that relate directly to a class of investors interested in objectively gauging the
market price of a European option Z written on the asset. For simplicity we restrict ourselves to path
independent European options. No analytical or probabilistic assumptions are required; the basic
modeling object, to be constructed, is a set of trajectories S. The algorithmic construction and
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justification for the trajectory sets is the main thrust of the paper. It is known (Degano et al. (2018))
that, under some general conditions, knowledge of S allows the evaluation of lower and upper bounds
for the option’s price. In the absence of a probabilistic structure, these bounds are defined via a
minmax optimization giving sublinear/superlinear operators acting on general functions. The upper
bound represents the minimal investment required for the existence of a portfolio that superhedges the
option for each trajectory S ∈ S (with a dual meaning for the lower bound). Section 2 summarizes the
notions and results that we use from Degano et al. (2018). We recall that worst option bounds in a
stochastic setting can be obtained by considering all equivalent martingale measures (Föllmer and
Schied (2013)).

The paper constructs trajectory sets S via combinatorial definitions, this is in contrast to the
modeling with random paths from a stochastic process. The trajectory sets are obtained by imposing
constraints that in turn correspond to how a class of investors sample a financial chart and how they
rebalance their portfolios as a response to changes of their data summaries. We allow for all possible
trajectories satisfying the said constraints. The constructions naturally rely on operational constraints
and observable quantities, the latter are estimated via a worst case methodology; on this topic we refer
to Sniedovich (2016) for a general discussion (we do not rely on any specifics of that paper).

Expressed in other words: we describe an operational setup that provides a model for chart values
x(ti) and times ti at which investors rebalance their portfolios. Such setting is based on observable
variables that result from sampling a given chart and the ensuing portfolio rebalances. Trajectory sets
model the times ti and the values x(ti) plus any other relevant variables that restrict the future manifold
of trajectories (in this paper we concentrate on the variation but other possibilities could be incorporated
as well). The trajectory construction is described by an algorithm.

There could be at least two quick criticisms to the setting outlined above; we deal with them briefly
now and offer the rest of the paper as additional arguments. i) the models are subjective as they
are investor dependent and so, in this way, are quite idiosyncratic. The proposed models are not
subjective as they depend on objective actions, namely: specific sampling of charts, accumulation of
quantities and portfolio rebalances as a response to values of observed variables. These actions define,
implicitly, a nonempty class of investors. Our assumptions only involve results from measurements
and operations, both allow for a precise discussion on how and when an unfolding chart x(t) may fail
to be associated to some S ∈ S. In particular, the models do not intend to reproduce option’s market
prices (which may require considering multiple classes of investors and their bets on the risky asset)
but to provide a particular investor class with an objective tool to assess risk-reward alternatives. ii)
the combinatorial definition (i.e. considering all possible cases), used to construct trajectory sets based
on worst case estimation, will produce unrealistic option prices. Clearly, the obtained option bounds
could be too wide but, we argue, this feature will depend on the relevance of the proposed trajectory
set. We show, by example, that the bounds we obtain for some models are realistic when compared to
market prices. In fact, in the proposed type II models, we isolate a specific feature, based on a general
property that can naturally be incorporated in any model construction, that restricts the effect of a worst
case estimated parameter propagating into the price bounds’ spread (see Section 11). Moreover, the
fundamental risk-reward alternative, in the proposed setting, can be analyzed objectively given that we
only rely on observable quantities. That is, one can know the empirical implications on risk and reward
due to specific observable conditions not being satisfied by the unfolding chart. This is not the case
in the usual modeling with stochastic processes in finance. As an example, we indicate the difficulty
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in the analysis of parameter estimation and the unknown logical repercussions of calibrating to market
values (e.g. the use of implied volatility, see Section 9.3.5 in J.Y. Campbell and MacKinlay (1997) as
well as Schoutens et al. (2006)).

A third criticism relates to robustness of worst case estimation; this is an empirical concern that
crucially depends on the relevance of the chosen model variables. We make specific comments on this
issue at appropriate times along the paper, see for example Sections 6.3 and 9.2.

The approach does not preclude adding probabilities to the models; the methodology introduces
possible future events prior to probabilities. Once a trajectory space is in place, if deemed appropriate,
probabilities can be added a posteriori. In the case of a continuous time stochastic process model {Xt},
one could set x(t) = Xt(w) and consider that the samples x(ti) are given by a sequence of, investor
dependent, stopping times {τi}; that is, x(ti) = Xτi(w)(w). Our approach dispenses with any modeling of
x(t), in particular, it avoids unnecessary implicit assumptions related to the stochastic process {Xt}.

Chart paths are observable but are not uniquely defined, e.g. their values will depend on the
sampling frequency. In our models, a sampled trajectory uniquely emerges as a result of restricting
ourselves to a class of investors whose operations act as preconditions resulting on the observed
samples. This is analogous to a measurement setup in physics. The basic modeling ingredients are
trajectory coordinates values S i and times Ti associated to portfolio rebalances. The paper shows by
example that there are interesting ways to construct trajectory sets with relevant financial features that
produce models supporting a rigorous risk-reward analysis.

Noise driven stochastic models provide access to a powerful stochastic calculus and are put to
good use to model an array of important financial situations (e.g. Brigo and Mercurio (2006)). From
our point of view, a deficiency in the foundations of that modeling approach is that the sources of
uncertainty (noise) appearing in the modeling equations are not, in the majority of cases, empirically
linked to an actual phenomena. Therefore, repercussions on the stochastic model due to changing
market conditions (e.g. non stationary effects) are difficult to detect. This foundational deficiency
undermines the meaning of financial implications dependent on the underlying model. One speculates
that the proliferation of asset models in finance indicates the lack of general, external, criteria to asses
their suitability. Justification of some of the proposed models is then sought in statistics but, without
external criteria of validity, a moderately large number of modeling assumptions provides unreliable
conclusions. We refer to Pfleiderer (2014) for a general (critical) discussion of models in finance and
economics. We are aware of Feng et al. (2012), and related literature, were attempts are made to link
investment behaviors in agent based models with stochastic emerging phenomena. We also remark on
the economic literature on rule-based decisions (see Gilboa (2009)).

In contrast to the above described situation, we use the proposed methodology to establish rigorous
results (see Section 6) showing when the models will succeed. The results allow to detect dynamically,
i.e. as the chart unfolds, when hypothesis, required for validity of the said results, could fail. In this
way we establish objective conditions implying falsifiable models.

The paper uses some overlapping of explanations across different, but related, sections. In this
way the formal definitions of quantities, being them observable features or mathematical variables, is
given an empirical meaning allowing to appreciate their roles in the constructions. In order to follow
several of our arguments, it is crucial to keep in mind the empirical meaning of the variables used in
the trajectory set construction.

The presentation is organized as follows, Section 2 introduces some notation and basic notions
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needed from the general framework from Ferrando et al. (2019) and Degano et al. (2018). Section 3
provides an overview of the characteristics of charts that will be modeled by trajectory sets. Section 4
describes the basic operations performed on charts by our class of investors. Section 5 provides the
paper basic construction given by a recursive algorithm. Section 5.1 is a first introduction to some of
the parameters that are used in the construction of models. Section 5.2 describes an algorithm for the
recursive step completing the construction introduced in Section 5. Section 6 establishes rigorous
results giving observable conditions implying the validity of the models introduced. Section 7
presents an analysis of trajectory approximation error accumulation. Section 8 sets model parameters
to worst case observed estimates. Section 9 completes the specifications from Section 8 by calibrating
some remaining parameters, enumerating characteristics of the data employed and providing a simple
description of the meaning of worst case. The section also illustrates several characteristics of
estimated parameters. Section 9.5 displays price bounds for the different models introduced. Section
10 explains and illustrates the risk-reward tension of the models. Section 11 explains how a particular
feature of type II models blocks the effect of worst case parameter estimation propagating into every
possible node and, in this way, providing tighter option bounds. Section 12 provides an extended
discussion of what we believe to be the most important take away from the paper.

The supporting material in Appendix 1 links to a file providing details of Matlab software
implementing an algorithm that constructs the trajectory models as well as an algorithm that evaluates
the price bounds and optimal hedging. The supporting material in Appendix 2 links to a bundle of
files containing Matlab software, data and further output from the software.

2. Option pricing in trajectory models

This introduces some notation and notions from Degano et al. (2018) (that reference should be
consulted for details).

A trajectory set model S, in this article, is given by a set of sequences S = {Si ≡ (S i,Ti,Wi)}i≥0

with S 0 = s0,T0 = 0,W0 = 0, ∀S ∈ S. Of course, other variables/coordinates are also possible. S i

models the values of the tradable risky asset at times Ti when an investor rebalances her portfolio and
Wi models a variable representing a financial observable that presumably restricts the future possible
manifold of asset values.

The financial context is of a risky asset x(t) and a zero interest bank account. The financial goal is
to price a European option with time to expiration T . Given this context, our constructions will imply
that for each S ∈ S there exists N(S) satisfying TN(S) = T . The market model is given byM = S ×H

where H = {Hi} ∈ H are sequences of functions Hi : S → R representing trading strategies. Precise
definitions are given below. The following conditional spaces will play a key role. For given k ≥ 0 and
S ∈ S, set:

S(S,k) ≡ {S′ ∈ S : Si = S′i ∀ 0 ≤ i ≤ k}. (1)

Notice S(S,0) = S and that if S′ ∈ S(S,k), then S(S′,k) = S(S,k). The tuple (S, k) will be referred to as a
node (equivalently, we may refer to a node by Sk as well).

Definition 2.1 (Portfolio Set). A portfolio H is a sequence of (pairs of) functions H = {Φi = (Bi,Hi)}i≥0

with Bi,Hi : S → R.
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• A portfolio H is said to be admissible for S if for each S ∈ S there exists a nonnegative integer
NH(S) ≤ N(S) such that Hi(S) = 0 for all i ≥ NH(S).
• A portfolio H is said to be self-financing at S ∈ S if for all i ≥ 0,

Hi(S) S i+1 + Bi(S) = Hi+1(S) S i+1 + Bi+1(S). (2)

• A portfolio H is called non-anticipative if for all S,S′ ∈ S, satisfying S′k = Sk for all 0 ≤ k ≤ i, it
then follows that Φi(S) = Φi(S′).

Hi(S) and Bi(S) represent the number of shares and the funds in the bank account respectively,
held at time Ti. We abuse the notation by writing H = {Hi}i≥0 instead of H = {(Bi,Hi)}i≥0. Given
S ∈ S and a self-financing portfolio H, the portfolio value defined by VH(i,S) = Bi(S) + Hi(S)S i is
equal to VH(i,S) = VH(0, S 0) +

∑i−1
k=0 Hk(S) ∆kS , during the period [i, i + 1) for i = 0, . . . ,NH(S) − 1

and ∆kS ≡ (S k+1 − S k); notice that VH(0, S 0) = B0(S) + H0(S)S 0. Clearly, to specify self-financing
portfolios, it is enough to provide sequences H = {Hi} of non-anticipative functions and an associated
real number V0 = VH(0, S 0), since the corresponding Bi are obtained from (2).

We callM n-bounded (or just simply bounded) if there exists a constant n so that : NH(S) ≤ N(S) ≤
n for all S ∈ S and H ∈ H .

The models are discrete in the sense that we index potential portfolio rebalances by integer numbers.
Otherwise, stock charts and investment amounts can take values in general subsets of the real numbers
and time can flow continuously.
Let Z : S → R denote a general function, from time to time, we will refer to such function informally as
the derivative or payoff function. Results in the paper mainly apply to path dependent European options
but at some points we restrict to path independent options. This choice is to keep developments simple
and so avoid getting diverted by inessential complications. Similarly, one could handle American
options but doing so will distract from our main focus. The usual dynamic programming approach to
pricing American options in discrete time (see for example Cutland and Roux (2012) section 7.6) can
be easily adapted to superhedging such type of options.

The quantity Vk(S,Z,M) introduced in the next definition is the minimum capital needed,
conditional on a node (S , k), to superhedge Z.

Definition 2.2 (Conditional Minmax Bounds). Given a marketM = S × H , k ≥ 0 and S ∈ S. Let Z
be a function defined on S, define:

Vk(S,Z,M) ≡ inf
H∈H

sup
S′∈S(S,k)

[Z(S′) −
NH(S′)−1∑

i=k

Hi(S′)∆iS ′]. (3)

Also set Vk(S,Z,M) ≡ −Vk(S,−Z,M). Since V0(S,Z,M) and V0(S,Z,M) depend on S only through
S0, we adopt the notation V(S0,Z,M) and V(S0,Z,M) respectively. These quantities are called price
bounds.

Stochastic models imply existence of a fair price interval for the derivative Z if the market does not
contain arbitrage strategies. In our context, the arbitrage-free condition is replaced by the following
notion of 0-neutral market.
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Definition 2.3 (0-Neutral Market). The marketM is conditionally 0-neutral at node (S, k) if

Vk(S,Z = 0,M) = 0.

For k = 0, we will just refer toM as 0-neutral.

The notion of 0-neutral market, taken from Degano et al. (2018), was originally introduced in
Britten-Jones and Neuberger (1996) and was considered equivalent to arbitrage-free in the latter
reference. In our general setting, it is only a necessary condition for a market to be arbitrage-free
while simultaneously allowing for arbitrage opportunities and a well defined theory of option pricing.
0-neutrality is the key condition to obtain a well defined fair price interval (Degano et al. (2018)).

Theorem 2.1 below is stated for a bounded market and H assumed closed under addition. This is
done to avoid introducing further notions, the result holds in more generality as indicated in Ferrando
et al. (2019).

Theorem 2.1 (Price Interval). Consider a bounded marketM = S × H and a function Z defined on
S; fix S ∈ S and k ≥ 0. IfH is closed under addition andM is conditionally 0-neutral at (S, k), then:
Vk(S,Z,M) ≤ Vk(S,Z,M).

Upper bounds allow to superhedge, namely, for a given ε > 0, there exists H ∈ H , an optimal
portfolio, with initial capital V(S 0,Z,M) + ε such that

V(S 0,Z,M) + ε +

N(S)−1∑
i=0

Hi(S)∆iS ≥ Z(S) ∀S ∈ S. (4)

We emphasize that the superhedging property is the crucial property in applications. An analogous
property holds for the lower bound.

It then remains to address the issue of how to guarantee, for a given trajectory set model S, that the
conditional 0-neutral property holds at any given node (S, k). For our simple case of zero interest rates
and a single risky asset this just means that for any given node (S, k), there exists S′ and S′′ in S(S,k)

satisfying:
0 ≤ (S ′i+1 − S i) & (S ′′i+1 − S i) ≤ 0, (5)

details are found in Degano et al. (2018). Appendix 1 complements the presentation of trajectory based
markets describing an algorithm to evaluate option bounds and optimal portfolios.

In the paper we consistently differentiate between chart values (these being observable on a market)
and trajectory coordinates (given by the models).

3. Operational setting

We refer to charts as the market quoted price x(t) at time t of a risky asset x. We formalize this
by considering a chart to be a map x : T → δ̂0 N where δ̂0 ≡ 0.01 (of the monetary unit under
consideration) and T a time interval. One could naturally accommodate assets that take negative
values but, for simplicity, we do not do so. Unless explicitly indicated otherwise, an interval of real
numbers [a, b] is understood to mean [a, b]∩∆ Z, for a given ∆ > 0, when the variable represents time.
So, T ⊆ ∆ Z. We will use T , to denote the time length to maturity of a European option contract active
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in a given interval [t0, t0 + T ] and written on the asset x. Instead of replacing δ̂0 by 0.01 in the rest of
the paper, we use δ̂0 for readability.

The following informal enumeration indicates the ingredients that we will use to construct trajectory
sets in the paper. In this way, trajectory coordinates will result from a class of investors that rebalance
their portfolios based on prescribed operations on chart data. For fixed real numbers δ, δ0, δ ≥ δ0, and
∆ > 0:

1. Charts x are sampled at dynamic times rl according to δ0.
2. Time intervals have a lower bound resolution ∆ in the sense that (rl+1 − rl) ≥ ∆ > 0.
3. Times ti, for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are given by an investor prescribed

threshold δ.
4. Sampled variation w(x, t) is accumulated for the samples x(rl).
5. There is a dynamical number of portfolio rebalances N(x, [t0, t0 +T ]) that take place in [t0, t0 +T ].

Hence, we deal with a class of investors that will react to chart changes of size δ and observe
chart values at a certain time resolution ∆ and spatial resolution δ0. From this perspective, these
portfolio managers want to evaluate investment opportunities related to a European option. They want
to compare market prices relative to their operational portfolio rebalancing.

Given this setup, the operations of sampling and portfolio re-balancing performed on chart samples
will create the associations:

x(ti)→ S i, ti → t0 + Ti, which we write compactly as: x(ti)→ Si or x→ S.

For the precise definition of the notion of association, we refer to Definition 6.1. Notice that w(x, ti) is
neglected above; a specific w(x, ti) is introduced in Section 4 and its role is explained elsewhere in the
paper. Historical, worst case, values of w(x, t) and the operational setup, will limit the minimum and
maximum possible number of samples as well as their ranges. In this way, we will obtain necessary
constraints restricting the possible values of Si+1 for given S0, . . . ,Si. Such restrictions are used to
define S; therefore, the meaning of Si+1 is that of possible values at which an investor will re-balance
her portfolio given a prescribed way of processing the data. Section 6 discusses the reasons why
the association x(ti) → Si can fail. More precisely, we provide hypothesis so that the values of an
unfolding chart will be associated to a trajectory in S. We also analyze the related issue of the error
build up whenever the association x→ S is given by an approximation (this is done in Section 7).

An inequality of the form δ ≤ |x(t′) − x(t)|, t < t′, as well as analogous expressions, will be referred
to as a δ-increment (notice the abuse of language as the value of x(t′) could be smaller than x(t)).

4. Charts and investors’ operations

Set
T = MT ∆, δ = F δ0, δ0 = G δ̂0 so if E ≡ F G, δ = Eδ̂0, (6)

where MT , F,G are positive integers. Our investor will fix δ, by a process of calibration, and will
not rebalance her portfolio for changes smaller than δ. ∆ is the smallest time resolution at which
the investor will observe charts. The parameter δ0 will provide the grid δ0N, we then require, by
construction, that coordinates S i ∈ δ0N and Wi ∈ δ0N. Taking δ0 = δ̂0 is the natural choice and
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simplifies the developments. Our only reason to consider δ0 > δ̂0 is to save on computations, something
we need to do to produce output for the values of T and ∆ we have chosen to illustrate the models.

Definition 4.1. [Dynamic sampling times] Given δ0 > 0, a chart x and interval [t0, t0 + T ]; a sequence
of increasing dynamic sampled times is given by r = r(x) = {rl}

L
l=0 ⊆ [t0, t0 + T ] (so rl ∈ ∆ Z),

L = L(x, [t0, t0 + T ]), r0 ≡ t0, satisfying:

δ0 ≤ |x(rl+1) − x(rl)|, 0 ≤ l < L − 1, rL ≡ t0 + T, (7)

notice that δ0 ≤ |x(rL) − x(rL−1)| may or may not hold. Consistently with these properties, we also
require the times rl to satisfy: if rl < t < rl+1, t ∈ ∆ Z, then δ0 > |x(t) − x(rl)|.

The collection {rl} as above is referred as sampling times. The measured times {rl} are independent
of a monetary unit re-scaling, i.e. after a change of the form δ0 $→ δ′0 = cδ0 ¢.

From a financial point of view, and when dealing with a long period of historical data, it is more
reasonable to define the sampling times in terms of proportional changes (x(rl+1) − x(rl))/x(rl) (i.e.
returns). Similarly for the rebalancing times ti.

Definition 4.2. [Dynamic rebalancing times] Given δ > 0, a chart x and interval [t0, t0 + T ], a sequence
of increasing dynamic rebalancing times is given by t = t(x) = {ti}

N
i=0 ⊆ {rl}

L
l=0, N = N(x, [t0, t0 + T ]),

t0(x) ≡ t0, satisfying:
δ ≤ |x(ti+1) − x(ti)|, 0 ≤ i < N − 1, tN ≡ t0 + T. (8)

The times ti are chosen in a greedy way, namely given ti = rli , ti+1 is the smallest element rli+1 in {rl}

satisfying (8) if such element exists, otherwise rli+1 = T and N = li+1.

Notice that δ ≤ |x(tN) − x(tN−1)| may or may not hold. The latter ambiguity will imply that the
trajectory set will need to account for a larger set of possible values for x(tN), conditional on given
values S 0, . . . , S N−1 (see extended discussion in Section 5.1). N = N(x, [t0, t0 + T ]) is the number of
times a portfolio is rebalanced in the interval [t0, t0+T ], it follows that N(x, [t0, t0+T ]) ≤ L(x, [t0, t0+T ]).
Portfolio rebalancing times ti = ti(x) satisfy t0(x) = t0 = r0 < t1 < . . . < tN−1 ≤ rL−1. Setting
tN = rL = t0 + T as a rebalancing time, as we do, is inconsequential in the absence of transaction costs
(as is our standing assumption in the paper).

We can write for 0 ≤ i ≤ N − 1:

∆ix ≡ x(ti+1) − x(ti) ≡ (k̂i+1 − k̂i) δ̂0 ≡ m̂i δ̂0. (9)

The relevance of using a ˆ notation in m̂i, and in related variables, will be made clear later on in the
paper.

∆iw ≡ w(x, ti+1) − w(x, ti) ≡
si−1∑
j=0

|x(rli+ j+1) − x(rli+ j)| ≡ ( ĵi+1 − ĵi)δ̂0 ≡ δ̂0

si−1∑
j=0

|p̂ j|, (10)

where ti = rli < . . . < rli+si = ti+1, i.e. li+1 = li + si and 0 ≤ si. Notice the possibility of si = 0, this
could happen only for the case i = N − 1 and there are no δ̂0-increments in between ti and ti+1 = T and
so x(ti+1) − x(ti) = 0. Setting w(x, t0) = 0 it follows that w(x, ti) =

∑li−1
l=0 |x(rl+1) − x(rl)|.
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Also,
∆it ≡ ti+1 − ti = rli+si

− rli ≡ (ni+1 − ni) ∆ ≡ qi ∆. (11)

Notice that,

si ∆ ≤

li+si∑
l=li

(rl+1 − rl) = qi ∆, i.e. 0 ≤ si ≤ qi ≤ MT . (12)

Given the above definitions and notation, we can write:

∆ix =

si−1∑
j=0

(x(rli+ j+1) − x(rli+ j)) = δ̂0

si−1∑
j=0

p̂ j = m̂i δ̂0

so
si−1∑
j=0

p̂ j = m̂i. (13)

Moreover, given that times ti are chosen in a greedy fashion we also have for any 1 ≤ R < si,

|

R−1∑
j=0

p̂ j| < E, G ≤ |p̂ j| < 2 E, 0 ≤ j ≤ si − 2, (and so |p̂si−1| ≤ (|m̂i| + E)), (14)

where G ≤ |p̂ j| follows from δ̂0 |p̂ j| = |x(rli+ j+1) − x(rli+ j)| ≥ δ0. Given that m̂i δ̂0 ≡ x(ti+1) − x(ti), hence
|m̂i| δ̂0 ≥ δ is guaranteed for i < N − 1 and so

|m̂i| ≥ E, for 0 ≤ i < N − 1. (15)

We have introduced the dichotomy between δ̂0 and δ, the former being an absolute minimun value
for chart changes and the latter being investor dependent.

Analogous to the use of δ0, and also to reduce the execution time of a software implementation, one
could introduce ∆0 ≥ ∆̂0 where ∆̂0 is the smallest time resolution supported by the data (i.e. t ∈ ∆̂0 Z).
In that case one then will require (rl+1 − rl) ≥ ∆0 and rl ∈ ∆̂0 Z.

To summarize the above:

• rl are the sampling times.
• ti ∈ {rl} will denote the portfolio rebalancing times.
• si is the number of chart samples in between two portfolio rebalances.
• qi the possible number of time intervals of size ∆ in between two consecutive portfolio rebalances.
• m̂i the possible number of δ̂0 chart units in between two consecutive portfolio rebalances.
• p̂ j the possible number of δ̂0 chart units in between two consecutive samples.
• N(x, [t0, t0 + T ]) total number of portfolio rebalances in [t0, t0 + T ].

We will rely on si ≤ qi given by (12), that is, we are taking an upperbound. This does not create any
drawbacks as we will be replacing the role of si by J with J ≤ qi.

Through the process of calibration, the time and space intervals reflect actions of realistic investors,
therefore, we expect the models to reflect features of options’ market values. This observation is
confirmed for type II models, we refer to Figures 13, 14, 16 and 17 for examples.
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4.1. Unfolding chart parameters

The definitions in this section are only first required in Section 6; we place the definitions here as
they refer to a given chart x and time interval [t0, t0 +T ]. Moreover, they provide a preliminary meaning
to the corresponding parameters used for model building in Section 5.2.

Definition 4.3 (Unfolding S -T Nodes).

NE(x, [t0, t0 + T ]) ≡ {(
x(ti+1) − x(ti)

δ̂0
,

ti+1 − ti

∆
) : 0 ≤ i ≤ P − 1}, (16)

where the {ti} are as in Definition (4.2) and P ≡ P(x, [t0, t0 + T ]) ≡ N ≡ N(x, [t0, t0 + T ]) (the latter as
introduced in Definition 4.2) if δ ≤ |x(tN) − x(tN−1)| or P ≡ P(x, [t0, t0 + T ]) ≡ N − 1 otherwise. Notice
the possibility that NE(x, [t0, t0 + T ]) = ∅. We also set

τ(x, [t0, t0 + T ]) ≡ (tP − t0), (17)

notice the possibility τ(x, [t0, t0 + T ]) = (t0 − t0) = 0 whenever N = 1.

Definition 4.4 (Minimal wait for a δ-increment).

Γ(x, [t0, t0 + T ]) ≡ min
0≤γ≤T, γ∈ ∆ N

{γ : ∀[t′, t′ + γ] ⊆ [t0, t0 + T ], ∃s ∈ (t′, t′ + γ], (18)

|x(s) − x(t′)| ≥ δ}.

That is, Γ(x, [t0, t0 + T ]) is the smallest length such that for any t satisfying [t, t + Γ(x, [t0, t0 + T ])] ⊆
[t0, t0 +T ] there exists s ∈ (t, t+Γ(x, [t0, t0 +T ])] such that δ ≤ |x(s)− x(t)|. We adopt the usual definition
that the minimum over an empty set is equal to T . Clearly, if x has n δ-increments in [t0, t0 + T ] then
Γ(x, [t0, t0 + T ]) ≤ (T − (n − 1)∆) and if n = 1 we may have Γ(x, [t0, t0 + T ]) = T .

5. Trajectory sets: recursive construction

The previous section assumed the availability of an observable chart x(t) and introduced sequences
of integers si, qi , m̂i , p̂ j, 0 ≤ j < si and N. The integers k̂i, ni and ĵi are derived quantities, in the sense
that each set si, qi , m̂i , p̂ j, 0 ≤ j < si gives a triple (k̂i, ni, ĵi). Necessarily, the meaning of the variables
impose some constraints obeyed by these sequences. We will construct trajectory models by allowing
trajectories to be jointly specified by the mentioned constraints. The end result being the definition of
a possible set of chart samples, time rebalances and sampled variation values.

In order to avoid misunderstandings, one should keep in mind that the previously introduced
variables: rl, ti, m̂i , qi , si, N(x, [t0, t0 + T ]) and p̂ j are either observable or operationally prescribed
and, in that way, are a result of acting on unfolding charts. In order to avoid a confusing proliferation
of notation, the same symbols will be used to denote the corresponding modeling variables used to
define trajectory sets but with the following exemptions: N(x, [t0, t0 + T ]) will be replaced by N(S), m̂i

for mi, k̂i for ki, ĵi for ji and p̂ j for p j. In the last four cases the reason to drop theˆnotation is due to
the fact that x(t) ∈ δ̂0 N while trajectory coordinates S i,Wi ∈ δ0 N.

The two related, but different, uses of the same notation for charts and trajectories should not be
identified of course, doing so will preclude the analysis of how well the model approximates the
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observational setting. Namely, how relevant are the proposed trajectories to fit the values of the
unfolding chart at the re-balancing times.

Trajectory coordinates S i and Wi will take values in δ0 N. As already indicated, the possibility
to take δ0 > δ̂0 will allow us to save on computations and this is the reason why we introduce δ0.
Conceptually, the reader could consider δ0 = δ̂0 but in practical terms we noticed the need for δ0 > δ̂0

due to the time horizons and sampling times we have considered (these choices were dictated by the
data we got access to). The choice δ0 > δ̂0 means we will be approximating the values x(ti) which
introduces the issue of error accumulation, we deal with this issue in Section 7.

We describe now a formal recursive definition of a generic (abstract) trajectory set S. Section
5.2 completes the formal definition by providing the construction needed in the recursive step. Such
constructions are driven by a set of parameters providing a class of trajectory sets. We assume given
an interval [t0, t0 + T ], where a European option of interest is active. We set the notation S = {Si ≡

(S i, t0 + Ti,Wi)} ≡ {(kiδ0 + s0, t0 + ni ∆, ji δ0)}, ki ∈ Z, ni < ni+1, 0 ≤ ji < ji+1, ni, ji ∈ N. The recursive
step will split into type I and type II models, in the former case, as already indicated, the variable Wi

will be ignored something we remind readers from time to time.
Trajectories S will then be specified by setting s0 = x(t0) + k0δ0 = x(t0), for x(t0) given, t0 + T0 =

t0 + n0∆ = t0, W0 = j0 δ0 = 0 and proceeding recursively: given a triple (ki, ni, ji) we should provide
a set of admissible values (ki+1, ni+1, ji+1) (these are specified in Section 5.2); for each such admissible
triple we set:

∆iS ≡ (S i+1 − S i) = (ki+1 − ki)δ0 = mi δ0, (19)

∆iW ≡ (Wi+1 −Wi) = ( ji+1 − ji)δ0 =

si−1∑
j=0

|p j| δ0, (20)

∆iT ≡ (Ti+1 − Ti) = (ni+1 − ni)∆ = qi ∆, where mi, p j ∈ Z, 1 ≤ |p j| (as δ0 ≤ δ0 |p j|), (21)
1 ≤ qi ≤ MT , 0 ≤ si ≤ qi, si, qi ∈ N. (22)

Moreover, define
N(S) = i where Ti = T,

notice that N(S) exists as ∆iT ≥ ∆ for any 0 ≤ i < N(S).
For the case i < N(S) − 1 we will also require |mi | ≥

δ
δ0

= F. Also, for any 1 ≤ R < si and
i ≤ N(S) − 1,

si−1∑
j=0

p j = mi, |

R−1∑
j=0

p j| < F, 1 ≤ |p j| < 2 F, 0 ≤ j ≤ si − 2, (23)

(and so 1 ≤ |psi−1| ≤ (|mi| + F)).

Given (S i,Ti,Wi), we introduce the convenient notation for type II models:

NA(S i, t0 + Ti,Wi) = {(S i+1 = ki+1δ0 + s0, t0 + Ti+1 = t0 + ni+1∆, (24)

Wi+1 = ji+1 δ0), with (ki+1, ni+1, ji+1) admissible}, (25)

and for type I models:

NA(S i, t0 + Ti) = {(S i+1 = ki+1δ0 + x(t0), t0 + Ti+1 = t0 + ni+1 ∆), (26)
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with (ki+1, ni+1) admissible}. (27)

Notice that the values (p j)
si−1
j=0 , mi, qi need to be prescribed in order to obtain the set of admissible

triples (ki+1, ni+1, ji+1) (or tuples (ki+1, ni+1) for type I models). This will be done in Section 5.2 for
each of the two types of models. Subsequent sections indicate how to estimate the models’ parameters.
Estimation in this paper involves worst case estimation on historical data. The precise meaning of the
latter, we expect, to be quite evident in each instance; specifics are provided in Section 9. It is a simple
minded methodology that requires that informative variables have been chosen to define trajectories.
Informative here means that the parameters that confine the model variables are contained in worst case
ranges that reflect observable and possible financial situations that impact the values of the risky asset
and the class of investors under consideration.

Remark: Type II models will enforce (historical) constraints on Wi and, in this way, limit the number of
possible future trajectories emanating from the node (S i, t0 + Ti,Wi). For type I models, such historical
constraints are not in effect, it follows that the coordinates Wi are irrelevant and so we have only the
coordinates (S i, t0 + Ti).

Figure 1. Illustration of chart values and portfolio rebalances. t0 = r0 = 1, r1 = 2, r2 = 3,
r3 = 4, r4 = t1 = 5, r5 = t2 = 6, r6 = 8, r7 = t3 = 9, (m1, q1) = (25, 4), (m2, q2) = (−20, 1),
(m3, q3) = (5, 3). Where t0 = 1∆, T + t0 = 9∆.

5.1. Model Parameters. Last Portfolio Rebalance (accounting for the possibility that
δ > |x(tN) − x(tN−1)|)

This section provides informal explanations of some of the parameters that will play a role in the
algorithm constructing the two model types.

Recall the notation N = N(x, [t0, t0 + T ]) from Definition 4.2. As already hinted, the fact that the
last rebalancing time tN does not necessarily satisfy δ ≤ |x(tN) − x(tN−1)| implies that a node (S N−1, t0 +

TN−1,WN−1) associated to (x(tN−1), tN−1,w(x, tN−1)) (such association also gives N(S) = N(x, [t0, t0+T ]))
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will be treated differently to other types of nodes. Parameters at nodes (S i, t0 + Ti,Wi) (leading to
NA(S i, t0 + Ti,Wi)), with i < N(S) − 1, should prescribe that portfolio rebalances will take place only
after the chart has moved by at least an amount δ relative to its present value. At a node with i = N − 1
it is not known which of the alternatives: δ ≤ |x(tN)−x(tN−1)| or δ > |x(tN)−x(tN−1)|, will actually occur.
Therefore, at a node (S N−1, t0 + TN−1,WN−1) we will need to consider both possibilities. It follows that
such a node will lead to a larger admissible set NA(S N−1, t0 + TN−1,WN−1).

In fact, the equality i = N − 1 is uncertain. In order to deal with this uncertainty, we make use
of additional information by means of relevant parameters set to worst case values. In this way we
can partially discern if i < N − 1 holds and in so doing we reduce the number of cases leading to
the enlargement of NA(S i, t0 + Ti,Wi) just mentioned. We will make use of a parameter Γ that, when
associated to a chart x, will have the following meaning: it is the smallest time length such that for any
t (in the historical data set used for estimation), x moves up or down, from its current value x(t), by at
least δ in the interval [t, t + Γ]. Γ corresponds to Γ(x, [t0, t0 + T ]) introduced in Section 4.1; the precise
relationship is given by (75).

Another parameter, τ, will also be used for the same purpose. The index i corresponding to (S i, t0 +

Ti,Wi) is not being encoded in our data structure. This means that we will replace references to i by Ti.
This implies the need to introduce τ used to reflect the minimum time length after which δ-increments
may stop. τ corresponds to τ(x, [t0, t0 + T ]) introduced in Section 4.1; the precise relationship is given
by (78).

In general, one would like to enforce on S constraints that can be obtained empirically or as a result
of further available information. Proceeding in this way will make S smaller, and hence implying more
accurate option’s bounds, while still obeying our general philosophy of worst case construction.

5.2. Trajectory sets: recursive algorithmic step

This section states the recursive algorithmic construction leading to the two types of trajectory sets
to be considered. The specifications complete the general recursive framework introduced in Section 5
where, we recall, an interval [t0, t0 +T ] was given and only the setsNA(S i, t0 +Ti) andNA(S i, t0 +Ti,Wi)
were missing in order to complete the specifications for type I and type II models respectively. All
models introduced below assume a fixed T and ∆.

The definitions of each of the models below use a list of parameters which enable the construction
of each trajectory set. Section 5.3 provides an intuitive explanation of some features of the definitions.
Later sections indicate how to set the values of these parameters being by the process of calibration,
estimation or by using relationships that relate the parameters.

The notation NE (E for empirical or estimated) represents a given set of pairs (m, q), m ∈ Z, q ∈ N.
Such set will be estimated as described in Section 9. Define qmin ≡ min{q : (m, q) ∈ NE}.

We point out to the appearance below of
∑J−1

j=0 p j as a replacement for
∑si−1

j=0 p j (similar comments
apply to related quantities). J is needed given that we only know si ≤ qi (see, (12)); to account for this
uncertainty we then consider all J satisfying J ≤ q for a given (m, q).

As an explanatory comment, we mention that all nodes for which we can ascertain Ti < τ will have
the same set of admissible nodes NA(S i, t0 + Ti,Wi) for type II models (or NA(S i, t0 + Ti) for type I
models) . In this case we foresee more δ-increments are forthcoming and construct the trajectory set
accordingly.

To repeat, we define possible values recursively, therefore, the cases below assume (S i, t0 + Ti,Wi)
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given (only (S i, t0 + Ti) is needed for the type I models); the initialization S 0 = s0,T0 = 0,W0 = 0 is in
effect.

5.2.1. Type I models

Input Parameters

1. 0 ≤ τ ≤ T .
2. F,G ∈ N (δ ≡ F δ0, δ0 ≡ G δ̂0).
3. A set NE, if (m, q) ∈ NE, then |m| ≥ F, q ≥ 1, m ∈ Z, q ∈ N.
4. Γ ∈ ∆ N satisfying qmin ∆ ≤ Γ ≤ T .

Definition

1. N<
S ,T (Ti) ≡ {(m, q) ∈ Z × N : −F < m < F, q ∆ + Ti = T }, Ti < T .

Define the statements:

A ≡ [(Γ ≤ (T − Ti) & (τ ≥ ∆)) or ((Ti < τ) & (∆ qmin ≤ (T − Ti)))],
B ≡ [((T − Ti) < qmin ∆)],
C ≡ ¬A&¬B = [(τ ≤ Ti) & (qmin ∆ ≤ (T − Ti)) & (((T − Ti) < Γ) or (τ = 0))].

If Ti = T , we terminate.

A) [Move by an increment bigger than δ]

• If condition A holds, let: NA(S i, t0 + Ti) ≡ {(S i + ∆iS , t0 + Ti + ∆iT ) : ∃ (m, q) ∈ NE, q∆ ≤

(T − Ti), (∆iS ,∆iT ) = (mδ0, q∆)}.

B) [Move to T by an increment smaller than δ]

• If condition B holds, let: NA(S i, t0 + Ti) ≡ {(S i + ∆iS , t0 + Ti + ∆iT ) : ∃ (m, q) ∈
N<

S ,T (Ti), (∆iS ,∆iT ) = (m δ0, q ∆)}. Note: Ti+1 = T .

C) [Could move either by an increment smaller than δ or bigger than δ]

• If condition C holds: NA(S i, t0 + Ti) is given by the union of the sets NA(S i, t0 + Ti) appearing in
cases A) and B) above.

In case the statements A or C hold, we remark that the condition (m, q) ∈ NE satisfying q∆ ≤ (T − Ti)
is clearly met and so NA(S i,Ti) , ∅. Obviously, in case B, NA(S i, t0 + Ti) , ∅ as well.

The following condition implies that each node (S i, t0 + Ti) is 0-neutral as required in (5):

∃ S ′i+1, S
′′
i+1 ∈ NA(S i, t0 + Ti) such that 0 ≤ (S ′i+1 − S i) & (S ′′i+1 − S i) ≤ 0. (28)
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We emphasize that (28) is not required for the construction of the models nor is needed in Proposition
6.0.1 below; (28) is needed to obtain meaningful price bounds. Condition (28) holds by construction
when case B) executes and, therefore, also when case C) executes. Moreover, as it follows from the
definition of type I model MIDP in Section 8.5, such models do satisfy (28) when case A) executes (and
so MIDP models are 0-neutral).

Condition (28) is a very weak condition indeed, requiring that for any node (S i, t0 + Ti), there are
at least two children nodes emanating from it such that the stock moves in opposite directions. For
general type I models one can easily check if the condition holds after the trajectory set has been
constructed (as indicated, only case A) needs to be checked).

5.2.2. Type II models

Input Parameters

1. 0 ≤ τ ≤ T .
2. F,G ∈ N (δ ≡ F δ0, δ0 ≡ G δ̂0, E ≡ F G).
3. A set NE, if (m, q) ∈ NE, then |m| ≥ F, q ≥ 1, m ∈ Z, q ∈ N.
4. {Vρ}, ρ ∈ (0,T ],Vρ ⊆ R+.
5. Γ ∈ ∆ N satisfying qmin ∆ ≤ Γ ≤ T .

The collection {Vρ} will be referred to as the variation constraint sets.

Definition

1. N<
S ,T (Ti) ≡ {(m, q) ∈ Z × N : −F < m < F, q ∆ + Ti = T }, Ti < T .

2. NW(m, q) ≡ {(p0, p1, . . . , pJ−1) : p j ∈ Z, 1 ≤ |p j|, 1 ≤ J ≤ q, J ∈ N;
m =

∑J−1
j=0 p j; |

∑R−1
j=0 p j| < F, 0 ≤ R ≤ J − 1, |p j| < 2 F, 0 ≤ j ≤ J − 2}, where (m, q) ∈ Z×N.

Below we will make use of the statements A, B and C introduced for type I models.

For a given (m, q), let z denote a number satisfying z =
∑J−1

j=0 |p j| δ0 where (p j)J−1
j=0 ∈ NW(m, q); for any

such z set:
NA(m, q, z) ≡ {(S i+1, t0 + Ti+1,Wi+1) ≡ (S i + mδ0, t0 + Ti + q ∆,Wi + z)}.

For a given (m, q) define:
NA(m, q) ≡

⋃
(Wi+z)∈VTi+1

NA(m, q, z),

where Ti+1 = Ti + q ∆.
We assume that for any (S i,Ti,Wi) and (m, q) ∈ NE ∪ N

<
S ,T (Ti):

NA(m, q) , ∅; (29)

equivalently, there exists z∗ satisfying (Wi + z∗) ∈ VTi+1 such that NA(m, q, z∗) , ∅. In the construction
that follows, and for the case Ti+1 = T , it will be immaterial which such z∗ is actually chosen.

If Ti = T , we terminate.
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A) [Move by an increment bigger than δ]

• If condition A holds, let:

NA(S i, t0 + Ti,Wi)

≡
⋃

(m,q)∈NE , q∆<(T−Ti)

NA(m, q)
⋃

(m,q)∈NE , q∆=(T−Ti)

NA(m, q, z∗),

with z∗ satisfying (Wi + z∗) ∈ VT .

B) [Move to T by an increment smaller than δ]

• If condition B holds, let:

NA(S i, t0 + Ti,Wi) ≡
⋃

(m,q)∈N<
S ,T (Ti)

NA(m, q, z∗), (30)

with z∗ satisfying (Wi + z∗) ∈ VT .

C) [Could move either by an increment smaller than δ or bigger than δ]

• If condition C holds: NA(S i, t0 + Ti,Wi) is given by the union of the sets NA(S i, t0 + Ti,Wi)
appearing in cases A) and B) above.

If A or C hold, the condition (m, q) ∈ NE satisfying q∆ ≤ (T −Ti) is, clearly, non empty and so by (29)
NA(S i, t0 + Ti,Wi) , ∅. This fact is also true when case B) holds due to (29). A requirement such as
(29) is unavoidable as the sets {Vρ} are independent of the sets NE and NW(m, q). Therefore, validity
of (29) does depend on the actual estimated values for these sets. Of course, one can also force (29) by
construction (i.e. enlarge NW(m, q) or VTi+1 as necessary) but we have chosen not to do so.

The coordinate W ′
i+1 ∈ VTi+1 in (S i+1, t0 + Ti+1,W ′

i+1) is only used to prune future children nodes.
Therefore, once we have arrived at final time t0 + T there is no need to keep several of the possible
values of Wi+1 for future pruning. For this reason, under case A) with Ti+1 = T or case B) (in the latter
case Ti+1 = T always holds), for a pair (S i+1, t0 + T ), as long as there exists at least one Wi+1 ∈ VT

we then include (S i+1,T,Wi+1) in NA(S i, t0 + Ti,Wi). That is, there is no need to consider any other
W̃i+1 ∈ VT for the given pair (S i+1, t0 + T ); this explains the freedom to choose any z∗, satisfying
(Wi + z∗) ∈ VTi+1 , where Ti+1 = T , above.

The following condition implies that each node (S i, t0 + Ti,Wi) is 0-neutral as required in (5):

∃ S ′i+1, S
′′
i+1 ∈ NA(S i, t0 + Ti,Wi) such that 0 ≤ (S ′i+1 − S i) & (S ′′i+1 − S i) ≤ 0. (31)

Analogously to the case of type I models, (31) is not required for the construction of type II models nor
is needed in Proposition 6.0.2 below. The property stated in (31) is needed to obtain meaningful price
bounds. Notice that if (m, q) ∈ N<

S ,T (Ti) then, by (29), there exists z∗ = z∗(m, q) =
∑J−1

j=0 |p j| δ0, with
(p j) ∈ NW(m, q), it then follows that z∗(−m, q) ≡

∑J−1
j=0 | − p j| δ0 and (−p j) ∈ NW(−m, q). Therefore,

given that (−m, q) ∈ N<
S ,T (Ti) as well, (S i + mδ0, t0 + T,Wi + ∆iW), (S i − mδ0, t0 + T,Wi + ∆iW) ∈

NA(S i,Ti,Wi) and so the node (S i,Ti,Wi) is 0-neutral in case conditions B) or C) execute (this fact
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always holds for any type II model). In case A), one could impose the following condition to imply
that (S i,Ti,Wi) is 0-neutral: there exists (m, q), (m′, q′) ∈ NE with m m′ ≤ 0 max(q∆, q′∆) ≤ (T − Ti)
and there exists z such that NA(m, q, z) , ∅ or NA(m′, q′, z) , ∅.

5.3. Explanations

Once the parameters are assigned to worst case estimates, the constructed models will capture the
intended properties of charts; this is proven in Section 6. In this section we provide a preliminary,
informal, interpretation of some of the features and conditions used in the construction of the models.

Condition B models the situation when there is not enough time for the chart to have a
(forthcoming) δ-increment. Therefore, when condition B executes the trajectory under construction
terminates without a δ-increment. Condition A models the situation when the chart will have a
(forthcoming) δ-increment. Therefore, execution of condition A implies that the trajectories
constructed will all have a δ-increment. This shows that for any trajectory we have: δ ≤ |S i+1 − S i| if
(i + 1) < N(S).

Notice that m = 0 is possible and could happen only in case B, moreover, it could be that m =

0 =
∑J−1

j=0 p j with J ≥ 2 ( recall that |p j| ≥ 1). This will account for cases where x has a number J of
δ0-increments after ti but ends up with ti+1 = T , x(T ) = x(ti) and so m = 0. There is still one more case
to consider, namely: x(T ) = x(ti) and so m = 0 but there are no δ0-increments in between. This case
we cover by allowing J = 0 (which only has a meaning if m = 0 given that the case [m , 0 and J = 0]
is impossible).

In other words, the pairs (m, q) belonging to NE in case A), represent trajectory changes that
replicate historical chart’s δ-increments. The pairs (m, q) belonging to N<

S ,T (Ti) in case B), represent
trajectory changes that move directly from t0 + Ti to t0 + T without moving more than δ relative to S i

(but with, possibly, several δ0-increments in between).
The parameter si in (13) represents the number of δ0-increments between two consecutive

δ-increments. We have replaced si by q according to (12) and used the variable J ≤ q to account for
all possible cases. The constraint |

∑R−1
j=0 p j| < E, R ≤ J − 1 reflects the fact that there is no

δ-increment between the two nodes under consideration. The case J = 1 represents the case where
there is a single δ0-increment which is in effect a δ-increment, such a case may be referred as a
(spatial) jump (as the δ-increment can not be anticipated by observing δ0-increments) and so we may
have m = p0 for the case J = 1.

Once τ has been set to its estimated value, we will conclude that if Ti < τ, trajectories will move by
increments of at least size δ. In case that Ti ≥ τ, it is uncertain if such increments will be happening,
we will then also allow for trajectories to “difusse” at δ0 granularity. Notice the disjoint dichotomy: to
have one more δ-increment or to δ0-diffuse directly from Ti to T and not to have a δ-increment. Such
logic for these events is dictated by the operational arrangement and a worst case point of view which
are used here to constraint future possibilities.

A main characteristic of type I Models is the fact that the set of admissible nodes is only loosely
affected by the current node (S i, t0 + Ti), Ti < T . More specifically, the effect of the current node is
to differentiate nodes next to expiration or otherwise. Type II Models impose a stronger dependency
on the current node; actually, the role of the Wi variable is to restrict possible values of (m, q). This
comment is explained in Section 11.

To make the description of both types of models more symmetric, one could replace the set of pairs

Quantitative Finance and Economics Volume 3, Issue 4, 661–708



679

NE for set of triples (m, q, r) where r is used to encode changes in Wi in type II models.

6. Falsifiable models

This section establishes rigorous results requiring conditions that are empirically observable and
implying that the models introduced in previous sections succeed. The meaning of the latter is that
with the minimal required initial funds the investor can superhedge a given option by trading along
the actual chart values x(ti). The results become empirically relevant when model parameters are set
to estimated values or are calibrated. This is done in Sections 8 and 9 which also provide the definite
meaning for the models’ parameters. We emphasize that the said conditions allow the models to be
falsifiable, i.e. one can observe if they do not hold and this can be done dynamically (i.e. as chart
samples unfold).

The section requires the availability of the trajectory models (and hence of the parameters used for
their construction) and chart values x(t), t ∈ [t0, t0 + T ]. We rely on notation from Section 4.1.

The following definition is needed to enunciate ours results.

Definition 6.1 (Association relationship). We say that x is associated to S ∈ S if Xi ≡ (x(ti), ti,w(x, ti))
(Xi ≡ (x(ti), ti) for type I models) and Si = (S i, t0 + Ti,Wi) satisfy (x(ti), ti) = (S i, t0 + Ti) for 0 ≤ i ≤
N(x, [t0, t0 + T ]) = N(S). Of course, the coordinate Wi is dropped for type I models and in that case we
can write the association simply as Xi = Si for 0 ≤ i ≤ N(x, [t0, t0 + T ]) = N(S).

We will say that the modelM succeeds for the chart x : [t0, t0 + T ]→ R if there is S ∈ S associated
to x. Otherwise, we will say that the model fails for the chart x. If x is associated to S then (4) holds
whenever the coordinates S i are replaced by chart values x(ti). That is, given the required initial funds
V(S0,Z,M) + ε one can superhedge Z by trading on chart values x(ti). Notice that the association
definition does not require to match w(x, ti) to Wi as this variable does not appear explicitly in the
superhedging property which is the one we want to uphold. Times ti are matched to times t0 + Ti as we
are dealing with a European option expiring at t0 + T .

6.1. Validity of Type I models

The notation N<
S ,T (Ti) used in the proof below was introduced in Section 5.2.1; we also rely on

notation from Section 4.1.

Proposition 6.0.1. Consider S to be a trajectory set of type I. Assume

τ ≤ τ(x, [t0, t0 + T ]), Γ(x, [t0, t0 + T ]) ≤ Γ. (32)

Furthermore, assume:

(m̂, q) ∈ NE(x, [t0, t0 + T ]) then ∃ (m, q) ∈ NE and m̂ = G m, (33)

and
(x(tN) − x(tN−1)) ∈ δ0 Z. (34)

Then, there exists S ∈ S associated to x.
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Proof. Consider first the case when τ(x, [t0, t0 + T ]) = 0 then, by (32), τ = 0 and so condition C holds
for (S 0, t0 + T0) (recall that T0 = 0). Notice that τ(x, [t0, t0 + T ]) = 0 implies x(t), t ∈ [t0, t0 + T ],
has no δ-increments; therefore N(x) = 1 and so t1 = t0 + T . (34) implies (x(t0 + T ) − x(t0)) ∈ δ0 Z

and −F < m ≡ (x(T )−x(t0))
δ0

< F, therefore (m, (T − T0)/∆) ∈ N<
S ,T (T0) which shows that S = {(S 0 =

x(t0), t0 + T0 = t0), (S 1 = x(t0 + T ), t0 + T1 = t0 + T )} is associated to x and S ∈ S because (S 1 =

x(t0 + T ), t0 + T1 = t0 + T ) ∈ NA(S 0, t0 + T0), the latter set as in case B).
We may then consider τ(x, [t0, t0 + T ]) ≥ ∆ for the remaining of the proof; therefore, there exists t1

such that δ ≤ |x(t1) − x(t0)|. Moreover (m̂ ≡ (x(t1)−x(t0))
δ̂0

, q ≡ t1−t0
∆

) ∈ NE(x, [t0, t0 + T ]), then (33) implies
there exists (m, q) ∈ NE and m =

(x(t1)−x(t0))
δ0

(recall that δ0 = G δ̂0). Now we continue the proof by
induction. For (S i, t0 + Ti) = (S 0, t0 + T0), condition A executes due to Γ ≤ (T − T0) = T . Given that
t1 − t0 = q∆ ≤ T −T0 we have (S 1 = S 0 + mδ0, t0 + T1 = t0 + q∆) ∈ NA(S 0, t0 + T0). This is the first step
in the recursive construction and the latter fact is our base case for the following inductive argument.

Assume, inductively, that we have found S′ ∈ S satisfying Xk = S′k for 0 ≤ k ≤ i with 0 < Ti ≤ T .
In the case that Ti < T , we will show that there exists S ∈ S(S′,i) and Xi+1 = Si+1 with ti+1 ≤ T . One
will then conclude that there exists S ∈ S associated to x. Therefore, we may assume Ti < T in what
follows.

Consider first the case when the following holds,

0[((Γ ≤ (T − Ti)) & (τ ≥ ∆)) or (Ti < τ)], (35)

we label this the case a). Then, [(Γ(x, [t0, t0 + T ]) ≤ (T − Ti)) or (Ti < τ(x, [t0, t0 + T ]))] holds, which
implies there exists ti+1, t0 + T ≥ ti+1 > ti = t0 + Ti satisfying δ ≤ |x(ti+1) − x(ti)|. Therefore,

(m̂, q) ≡ (
x(ti+1) − x(ti)

δ̂0
,

ti+1 − ti

∆
) ∈ NE(x, [t0, t0 + T ]),

from (33) it follows that there exists (m, q) ∈ NE so that

m̂ = G m, and so ∆iS ≡ m δ0 =
m̂
G
δ0 = (x(ti+1) − x(ti)).

We remark that q ∆ ≤ (T − Ti) and so qmin ∆ ≤ (T − Ti) (so case a) holds if and only if statement A
holds). This shows that the construction described in item A) executes and so there exists (∆iS ,∆iT ) =

(∆ix, (ti+1 − ti)) and (S i+1,Ti+1) ∈ NA(S i, t0 + Ti). In view of case a), take S i+1 ≡ S i + mδ0 = x(ti+1) =

x(ti) + mδ0 and t0 + ti+1 ≡ t0 + Ti + q∆ = ti + q∆. In this way the required S is obtained with S k = S ′k
for 0 ≤ k ≤ i and S i+1 as it was just defined. Therefore, the inductive hypothesis for i + 1 has been
established.

Similarly, assume statement B holds, i.e.: [(T − Ti) < qmin ∆] holds, notice this case is potentially
non empty as Ti > 0. Then, by (33), [(T − Ti) < qmin(x, [t0, t0 + T ]) ∆] where qmin(x, [t0, t0 + T ]) ≡
min{q : ∃ (m, q) ∈ NE(x, [t0, t0 + T ])}. Therefore, there exists ti+1 = t0 + T > ti = t0 + Ti satisfying
δ > |x(ti+1) − x(ti)|, then (34) implies

(m, q) ≡ (
x(ti+1) − x(ti)

δ0
,

ti+1 − ti

∆
) ∈ N<

S ,T (Ti).

Notice that |m| < F. This shows that there exists (∆iS ,∆iT ) = (∆ix, (ti+1 − ti)) and (S i+1, t0 + Ti+1) ∈
NA(S i, t0 + Ti) (this latter set as in case B)).
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Finally, consider that statement C holds and, we recall, that in this case NA(S i, t0 + Ti) is defined
as the union of the sets NA(S i, t0 + Ti) appearing under the entries A) and B). From our definition
of ti+1 (see Definition 4.2) there are two possibilities: δ ≤ |x(ti+1) − x(ti)|, ti < ti+1 ≤ t0 + T or
δ > |x(ti+1) − x(ti)|, ti < ti+1 = t0 + T . Whichever of these cases holds, the execution of condition C
in the recursive construction of S and the arguments employed above for the cases A and B imply the
existence of (S i+1, t0 +Ti+1) ∈ NA(S i, t0 +Ti) and (S i+1, t0 +Ti+1) = (x(ti+1), ti+1). So we have established
the validity of the inductive hypothesis for i + 1. �

Hypothesis (33) implicitly requires (x(ti+1) − x(ti)) ∈ δ0 Z for 0 ≤ i < N(x). We weaken this latter
requirement in Section 7. Of course, and more substantially, (33) also requires that the chart (m̂, q)
pairs are matched by corresponding trajectory pairs (m, q). The appearence of G in (33) reflects the
fact that chart increments are measured in units of δ̂0 while trajectory increments are measured in δ0

units.

6.2. Validity of Type II models

A similar proposition can also be proved for type II models; towards this end, we will need to rely
on notation introduced in Section 4. The proof follows the same logic as the one of Proposition 6.0.1
with the added arguments to handle the coordinate Wi.

The variation constraint sets {Vρ}ρ∈(0,T ], introduced in Section 5.2.2, are required to satisfy:

if ρ ≤ ρ′ and w ∈ Vρ′ \ Vρ then w ≥ y ∀y ∈ Vρ, (36)

a property that can be easily checked once we assign the sets {Vρ}ρ∈(0,T ] to their estimates in Section
8.6. We also introduce the following notation for ρ ≤ ρ′ and y ∈ Vρ:

∆ρ,ρ′V(y) ≡ {z ≥ 0 : ∃w ∈ Vρ′ , w = z + y}.

Using (36) we obtain
Vρ′ = ∪y∈Vρ y + ∆ρ,ρ′V(y). (37)

Proposition 6.0.2. Consider S to be a trajectory set of type II. Assume

τ ≤ τ(x, [t0, t0 + T ]), Γ(x, [t0, t0 + T ]) ≤ Γ. (38)

Furthermore assume:

(m̂, q) ∈ NE(x, [t0, t0 + T ]) then ∃ (m, q) ∈ NE and m̂ = G m, (39)

(x(rl+1) − x(rl)) ∈ δ0 Z, 0 ≤ l ≤ L − 1, (40)

and ∑
li≤l,l+1≤li+1

|x(rl+1) − x(rl)| ∈ ∆ti−t0,ti+1−t0V(w(x, ti)), 0 ≤ i ≤ N − 1, (41)

also, (36) holds. Then, there exists S ∈ S associated to x.
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Proof. Consider first the case when τ(x, [t0, t0 + T ]) = 0 then, by (38), τ = 0 and so condition C holds
for (S 0, t0+T0,W0) (recall that T0 = W0 = 0). Notice that τ(x, [t0, t0+T ]) = 0 implies x(t), t ∈ [t0, t0+T ],
has no δ-increments; therefore N(x) = 1 and so t1 = t0 + T . (40) implies (x(t0 + T ) − x(t0)) ∈ δ0 Z

and so −F < m ≡ (x(T )−x(t0))
δ0

< F, therefore (m, q ≡ (T − T0)/∆) ∈ N<
S ,T (T0). From the definitions and

notation in Section 4 we can write (here we rely on (40)):

(x(rl+ j+1) − x(rl+ j)) = δ̂0 p̂ j = δ0 p j, and so p̂ j = G p j. (42)

Moreover

m̂ =

s−1∑
j=0

p̂ j = G
s−1∑
j=0

p j ≡ Gm, (43)

(we have dropped the subscript i in m̂i, li and si appearing in Section 4, we will do the same in the
remaining of the proof). Therefore ∆0w ≡ w(x, t0 + T ) − w(x, t0) = δ̂0

∑s−1
j=0 | p̂ j| = δ0

∑s−1
j=0 |p j| (recall

that w(x, t0) ≡ 0). By means of the properties listed in (14), and recalling that E = F G, we can
check that the properties in (23) hold and by taking J ≡ s we verify that (p)J−1

j=0 ∈ NW(m, q). Therefore
z ≡ δ0

∑s−1
j=0 |p j| =

∑
l0≤l,l+1≤l1 |x(rl+1) − x(rl)| ∈ ∆0,t1−t0V(w(x, t0)) where we used (41). It then follows

from (37) that W1 ≡ w(x, t0) + z = W1 ∈ VT . We emphasize, again, that the property of association
in Definition 6.1 does not involve the coordinate Wi and, given that t1 = t0 + T , we could then take
z∗ = z in (30) (more precisely, we have established that there exists z satisfying (W0 + z) ∈ VT such
that NA(m, q, z) , ∅; taking z∗ to be any such z will do for our argument). Therefore, S = {(S 0 =

x(t0), t0 + T0 = t0,W0), (S 1 = x(t0 + T ), t0 + T1 = t0 + T,W1)} ∈ S because (S 1 = x(t0 + T ), t0 + T1 =

t0 + T,W1) ∈ NA(S 0, t0 + T0,W0), the latter set as in case B). It then follows that x is associated to S.
In what follows we may not provide as many details on arguments involving z + Wi leading to Wi+1;

they are very similar to the arguments for the case τ(x, [t0, t0 + T ]) = 0 above.

We may then assume τ(x, [t0, t0 + T ]) ≥ ∆ for the remaining of the proof. Therefore, there exists
t1 such that δ ≤ |x(t1) − x(t0)|. Moreover (m̂ ≡ (x(t1)−x(t0))

δ̂0
, q ≡ t1−t0

∆
) ∈ NE(x, [t0, t0 + T ]), then (39)

implies there exists (m, q) ∈ NE and m =
(x(t1)−x(t0))

δ0
(recall that δ0 = G δ̂0). We continue the proof

by induction. For (S i, t0 + Ti) = (S 0, t0 + T0), condition A executes due to Γ ≤ (T − T0) = T .
Notice that x(t1) = x(t0) + mδ0 = S 1 and t1 = t0 + q∆. The same arguments used above for the
case τ(x, [t0, t0 + T ]) = 0, and the fact that t1 − t0 = q∆ = T1 ≤ T − T0, show that there exists
z + W0 = w(x, t1) where z ≡ δ0

∑s−1
j=0 |p j| =

∑
l0≤l,l+1≤l1 |x(rl+1) − x(rl)| ∈ ∆0,t1−t0V(w(x, t0)) where

we used (41). It then follows from (37) that W1 ≡ w(x, t0) + z ∈ VT1 . If T1 < T , it follows that
(S 1 = S 0 + mδ0, t0 + T1 = t0 + q∆,W1) ∈ NA(S 0, t0 + T0,W0) (this latter set as in case A)). This fact is
our base case for the following inductive argument. On the other hand, if T1 = T , we could take z∗ = z
and argue as in the above case τ(x, [t0, t0 + T ]) = 0 and conclude there is S associated to x.

Assume, inductively, that we have found S′ ∈ S satisfying Xk = S′k for 0 ≤ k ≤ i with 0 < Ti < T .
We will show that there exists S ∈ S(S′,i) satisfying one of the two alternatives:

i) Xi+1 = Si+1 with ti+1 < T (i.e. the inductive hypothesis holds at i + 1),
ii) (x(ti+1), ti+1) = (S i+1,Ti+1) and Ti+1 = T. (44)

One can then conclude that there exists S ∈ S associated to x.
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Consider first the case when the following holds

[((Γ ≤ (T − Ti)) & (τ ≥ ∆)) or (Ti < τ)], (45)

we label this the case a). Then, [(Γ(x, [t0, t0 + T ]) ≤ (T − Ti)) or (Ti < τ(x, [t0, t0 + T ]))] holds, which
implies there exists ti+1, T ≥ ti+1 > ti = Ti satisfying δ ≤ |x(ti+1) − x(ti)|. Therefore,

(m̂, q) ≡ (
x(ti+1) − x(ti)

δ̂0
,

ti+1 − ti

∆
) ∈ NE(x, [t0, t0 + T ]), (46)

from (39) it follows that there exists (m, q) ∈ NE so that

m̂ = G m, and so ∆iS ≡ m δ0 =
m̂
G
δ0 = (x(ti+1) − x(ti)). (47)

We remark that q ∆ ≤ (T − Ti) and so qmin ∆ ≤ (T − Ti) (so case a) holds if and only if statement A
holds). By case a), take S i+1 ≡ S i+mδ0 = x(ti+1) = x(ti)+mδ0 and Ti+1 ≡ t0+Ti+q∆ = ti+q∆. The same
arguments used above for the case τ(x, [t0, t0+T ]) = 0, and the fact that ti+1−ti = q∆ = Ti+1−Ti ≤ T−Ti,
show that there exists z + Wi = w(x, ti+1) where z ≡ δ0

∑s−1
j=0 |p j| =

∑
li≤l,l+1≤li+1

|x(rl+1) − x(rl)| ∈
∆ti−t0,ti+1−t0V(w(x, ti)) where we used (41) (of course, we have m =

∑s−1
j=0 p j). It then follows from (37)

that Wi+1 ≡ w(x, ti) + z ∈ VTi+1 . If Ti+1 < T it follows that (S i+1, t0 + Ti+1,Wi+1) ∈ NA(S 0, t0 + T0,W0)
(this set as in case A)). On the other hand, if Ti+1 = T , we could take z∗ = z and argue as in the above
case τ(x, [t0, t0 + T ]) = 0 and conclude, in this case, that there is S associated to x.

Similarly, assume statement B holds, i.e.: [(T −Ti) < qmin ∆] holds (this is possible as Ti > 0). Then
[(T − Ti) < qmin(x, [t0, t0 + T ]) ∆] where qmin(x, [t0, t0 + T ]) ≡ min{q : ∃ (m, q) ∈ NE(x, [t0, t0 + T ])}.
Therefore, there exists ti+1 = t0 + T > ti = t0 + Ti satisfying δ > |x(ti+1) − x(ti)|, then (34) implies

(m, q) ≡ (
x(ti+1) − x(ti)

δ0
,

ti+1 − ti

∆
) ∈ N<

S ,T (Ti). (48)

Notice that |m| < F. From the definitions and notation in Section 4 we can write (here we rely on (40)):

(x(rl+ j+1) − x(rl+ j)) = δ̂0 p̂ j = δ0 p j, and so p̂ j = G p j.

Moreover

m̂i =

s−1∑
j=0

p̂ j = G
s−1∑
j=0

p j ≡ G m. (49)

Therefore ∆iw ≡ w(x, t0 + T ) − w(x, ti) = δ̂0
∑s−1

j=0 | p̂ j| = δ0
∑s−1

j=0 |p j|. By means of the properties listed
in (14), and recalling that E = F G, we can check that the properties in (23) hold and by taking
J ≡ s we verify that (p)J−1

j=0 ∈ NW(m, q). Therefore z ≡ δ0
∑s−1

j=0 |p j| =
∑

li≤l,l+1≤li+1
|x(rl+1) − x(rl)| ∈

∆ti−t0,ti+1−tiV(w(x, ti)) where we used (41). It then follows from (37) that Wi+1 ≡ w(x, ti)+z = Wi +z ∈ VT

(where w(x, ti) = Wi holds by the inductive hypothesis). We emphasize, again, that the property of
association in Definition 6.1 does not involve the coordinate Wi and, given that t1 = t0 + T , we could
then take z∗ = z in (30) (more precisely, we have established that there exists z satisfying (Wi + z) ∈ VT

such that NA(m, q, z) , ∅; taking z∗ to be any such z will do for our argument). Therefore (S i+1 =

x(t0 + T ), t0 + Ti+1 = t0 + T,Wi+1) ∈ NA(S i, t0 + Ti,Wi), the latter set as in case B). It then follows that
x is associated to S.
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Finally, consider that statement C holds; we recall that in this case NA(S i, t0 + Ti,Wi) is defined as
the union of the sets NA(S i, t0 + Ti,Wi) appearing under the entries A) and B). From our definition
of ti+1 (see Definition 4.2) there are two possibilities: δ ≤ |x(ti+1) − x(ti)|, ti < ti+1 ≤ t0 + T or
δ > |x(ti+1) − x(ti)|, ti < ti+1 = t0 + T . Whichever of these cases holds, the execution of condition C in
the recursive construction of S and the arguments employed above for the cases A and B imply one of
the alternatives in (44). �

6.3. Discussion of rigurous results

The failure or validity of assumptions in Propositions 6.0.1 and 6.0.2 can be determined
dynamically; that is, when we arrive to the next node that just unfolded. Hypotheses in the two
propositions could fail at any node, so the larger N the larger the likelihood of the chart x not being
associated to some S ∈ S. In our setting, the possibility to choose the value of δ with δ > δ0 allows to
control the maximum value of N. Restricting N is also crucial when transaction costs are accounted
for.

Section 10 defines worst case parameter estimation and risk taking parameter estimation. The
mentioned hypotheses failures could be said to happen with uncertainty in the case that all parameters
have been estimated in the worst case manner. If, on the other hand, some parameters were estimated
in a risk-taking way; the failure may happen with a certain (empirical) frequency.

One special situation, namely the case when there exists l such that

(x(rl+1) − x(rl)) < {kδ0 : k ∈ Z} (50)

could lead to violation of the assumptions in Propositions 6.0.1 or 6.0.2. Notice that in practice (50)
will occur for our need to take δ0 larger in order to achieve reasonable execution times for our
implementation (see Appendix 1). So, it will be a case of a parameter to be considered to be risk
taking. It turns out that, under some conditions, one can show that weaker versions of the conclusions
in Propositions 6.0.1 and 6.0.2 are valid under (50). This is argued in Section 7.
Further discussion on the above issues can be found in Sections 9.2 and 9.3.

7. Trajectory approximation error due to δ0 ≥ 0.01

In this section we weaken the assumptions in Proposition 6.0.1 to account for the possibility that
(x(ti+1)− x(ti)) ∈ δ0 Z could fail given that we assume δ0 ≥ 0.01. As we remarked previously, (x(ti+1)−
x(ti)) ∈ δ0 Z is assumed implicitly by (33) and explicitly by (34). In order to afford weaker assumptions,
we also need to weaken the conclusion of that proposition while maintaining its practical relevance;
this we can achieve by replacing the notion of association between x and S by weak association as
defined below. We will establish the existence of a value of δ0 ≥ 0.01 for which one can establish a
weak association.

For simplicity, we restrict our analysis to type I models MIDP. A different error analysis is required
to accommodate the coordinate Wi as we will need to account for possible violations of Vti−t0(x, [t0, t0 +

T ]) ⊆ Vti−t0 in Proposition 6.0.2 due to δ0 ≥ 0.01.
We highlight that the superhedhing property (4) is crucial to deploy the proposed models; the clear

financial relevance is explained in Section 10. It is when x is associated to S that such superhedging
property becomes relevant as it holds when we replace the values S i for x(ti) (ti = Ti is also essential).
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Therefore, what really matters is that the superhedging property holds when we use the chart samples
x(ti), this observation motivates the definitions and developments that follow.

We modify below the association relationship x → S introduced in Definition 6.1 (as indicated, we
presently restrict ourselves to MIDP models). Also, for simplicity, Z below will be the payoff of a path
independent European derivative and so we can consider Z : R→ R.

Definition 7.1 (Weak association). Given a chart x : [t0, t0 + T ] → R, β > 0 and option Z, we say that
Ŝ = Ŝ(x) ∈ S is weakly associated to x (for the given β and Z) if there exists H ∈ H such that:

V(S 0,Z,M) + β +

N(Ŝ)−1∑
i=0

Hi(Ŝ) (x(ti+1) − x(ti)) ≥ Z(x(T )) and T̂i = ti, 0 ≤ i ≤ N(Ŝ), (51)

where Ŝ = {Ŝi = (Ŝ i, T̂i)}.

If x is associated to S then, by (4), it will be weakly associated as well for any Z and β. Actually,
the dependencies of Ŝ on Z and β in Definition 7.1 are incidental, the crucial point is that there exists
Ŝ ∈ S along which we can invest and that such investments will superhedge Z when the actual risky
asset unfolds along the values x(t). Given that β is fixed in the above definition, we refer to Ŝ as an
approximating trajectory.

7.1. Construction of Ŝ(x)

We describe below a method to set δ0 ≥ 0.01 and to construct Ŝ weakly associated to x under weaker
assumptions than the ones required in Proposition 6.0.1.

To simplify the notation let xi ≡ x(ti), 0 ≤ i ≤ N ≡ N(x). We will assume the following is valid at
all nodes (S, i):

if [|S i − xi| ≤ δ0, ti = Ti] then (52)

[∃ S+ = S+(x),S− = S−(x) ∈ S(S,i) , T +
i+1 = T−i+1 = ti+1, xi+1 ∈ [S −i+1, S

+
i+1] and

0 < S +
i+1 − S −i+1 ≤ δ0],

where the interval [S −i+1, S
+
i+1] is considered here as a subset of R (i.e. not as a subset of δ0Z). Property

(52) weakens assumptions required in Proposition 6.0.1. More precisely, in the present case of models
MIDP, assumptions (32), (33) and (34) imply (52) that only requires that we can approximate chart
values xi from above and below with trajectory values S i ∈ δ0Z + x(t0) instead of assuming that chart
changes (xi+1 − xi) are exactly matched by trajectory coordinates changes (S i+1 − S i).

Existence of S+ and S− will be available to our construction of Ŝ by the consequent in (52) and
the fact that the construction of Ŝ (described in this section) is recursive and the antecedent of (52)
will be satisfied in the previous step. For the same reason, T̂i = ti for all i will be trivial by (52) (and
the fact that, by construction, either Ŝi+1 = S+

i+1 or Ŝi+1 = S−i+1) hence, we only explicitly describe the
construction of the coordinates Ŝ i.

We will construct an approximating element Ŝ = Ŝ(x) in the trajectory set satisfying:

β ≥ Z(xN) − Z(Ŝ N) +

N−1∑
i=0

Hi(Ŝ) (Ŝ i+1 − xi+1) +

N−1∑
i=0

Hi(Ŝ) (xi − Ŝ i), (53)
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where H is the superhedging optimal portfolio from (4) for Z and ε = 0 and N = N(Ŝ ) = NH(Ŝ ).
Notice that for simplicity we have forced ε = 0 in (4) to avoid introducing a new inessential parameter
(this is possible as S is finite and this implies the computation of the optimal H is achieved by an actual
minimum in infH∈H ). Such H will be fixed for the rest of the discussion. If (53) is fulfilled it guarantees
that x is weakly associated to Ŝ; this is so because (53) implies

V + β +

N−1∑
i=0

Hi(Ŝ) (xi+1 − xi) ≥ V +

N−1∑
i=0

Hi(Ŝ) (Ŝ i+1 − Ŝ i) + Z(XN) − Z(Ŝ N) ≥ (54)

Z(Ŝ N) + Z(xN) − Z(Ŝ N) = Z(xN),

where the last inequality follows because H is the optimal portfolio in (4) with ε = 0 and
V ≡ V(S,Z,M).

So, the question becomes: can one choose δ0 ≥ 0.01 so that (53) holds for some approximating
trajectory Ŝ(x)? The answer is in the affirmative and the developments shed light in how some nodes
play a relevant role.

7.2. Upper bound via sign selection

We proceed recursively, fix Ŝ 0 ≡ S 0 = x0, so H0(Ŝ0) = H0(S0). We describe the construction of Ŝ i+1

under the sole assumption that |Ŝ i − xi| ≤ δ0. The construction terminates as soon as T̂i = T , it will
then be clear that the constructed Ŝ belongs to S and (53) holds and so Ŝ is weakly associated to x.

Our main goal is to find a suitable upper bound for

Hi(Ŝ) (Ŝ i+1 − xi+1) + Hi+1(Ŝ) (xi+1 − Ŝ i+1) = (Hi+1(Ŝ) − Hi(Ŝ)) (xi+1 − Ŝ i+1), (55)

notice we have joined pairs of terms appearing in (53) and remark that we will have a non paired term,
namely Hi+1(Ŝ) (xi+2 − Ŝ i+2) for the case of i + 1 = N − 1. Therefore, that last term has to be considered
as a separate case (something we do after first dealing with the paired terms (55)).

Let us analyze (55) with i+1 < N−1, and suppose S 0, Ŝ 1(x), . . . , Ŝ i(x) have been already constructed
satisfying the antecedent of (52). We attempt to make (55) non positive by choosing a closest (but there
is the issue of choosing the approximation from above or below) value of S′i+1, S′ ∈ S(Ŝ(x),i), to the given
value of xi+1. Notice that the value of Hi+1(Ŝ) depends on first choosing the value of Ŝ i+1. We have the
following possibilities:

• In case there exists S′ ∈ S(Ŝ (x),i) satisfying S ′i+1 = xi+1, we set Ŝ i+1 = Ŝ i+1(x) = S ′i+1.
• In case that Ŝ+ (recall that Ŝ+ ∈ S(Ŝ(x),i)) satisfies [Hi+1(Ŝ+) − Hi(Ŝ)] ≥ 0 we set Ŝ i+1 = Ŝ i+1(x) =

Ŝ +
i+1.

• In case that Ŝ− (recall that Ŝ− ∈ S(Ŝ(x),i)) satisfies [Hi+1(Ŝ−)−Hi(Ŝ)] ≤ 0 we we set Ŝ i+1 = Ŝ i+1(x) =

Ŝ −i+1.

Notice that in all the cases above (55) is non positive and so 0 is, so far, an upperbound for (55).
It remains to define Ŝ i+1(x) and bound (55) from above in the following case:

Ŝ ±i+1 , xi+1 & [Hi+1(Ŝ+) − Hi(Ŝ)] < 0 & [Hi+1(Ŝ−) − Hi(Ŝ)] > 0. (56)

That is, Hi+1(S′) − Hi(Ŝ) goes from being negative to being positive when S′ = Ŝ+ → S′ = Ŝ−.
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If (56) holds we define Ŝ i+1 = Ŝ i+1(x) = Ŝ +
i+1 whenever 0 < Ŝ +

i+1 − xi+1 ≤ δ0/2 and set Ŝ i+1 =

Ŝ i+1(x) = Ŝ −i+1 whenever 0 < xi+1−Ŝ −i+1 < δ0/2. This completes the definition of Ŝ i for 0 ≤ i ≤ N(x)−1.
Notice that in all cases |Ŝ i− xi| ≤ δ0 holds for 0 ≤ i ≤ N(x)−1 which gives access to the consequent

in (52) through the recursion/induction.
We gain some insight by analyzing (56) in some more detail, towards this goal we introduce some

notation that will be used shortly. Given a node (S, i), any existing pair S↑ and S↓ satisfying 0 <

S ↑i+1 − S ↓i+1 ≤ δ0, S↑,S↓ ∈ S(S,i), T ↑i+1 = T ↓i+1 and

[Hi+1(S↑) − Hi(S)] < 0 & [Hi+1(S↓) − Hi(S)] > 0 (57)

will be called a portfolio turning pair for such node. Notice that if the pair S↑ = S↑(S) and S↓ = S↓(S)
exists, then it is unique and that they are analogous to S+(x) and S−(x) introduced earlier.

As an informal remark, notice that a turning pair for a node is expected to happen in isolated
circumstances. For example, a plausible continuity of Hi+1 gives
Hi+1(S 0, . . . , S i, S

↑

i+1) ≈ Hi+1(S 0, . . . , S i, S
↓

i+1) given that 0 < S ↑i+1 − S ↓i+1 ≤ δ0. That is, by taking δ0

small enough any case satisfying (56) disappears by continuity. In the actual discrete case this is
clearly always true by taking δ0 = 0.01 so the portfolio investment is always continuous
(independently of the option) with respect to the natural (spatial) proximity of trajectories (by the
discrete nature of real trajectories).

For i fixed, let:
E↓i ≡ {S ∈ S : ∃ S↑, S↓ ∈ S(S ,i), 0 < S ↑i+1 − S ↓i+1 ≤ δ0, (58)

[Hi+1(S↑) − Hi(S)] < 0 & [Hi+1(S↓) − Hi(S)] > 0 & S i+1 = S ↓i+1} (59)

and,
E↑i ≡ {S ∈ S : ∃ S↑, S↓ ∈ S(S ,i), 0 < S ↑i+1 − S ↓i+1 ≤ δ0, (60)

[Hi+1(S↑) − Hi(S)] < 0 & [Hi+1(S↓) − Hi(S)] > 0 & S i+1 = S ↑i+1}. (61)

For (S, i) given we introduce:

wi(δ0,S) ≡ 1E↑i
(S) |Hi+1(S↑) − Hi(S)| + 1E↓i

(S) |Hi+1(S↓) − Hi(S)|. (62)

Consider (55), we have already obtained an upperbound by 0 when (56) does not hold. For the
upperbound inequality below we then assume the validity of (56), therefore

[Hi+1(Ŝ) − Hi(Ŝ)] (xi+1 − Ŝ i+1) = 1{Ŝ i+1=Ŝ +
i+1}

(Ŝ) [Hi+1(Ŝ) − Hi(Ŝ)] (xi+1 − Ŝ i+1)+ (63)

1{Ŝ i+1=Ŝ −i+1}
(Ŝ) [Hi+1(Ŝ) − Hi(Ŝ)] (xi+1 − Ŝ i+1) = (64)

1{Ŝ i+1=Ŝ +
i+1}

(Ŝ) [Hi+1(Ŝ+) − Hi(Ŝ)] (xi+1 − Ŝ i+1)+ (65)

1{Ŝ i+1=Ŝ −i+1}
(Ŝ) [Hi+1(Ŝ−) − Hi(Ŝ)] (xi+1 − Ŝ i+1) ≤ (66)

1E↑i
(Ŝ) |Hi+1(Ŝ↑) − Hi(Ŝ)|

δ0

2
+ 1E↓i

(Ŝ) |Hi+1(Ŝ↓) − Hi(Ŝ)|
δ0

2
.

Adding up terms we obtain the following bound:

N−2∑
i=0

((Hi+1(Ŝ ) − Hi(Ŝ ))(xi+1 − Ŝ i+1) ≤ w(δ0) ≡
δ0

2
sup
S∈S

( N−2∑
i=0

wi(δ0, S )
)
. (67)
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The definition of w(δ0) only involvesM (and Z indirectly), that is, its evaluation only requires access
to S and the optimal portfolio H (for option Z). We comment on the meaning and practicality of (67)
in the next section.

7.3. Constraints on δ0 for weak association

Here we put together previous estimates; to sum up, we want to construct a trajectory Ŝ(x) which is
weakly associated to x. This allows to extend the superhedging property, available inM when using
V(S 0,Z,M), to the case of using the actual trajectory samples xi. The construction of Ŝ(x) described
in the previous section works as long as δ0 is small enough, in fact we show below that we obtain
constraints on δ0 which depend only onM, β > 0 and Z.

To make use of the obtained upperbound, we write (53) as follows

β ≥ a(x) + b(x), (68)

where
a(x) = Z(xN) − Z(Ŝ N) + HN−1(Ŝ) (xN − Ŝ N) (69)

and

b(x) =

N−2∑
i=0

(Hi+1(Ŝ) − Hi(Ŝ)) (xi+1 − Ŝ i+1). (70)

Bounding a(x) is not problematic as we can always make HN−1(Ŝ) (xN− Ŝ N) ≤ 0 by choosing Ŝ N above
or below xN depending on the sign of HN−1(Ŝ ) (which does not depend on Ŝ N). Then, we can bound
Z(xN) − Z(Ŝ N) by the modulus of continuity of Z as |xN − Ŝ N | ≤ δ0. All this we can do thanks to the
fact that the antecedent in (52) holds for i = N(x) − 1. In the case of a European call Hi ≥ 0, so we
can choose Ŝ N ≥ xN hence Z(xN) − Z(Ŝ N) ≤ 0 and so a(x) ≤ 0. Therefore, for a European call option
β ≥ b(x) ≥ a(x) + b(x) and so, for this reason we concentrate only on b(x) below.

We have seen that b(x) ≤ w(δ0) (see (67)), therefore we look for a value of δ0 satisfying

w(δ0) ≤ β. (71)

As we have argued, taking δ0 = 0.01 makes w(δ0) = 0 and allows the construction of Ŝ under the
hypothesis (52). This situation is consistent with Proposition 6.0.1.

7.4. Meaning of Constraint w(δ0) ≤ β

Admittedly the computation of w(δ0) is impractical but the analysis leading to this quantity is useful.
Actually, to avoid any dependency on Ŝ, and so on x, the sets E↑i and E↓i were defined larger than could
be necessary if we allow our models to have some extra flexibility. Assume we allow δ0 to depend
conditionally on a given node (S, i), in that scenario, we can modify its value iteratively as we construct
Ŝ0, Ŝ1, . . .. This added flexibility allows us to replace the condition S ∈ S in the definition of the sets
E↑i and E↓i by S ∈ S(Ŝ,i). With such modification wi(δ0,S) = 0 if S < S(Ŝ,i); for example, one could
identify nodes (S, i) where wi(δ0,S) , 0 and refine δ0 at those nodes only. Crucially, this refinement
can be done as the samples xi unfold.

Notice that we have defined weak association in terms of superhedging but we can think in terms of
profits as follows: let Profits ≡ P(t0,K) − V(S 0,Z,M) − β where P(t0,K) is the market selling price
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of Z at t0 and β > 0. One can then set up parameters inM to risk-taking values so that Profits > 0.
Then (71) allows to select a value of δ0 such that Profits do not disappear due to errors in trajectory
matching (of course with risk taking parameter there is a risk for (52) to fail). This is so as (71) implies
(53) which in turn implies (54).

8. Measurements on charts for estimation

The present and the next sections specify all the inputs required to construct each of the two types
of models described in Section 5.2. Actually, by making different instantiations of some of the models’
inputs we will be able to describe several specific models.

Towards these tasks we assume the availability of chart values x∗(t) with t ∈ {k∆ : k ∈ Z}. We will
also use the notation T ⊆ {k∆ : k ∈ Z} to denote a historical interval of times for which we have access
to values x∗(t), used for estimation. We will specify further characteristics of T whenever relevant. We
also assume a given T = MT ∆. Notice that treating T as an interval will incorporate overnight effects
that could be best modelled separately (something we neglect to do).

All models rely on the following parameters: τ,Γ, the setNE and the collection of sets {Vρ}0≤ρ≤T (this
later collection is only needed for type II models). In some cases, for simplicity, we refer to this family
of parameters and sets generically as input parameters, they need to be estimated. The remaining
parameters are of a different type, they are: δ, δ0,∆,T . The parameters δ and ∆ are investor dependent
and they should be calibrated, guidelines to calibrate δ are available in Section 9. The parameter δ0 is
a parameter of practical concern discussed in several places in the paper and in particular in Section 7.
Finally T depends on the intended financial application.

Our approach relies on worst case estimation and risk taking estimation (see definitions in Section
9). Instead of relying on general notions from the start, we cover first some parameters in a case by
case basis. We expect, in this way, to illustrate the straightforward methodology. Hence, for the time
being, we will use the word estimate in quite general terms to refer to a computation that uses historical
data.

Given historical data x∗(t), t ∈ T , and a value δ0 we obtain sampling times {rl} that depend on
that specific value of δ0. These sample times are evaluated by fixing a window of MT data points (the
number of data points in a time window of length T ) and then shifting the window by one time unit
and starting again. Each set of sampling times {rl}, one for each such window, will have a variable
cardinality/length of L(x∗, [t, t + T ]) + 1. Notice that the notation {rl} does not indicate the dependency
on the window (which, in these cases, is left implicit for simplicity).

The following sections rely on notation introduced in Section 4.1.

8.1. Rounding

Estimates are evaluated, as much as possible, by manipulating the (exact) data values x(t) ∈ δ̂0 Z;
whenever rounding to the grid δ0Z is required it will take place at the last step of the computations.
Rounding is required in two instances, in one case for the estimation of NE and in the other case for
the estimation of {Vρ} both quantities are model dependent and so associated to δ0. The quantities
NE(x, [t0, t0 + T ]) (from Definition 4.3) and

∑
li≤l,l+1≤li+1

|x(rl+1)− x(rl)| (from (41)) are chart dependent
and do not require any rounding. We note in passing that, for the latter quantity, we could have
introduced the chart variation notation Vti+1−t0(x, [t0, t0 + T ])−Vti−t0(x, [t0, t0 + T ]) but we have not done
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so.
To emphasize: the sampling times {rl} and transaction times {ti} are evaluated using the exact values

x(t). Similarly, the values of τ(x, [t0, t0 + T ]) and Γ(x, [t0, t0 + T ]) in (17) and (18) respectively, are in
no need of any rounding.

Given y(t) ∈ δ̂0 Z let ‖y(t)‖ ∈ δ0 Z denote the closest value to y(t) (i.e. closest in δ0 N). In case of
ambiguity, namely when both conditions |by(t)c − y(t)| = |dy(t)e − y(t)| = δ0/2 hold (where b c and d e
are floor and ceiling functions rounding in δ0 N), any possible disambiguation will be fine.

With some abuse of notation, when compared to Definition 4.3, we introduce NE(‖x‖, [t0, t0 + T ])
which is the first instance when we are required to use rounded values:

NE(‖x‖, [t0, t0 + T ]) ≡ {(
‖x(ti+1) − x(ti)‖

δ0
,

ti+1 − ti

∆
) : 0 ≤ i ≤ P − 1}, (72)

where the {ti} are as in Definition (4.2) and P ≡ P(x, [t0, t0 + T ]) ≡ N ≡ N(x, [t0, t0 + T ]) (the latter as
introduced in Definition 4.2) if δ ≤ |x(tN) − x(tN−1)| or P ≡ P(x, [t0, t0 + T ]) ≡ N − 1 otherwise.

The second instance when we rely on rounded values is in (79) below.

8.2. Estimate for NE

Define,
N∗E ≡ ∪[t,t+T ]⊆T NE(‖x∗‖, [t, t + T ]), (73)

where NE(‖x∗‖, [t, t + T ]) was introduced in (72). Define q∗ ≡ min{q : ∃(m, q) ∈ N∗E}, q∗ ≡ max{q :
∃ (m, q) ∈ N∗E}, m∗ ≡ min{m : ∃ (m, q) ∈ N∗E} and m∗ ≡ max{m : ∃ (m, q) ∈ N∗E}.

The set NE will be assigned to two different estimates, doing so for each of the model types gives
four different models. This multiplicity illustrates the obvious need to explore the stability/robustness
of these alternatives. This is something we do not do in this paper and it may be best approached with
machine learning techniques. Notice also that one can detect if the model fails in a dynamic way, this is
a very important feature as it could be used to learn or adapt the investor behaviour. We do not pursue
such a possibility in the paper.

1. Direct Product (DP) Choice: NE = {m ∈ Z : m∗ ≤ m ≤ m∗} × {q ∈ N : q∗ ≤ q ≤
q∗} (and so N∗E ⊆ NE).

2. Observable (OBS) Choice: NE = N∗E.

Either of the two choices for NE is referred to as as a worst case estimate while the sets that
remain after removing any arbitrary subset from the worst case estimates are referred to as risk taking
estimates.

8.3. Estimate for Γ [Implying: qmin ∆ ≤ Γ]

Define
Γ∗ ≡ max

[t,t+T ]⊆T
Γ(x∗, [t, t + T ]), (74)

where Γ(x∗, [t, t + T ]) is given by (18). That is, Γ∗ is the smallest time duration such that for any t
satisfying [t, t + Γ∗] ⊆ T there exists s ∈ (t, t + Γ∗] such that δ ≤ |x∗(s) − x∗(t)|. Unless δ is taken
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sufficiently small, we will find Γ∗ = T which will make the parameter Γ∗ irrelevant. This later remark
should be clear from the definitions of the models.
We set

Γ ≡ Γ∗, (75)

such choice is referred as worst case. One can also consider Γ < Γ∗, this will entail some risk-taking
as defined and analyzed in Sections 6 and 10. Notice that the choice Γ ≥ Γ∗ is possible and is more
conservative that the worst case choice.

Given the above definitions and recalling that qmin ≡ min{q : (m, q) ∈ NE}, it then follows that
qmin ∆ is the smallest time length, in the historical data set, for x∗ to have a δ-increment. Therefore, the
definition of Γ∗ implies

qmin ∆ ≤ Γ∗ = Γ. (76)

This inequality is an assumption required for the two types of models and is thus established from (75).

8.4. Estimate for τ

Define
τ∗ ≡ min

[t,t+T ]⊆T
τ(x∗, [t, t + T ]) (77)

where τ(x∗, [t, t + T ] was introduced in (17). We then set

τ ≡ τ∗. (78)

One can also consider τ > τ∗ or τ < τ∗, the first choice will entail some risk-taking while the second
choice being more conservative (both relative to worst case). Finally, notice that τ∗ = 0 implies Γ∗ = T .

8.5. Models: MIDP, MIOBS

Given the above choices ofNE, Γ and τ, we define two models of type I which we refer to by MIDP
and MIOBS. The former obviously refers to the DP choice for NE and the latter to the OBS choice for
NE

8.6. Estimates for {Vρ}, ρ ∈ [0,T ] [Models: MIIDPVAR, MIIOBSVAR]

Here we introduce two models of type II. As we did with type I models we set NE exactly as in
items (1) and (2) in Section 8.2. These choices we label MIIDP and MIIOBS, it remains to specify the
estimate for {Vρ}.

For 0 ≤ ρ ≤ T define

Vρ(‖x∗‖, [t, t + T ]) ≡ ‖
rl+1≤t+ρ∑

l=0

|x(rl+1) − x(rl)|‖ (79)

where, as we have done many times before, the sampling times are as in Definition 4.1 and the notation
||y|| means the rounding of y to the grid δ0 Z (already introduced in Section 8.1). Moreover, define

V∗ρ ≡ ∪[t,t+T ]⊆T Vρ([x∗], [t, t + T ]). (80)
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1. We introduce model MIIDPVAR (Model II Direct Product with Variation) by setting: NE = {m ∈
δ0 Z : m∗ ≤ m ≤ m∗} × [q∗, q∗]. {Vρ} ≡ {V∗ρ}, ρ ∈ [0,T ]

2. We introduce model MIIOBSVAR (Model II Observed with Variation) by setting: NE = N∗E.
{Vρ} ≡ {V∗ρ}, ρ ∈ [0,T ].

That is, we have set NE as we have done for MIDP and MIOBS. Examples of the sets {Vρ} are displayed
in Figures 18 and 19.

9. Data used, calibration of δ and output for estimates

This section completes the specification of the models introduced by mentioning some criteria to
calibrate δ and providing some output for the estimated parameters. We also take the opportunity to
introduce some general definitions of worst case estimation, such discussion should provide a
perspective to our approach.

The simple estimation methodology used in the paper has been already introduced in Section 8 and
we expand on it in the present section. Unless indicated otherwise, whenever we refer to probabilities in
relation to parameter estimation or a risk-reward analysis, we mean empirical frequencies. In particular,
probabilities are not necessarily given by a probability measure.

The word calibration refers to a process for assigning values to model parameters that can be chosen
by the investor, in our case, δ. All other parameters have been set to worst case estimates in Section 8.

At this point in the paper, it seems appropriate to be more specific regarding the data we used and
how it affects estimation. We will deploy the models in a setting with ∆ = 1 hour or ∆ = 1/2 hour and
T of the order of several days. These values were imposed by the data we had access to, a negative
side effect is long execution time for pricing. To illustrate how to alleviate this situation, in the case of
type II models, we have increased the value of δ0 as this choice allows for reasonable fast execution
times for our implementation (we have also sub-sampled the sets NE). Notice that δ0 has two usages:
i) it represents the discretization used in the model’s grid (and it is in this role where δ0 needs to
be curtailed to reduce computational time) ii) it defines the sampling times, changing δ0 has then an
impact on estimation (in particular for type II models which uses the variation coordinate). Details are
provided at appropriate places in the paper.

The requirement (29) for type II models is enforced in our implementation along the lines described
at the end of Section 5.2.2. We also enforce S i ≥ 0 by setting S j = 0, i ≤ j where i is the smallest
index such that S i−1 + mδ0 < 0.

9.1. Data employed

The two sources of data used for calibration and estimation are:

• An approximately 8 month long stretch of hourly data ticks for Facebook Inc (FB) from 2016-12-
06 to 2017-07-03. At the end of this period, call option ask prices were captured across a variety
of strikes for comparison with an expiration of 15 calendar days into the future.
• The same time interval of the Standard and Poor’s Depositary Receipts S & P 500 Trust ETF

(SPY) of 30 minutes ticks. Again, at the end of this period, call option ask prices were captured
across a variety of strikes for comparison with an expiration of 15 calendar days into the future.
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Let |M| be the total number of data points and MT the number of data points corresponding to an
interval [t0, t0 + T ]. Notice we label past data points by M,M + 1, . . . ,−1 i.e. M < 0.

We neglect overnight and weekend effects in the sense that we do not model any of its characteristics
but their peculiarities will impact our estimates. Given that in our data there are 7 hourly samples per
business day for the FB stock and there are 11 business days in the 15 calendar days we have T = 77 ∆,
with ∆ = 1hr (so MT = 77). Similarly for the 1/2 hourly data of SPY we have T = 154 ∆ with with
∆ = 1/2 hr (so MT = 154).

We use the notation T = {k∆ : k = M,M + 1, . . . ,−1} and whenever we indicate historically
estimated from chart data below we mean that we made use of data x∗(t) with t ∈ T .

9.2. Comments on worst case estimation

We hope the previous section’s introduction by example of what we mean with worst case estimation
has helped to show that our approach is simple minded and should not require, for our purposes,
a theoretical justification. The present section and later sections do introduce some definitions on
the matter but they are intended to provide due precision and with no intention of complicating the
framework.

Worst case estimation as well as calibration (to a lesser extent) depend on a set of historical data. We
use 8 months of data and hence, it can be argued, our estimates are not really worst case as it does not
contemplate all possible historically available data. Our reasoning and conclusions, for the considered
specific models, only depend on the property that the estimated sets NE have finite cardinality (or,
more generally, are bounded). So, this should be considered the underlying assumption: these sets of
reachable nodes are bounded even in the case of unlimited availability of historical data.

One expects that the worst case estimation as defined will be robust in matching future unfolding
trajectories. Failure to match the unfolding chart to a modeling trajectory will only happen if the
combined time and stock movements of the unfolding chart are more extreme than any in the past data.
As we mentioned previously, a main issue we need to confront is that the presence of extreme price
movements (and they do appear in our data set) will translate into non informative bounds for option
pricing. Section 11 explains the specific key feature in type II models that blocks the effect of extreme
parameter values implying unrealistic price bounds.

Informally, parameters associated to an operational setting and used to construct models, should
have stable worst case ranges. That is, their ranges should not contain non informative values. For
example, our investor can select δ and, up to some extent T as well, so that τ∗ > 0 and Γ∗ < T . The
extreme values τ∗ = 0 and Γ∗ = T make these parameters non informative for model construction. The
case when a worst case parameter estimate (e.g. N∗) growths unbounded as historical data is aggregated
is a clear indication that some characteristics of the model need to be re-considered. To emphasize:
selecting the model variables keeping in mind that their worst case ranges should substantially constrain
the trajectory set is central to the proposed methodology.

9.3. Criteria to select δ and δ0

Recall that δ is the minimum chart change before an investor considers rebalancing. The
implications of possible choices of δ are worth analyzing.

Choosing δ too large will cause the conditional set to collapse as there will be a value of δ large
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enough so thatNE will contain a single element (in particular, this will create an arbitrage). Increasing
δ further means that NE will be empty. Reducing δ from this extreme value could produce a binomial
tree which will give a complete model. In this case the upper and lower bounds will coincide but this
common value will not be necessarily equal to the market price. Of course, even in our worst case
estimation setting, the issue arises of the effect on trajectory matching if we use a large value of δ
leading to a small set NE.

For the above reasons we discuss some particular criteria as well as general guidelines to calibrate a
value of δ. A general criteria, which we actually use to create our output examples, is to choose a value
of δ which gives values of model parameters that constrain the size of of the trajectory set. Towards
this end we plot how the parameters τ,Γ,mmax,mmin change with δ. Moreover, we already mentioned
that the choice of δ controls the maximum value of N(S). In case we estimate some parameters to
risk taking values, there will be a historical frequency of model failure. In this case, controlling the
maximum value of N(S) allows to estimate the likelihood of model failure along a trajectory S (which
is upperbounded by N(S) times the mentioned frequency of failure). In general terms, one can select
a value of δ where observable and operational parameters are in between realistic worst case bounds.
For example the minimum number of transactions N∗ and the maximum number of transactions N∗

represent quantities that can be achieved by our investor. Notice that the usual calibration practice will
be to try to match the option prices to market prices; we could also use this criteria as a calibration
target. Namely we could select δ so that our bounds are tight and contain the observable market value in
between. A main benefit of the market models in the paper is the fact that one can use complementary
criteria to calibrate given that most features of the models are observable and have a direct operational
meaning.

The setNE should become stable before we exhaust all our historical data. In the paper we deal with
two dimensions, (m, q), and one can monitor the convex hull of these pairs as a measure of stability.
The convex hull could also be used as an alternative to the direct product construction in order to
obtain a solid set NE (as opposed to discrete points).

Given the information we store in the coordinates of the two types of models, and in order to control
the maximum value of N(S), we remark that N(S) qmin∆ ≤ MT ∆ = T . Therefore, we could select δ so
that MT

qmin
implies at most a few rebalances per day on average (if the value of qmin allows us to do this).

Finally, for type I models and FB data, we have provided output for the choice δ = 0.5, δ0 = 0.1.
This value of δ is consistent with the above explanations as it follows from Figures 5 and 6. The
analogous output for SPY data are Figures 9 and 10. Type II models require a larger data structure
implying longer computational times. To alleviate this situation we took δ0 = 0.5 which allows to
take δ = 1 (for the FB data set) and δ0 = 0.4, δ = 0.8 (for the SPY data set) given smaller sets
NE. Furthermore, we also sub-sampled the sets NE (as explained later in the paper). For consistency
of comparison, Figure 15 provides pricing bounds for the model MIDP for the SPY data set with the
values δ = 0.8, δ0 = 0.4 (this output was produced with the same sub-sampling as the one used for type
II models).

Based on experimentation, we expect that none of these choices, will significantly alter the price
bounds we report (relative to taking δ0 = δ̂0 = 0.01). Moreover, using sub-sampled setsNE that include
the extreme values (as opposed to the full sets) should not alter the price bounds reported as the latter
are only affected by the extreme stock value changes (given that the payoffs are convex).
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9.4. Output for NE, τ, Γ, N∗ and N∗

As indicated, the output uses ∆ = 1 hr for FB data and ∆ = 1/2 hr for SPY data. Figures 2, 3, 5 and
6 illustrate some structure induced in the set of pairs (m, q) ∈ NE (as well as in τ,Γ,N∗ and N∗) which
takes place by changing δ for the FB data. The analogous output for SPY data are Figures 9 and 10
(further output can be found in Appendix 2). In all these cases δ0 = 0.1. Figures 4 and 7 illustrate the
sets NE, with δ = 0.5, δ0 = 0.1 for the FB and SPY data respectively.

As already mentioned, for type II models we have taken δ = 1, δ0 = 0.5 for the FB case and δ =

0.8, δ0 = 0.4 for the SPY case. The analogous outputs, to the ones mentioned in the previous paragraph,
can be found in Appendix 2; here we only provide Figure 8 that displays NE taking δ = 0.8, δ0 = 0.4
for the SPY data set.
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Figure 2. maximum and minimum of mi with respect to δ. FB data, δ0 = 0.1, δ̂0 = 0.01,
∆ = 1 hr.

9.5. Price bounds output

Here we comment and explain on the different models’ prices obtained as function of the option’s
strikes. For comparison, the references Britten-Jones and Neuberger (1996) as well as Rebonato
(2012), provide output for related models and the same minmax methodology. Figures 11, 12, 13 and
14 provide lower and upper bounds (in red) as functions of the strike for the models: MIOBS, MIDP,
MIIDP and MIIOBS respectively for the FB data. In Appendix 2 we have provided more related
output, namely output for MIOBS, MIDP but now for δ = 1, δ0 = 0.5 and NE sub-sampled as we do for
type II models (in this way one can directly compare FB output with the output for type II models
provided here).

Figures 15, 16 and 17 provide lower and upper bounds (in red) as functions of the strike for the
models: MIDP, MIIDP and MIIOBS respectively for the SPY data.
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Figure 3. maximum and minimum of qi with respect to δ. FB data. δ0 = 0.1, δ̂0 = 0.01.
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Figure 4. Set NE of observable pairs (m, q). FB data. δ = 0.5, δ0 = 0.1, δ̂0 = 0.01.

In all the above listed figures, the option market prices are displayed in blue as a function of the
strikes.

The values of the relevant parameters are displayed in the captions, notice that for type II models
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Figure 5. N∗ and N∗, i.e. minimum and maximum number of δ-increments over historical
data with respect to δ. FB data. δ0 = 0.1, δ̂0 = 0.01.
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Figure 6. τ (blue, decreases) and Γ (red, increases) with respect to δ. FB data. δ0 = 0.1,
δ̂0 = 0.01.

the values of δ0, δ are larger than in the case of type I models. As explained before, this was done
to speed up the execution times from the order of several days to a few hours (details are provided
in Appendix 1). In the case of type II models we have also sub-sampled NE as follows. For the
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Figure 7. Set NE of observable pairs (m, q). SPY data. δ = 0.5, δ0 = 0.1, δ̂0 = 0.01
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Figure 8. Set NE of observable pairs (m, q). SPY data. δ = 0.8, δ0 = 0.4, δ̂0 = 0.01

DP model we skipped every other value of q and kept the extreme values of m. For the OBS model,
for every q value we kept only the extreme values of m. Another shortcut we took when generating
values for ∆iW =

∑s−1
j=0 |p j|δ0 with the constraints (23) in effect. An explanation of a simple algorithm

approximating this computation is described in Appendix 1, the parameter K (not to be confused with
the option’s strike) in that algorithm was taken to be K = 50.

The model MIDP is quite conservative given the construction ofNE as a direct product; the model’s
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Figure 9. N∗ and N∗, i.e. minimum and maximum number of δ-increments over historical
data with respect to δ. SPY data, δ0 = 0.1, δ̂0 = 0.01.
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Figure 10. τ∗ (blue, decreases) and Γ (red, increases) with respect to δ. SPY data, δ0 = 0.1,
δ̂0 = 0.01.

bounds reflect this fact. In contrast, the effect of using variation for constraining trajectories is
illustrated in MIIDP which substantially tightens up the bounds (see Section 11 for the explanation).
Consistently, even tighter bounds are given by the model MIIOBS as the historically observed pairs
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Figure 11. FB data model type I, MIOBS. Price bounds and market price (in blue) as functions
of European call strikes. δ = 0.5, δ0 = 0.1
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Figure 12. FB data model type I, MIDP. Price bounds and market price (in blue) as functions
of European call strikes. δ = 0.5, δ0 = 0.1

(m, q) are a subset of NE when the latter is given by a direct product. Figures 18 and 19 show the
variation values used for the output for type II models.

Some details on execution times are provided in Appendix 1, for example the model MIIOBS took
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Figure 13. FB data model type II, MIIDP. Price bounds and market price (in blue) as
functions of European call strikes. δ = 1, δ0 = 0.5

145 150 155 160 165 170 175 180 185 190

0

5

10

15

20

25

Figure 14. FB data model type II, MIIOBS. Price bounds and market price (in blue) as
functions of European call strikes. δ = 1, δ0 = 0.5

77 minutes in 4 CPU’s at 2.60GHz and 7.5 GiB of RAM plus 4 GB of Swap memory (in a Linux
system). Model MIIOBS took 315 minutes (these times are for the SPY data set). While it may seem
that compared to classical finite differences and Monte Carlo methods these times are prohibitively
long, we would like to point out the following: computing maximal hedging bounds (i.e. the pricing
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Figure 15. SPY data model type I, MIDP. Price bounds and market price (in blue) as functions
of European call strikes. δ = 0.8, δ0 = 0.4. In contrast to the output for FB, and in order to
have one consistent comparison, this type I model output was generated in the same way as
the corresponding type II models (in particular subsamplingNE). Appendix 2 has the output
for the full model.
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Figure 16. SPY data model type II, MIIDP. Price bounds and market price (in blue) as
functions of European call strikes. δ = 0.8, δ0 = 0.4
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Figure 17. SPY data model type II, MIIOBS. Price bounds and market price (in blue) as
functions of European call strikes. δ = 0.8, δ0 = 0.4

Figure 18. Historical variation constraint sets for FB data. Obtained for δ = 1, δ0 = 0.5. The
x-axis represent the time steps.

component of our algorithm) is of comparable complexity to the classical pricing algorithm as it can
be viewed as a linear dual problem to computing the maximal price in an incomplete discrete time
framework. The later problem being itself a convex hull problem with the risk neutral probabilities the
hull weights. On the other hand, and as a way of contrast with stochastic models, we have not made any
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Figure 19. Historical variation constraint sets for SPY data. Obtained for δ = 0.8, δ0 = 0.4.
The x-axis represent the time steps.

assumptions on the dynamics of the underlying. Correspondingly, we have no assumptions to draw on
that will help us find bounds in our models. In addition, our models make use of either every available
observed movement or make worse case assumptions and so there is an extra cost to build the graph
data structure required to encode the trajectory set. More general stochastic models (e.g. general Levy
processes) are often similarly computationally expensive but offering less generality than our setting.
Conversely, binomial and trinomial trees often used in industry to calibrate American option prices
would obviously have much shorter execution times than the models presented here.

Some details on execution times are provided in Appendix 1.

10. Risk-reward under worst case

Let us consider the case of an investor selling a European call option Z (with an analogous analysis
for the case of buying an option) at time t0 with strike K and expiring at t0 + T . She will set up a
portfolio that will be rebalanced as described in Section 2 and Appendix 1 with a chosen parameter δ.
Let P(t0,K) be the actual market price at which one option contract can be sold and M ≡ S × H a
trajectorial model. If P(t0,K) > V(S 0,Z,M) and the unfolding chart x(t), t ∈ [t0, t0 + T ], is associated
to some S ∈ S, then the investor will profit P(t0,K)−V(S 0,Z,M) per contract. This profit is guaranteed
by (4) under the assumption that worst case estimates are not violated. Under such assumption, if S
is one of the two trajectory sets types described in the paper and its parameters are estimated to worst
case, then x → S holds. This is so by either the conclusion of Proposition 6.0.1 or Proposition 6.0.2
which hold given that the assumption that worst case estimates are not violated implies the hypothesis
of the said propositions. The conclusion is that P(t0,K) > V(S 0,Z,M) implies a profit with certainty.

The other logical possibility, in case that P(t0,K) ≤ V(S 0,Z,M), is to set the parameters in S to risk
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taking estimates (all such possibilities were introduced in Section 8). This entails setting parameter
values so that P(t0,K) > V(S 0,Z,M′) holds (hereM′ is the model with the said parameters set to risk
taking values). It should be clear that the risk being taken is relative to the worst case and that empirical
frequencies of failure can be evaluated.

Notice that nothing prevents the models to fail just because the future may not be included in our
worst case past estimations. Clearly, distinct models will behave differently regarding this possibility.

The above discussion on profits also applies when we replace the notion of association between x
and S by weak association introduced in Section 7.

We have not explored the profit and loss function that results by starting the superhedging portfolio
with an initial value v = P(t0,K) ≤ V(S 0,Z,M). Our main remark is that our framework permits to
take investment decisions that have an objective meaning in terms of risk-reward.

11. Type II models: obstruction for local worst case estimates to propagate to unrealistic
bounds

This short section explains why, in the case of type II models, extreme parameter values do not
translate into unrealistic bounds. It is the effect of the constraints Wi ∈ VTi that limits the appearance of
extreme events. This is easily seen as follows, consider (mmax, q) ∈ NE and mi = mmax =

∑J−1
j=0 p j. Then

|mmax|δ0 ≤
∑J−1

j=0 |p j|δ0 = ∆iW, hence a trajectory S can not have ∆iS = mmaxδ0 at too many coordinates
i. Otherwise, WTk ∈ VTk will not hold at some k (more precisely, this condition will fail as soon as
the element S under consideration does not reflect the historical worst case constraint being enforced
by VTk). A similar analysis applies to mmin (under the assumption that |mmin| is an extreme value). To
summarize: an empirical constraint in variation (i.e. Wk ∈ VTk) limits the number of nodes (S, i) at
which the investor has to account for the worst case possible stock movements (i.e. large values of
|mi|). This has the effect of reducing the required funds V i(S,Z,M), this fact can actually be proven
rigorously for convex payoffs Z. The resulting effect is a smaller price interval [V0,V0]. The net
effect is to limit the appearance of a large number of extreme values of m along any trajectory, notice
that those large moves could appear anywhere in a trajectory and we do not assume any particular
distribution. It will be of much interest to find a local condition (i.e. only involving consecutive times
Ti,Ti+1) that achieves a similar result.

One could replace our use of variation by quadratic variation.

12. Discussion

The methodology presented in the paper shows, by example, the possibility to construct models
with a financial operational meaning. The elements used to construct the models result from portfolio
rebalances and updates of data summaries (i.e. observation and updates for the variables of interest).
There is then an association, via operations, between financial events and the model components. In
other words, we assume a class of agents that act and react to financial events in a general and well
defined manner. This setup allows the agents to obtain prices relative to their operations; the risk and
reward characteristic of these prices are then linked to observable events. The price bounds so obtained
have an objective meaning for these agents as models’ features correspond to specific set of conditions
faced by the agents. This charateristic makes the models of great value to investors. Clearly, it is
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easy to argue about the existence of this type of models without going to the trouble, i.e. analysis and
implementation, that we have taken in our paper. The key comment is that the proposed models, when
calibrated to worst case conditions (i.e. a robust calibration), can provide tight bounds as shown in
the paper. These tight bounds can translate into attractive profit and loss characteristics. The latter
type of analysis is a time consuming exercise not developed in the paper and better approached in
higher frequency setting with several stocks and with more practical goals in mind. We remark that it
is possible to replace the option by another stock and extend the analysis to a multidimensional setting
making the whole methodology easier to deploy for testing. This exercise has been performed in
Crisci (2019) and will be reported elsewhere. Nonetheless, we should emphasize that, in our opinion,
the essential ingredient to obtain useful operational models is the selection of key variables affecting
the agent’s portfolio rebalances. Profit and loss analysis leading to investment decisions should be
reliable and rewarding in relation to the relevance of the variables used in the model’s construction.
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Ferrando SE, González AL, Degano IL, et al. (2019) Trajectorial market models: arbitrage and pricing
intervals. Revista de la Unión Matemática Argentina 60: 149–185.
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Supplementary Material

A. Appendix 1

This appendix links to a separate file (Ferrando and et. al. (2019a)) providing details of a Matlab
software implementation for the models introduced in the paper.

B. Appendix 2

This appendix links to a separate compressed zip file (Ferrando and et. al. (2019b)). The zip file is
named Operational root and contains a software bundle written in Matlab. The software
implements the methods and algorithms described in the paper and can be used to reproduce the
output displayed in the main paper. The software bundle also contains a README.pdf file, a copy of
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Appendix 1, and some other files as described in README.pdf. The data necessary to reproduce the
outcomes displayed in the paper is also included in the bundle. There is also the file
OutputOperationalModels.pdf, this is the document entitled ”Output for Trajectorial Asset
Models with Operational Assumptions” and contains extra output beyond the one contained in the
main paper.
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