Research article

Valuing tradeability in exponential Lévy models

  • Received: 15 May 2020 Accepted: 09 June 2020 Published: 29 June 2020
  • JEL Codes: C32, G12, G13

  • The present article provides a novel theoretical way to evaluate tradeability in markets of ordinary exponential Lévy type. We consider non-tradeability as a particular type of market illiquidity and investigate its impact on the price of the assets. Starting from an adaption of the continuous-time optional asset replacement problem initiated by McDonald and Siegel (1986), we derive tradeability premiums and subsequently characterize them in terms of free-boundary problems. This provides a simple way to compute non-tradeability values, e.g. by means of standard numerical techniques, and, in particular, to express the price of a non-tradeable asset as a percentage of the price of a tradeable equivalent. Our approach is illustrated via numerical examples where we discuss various properties of the tradeability premiums.

    Citation: Ludovic Mathys. Valuing tradeability in exponential Lévy models[J]. Quantitative Finance and Economics, 2020, 4(3): 459-488. doi: 10.3934/QFE.2020021

    Related Papers:

  • The present article provides a novel theoretical way to evaluate tradeability in markets of ordinary exponential Lévy type. We consider non-tradeability as a particular type of market illiquidity and investigate its impact on the price of the assets. Starting from an adaption of the continuous-time optional asset replacement problem initiated by McDonald and Siegel (1986), we derive tradeability premiums and subsequently characterize them in terms of free-boundary problems. This provides a simple way to compute non-tradeability values, e.g. by means of standard numerical techniques, and, in particular, to express the price of a non-tradeable asset as a percentage of the price of a tradeable equivalent. Our approach is illustrated via numerical examples where we discuss various properties of the tradeability premiums.


    加载中


    [1] Acharya V, Pedersen L (2005) Asset pricing with liquidity risk. J Financ Econ 77: 375-410. doi: 10.1016/j.jfineco.2004.06.007
    [2] Amihud Y, Mendelson H (1986) Asset pricing and the bid-ask spread. J Financ Econ 17: 223-249. doi: 10.1016/0304-405X(86)90065-6
    [3] Amihud Y, Mendelson H (1989) The effects of beta, bid-ask spread, residual risk, and size on stock returns. J Financ 44: 479-486. doi: 10.1111/j.1540-6261.1989.tb05067.x
    [4] Amihud Y, Mendelson H, Pedersen L (2005) Liquidity and asset prices. Found Trends Financ 1: 269-364. doi: 10.1561/0500000003
    [5] Applebaum D (2009) Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge.
    [6] Battauz A, De Donno M, Sbuelz A (2012) Real options with a double continuation region. Quantit Financ 12: 465-475. doi: 10.1080/14697688.2010.484024
    [7] Battauz A, De Donno M, Sbuelz A (2015) Real options and American derivatives: The double continuation region. Manage Sci 61: 1094-1107. doi: 10.1287/mnsc.2013.1891
    [8] Cai N, Kou S (2011) Option pricing under a mixed-exponential jump diffusion model. Manage Sci 57: 2067-2081. doi: 10.1287/mnsc.1110.1393
    [9] Cai N, Sun L (2014) Valuation of stock loans with jump risk. J Econ Dyn Control 40: 213-241. doi: 10.1016/j.jedc.2014.01.004
    [10] Carr P (1998) Randomization and the American put. Rev Financ Stud 11: 597-626. doi: 10.1093/rfs/11.3.597
    [11] Carr P, Madan D (1999) Option valuation using the fast Fourier transform. J Comput Financ 2: 61-73. doi: 10.21314/JCF.1999.043
    [12] Cetin U, Jarrow R, Protter P (2004) Liquidity risk and arbitrage pricing theory. Financ Stoch 8: 311-341. doi: 10.1007/s00780-004-0123-x
    [13] Cetin U, Rogers LCG (2007) Modelling liquidity effects in discrete time. Math Financ 17: 15-29. doi: 10.1111/j.1467-9965.2007.00292.x
    [14] Chesney M, Kempf A (2012) The value of tradeability. Rev Deriv Res 15: 193-216. doi: 10.1007/s11147-012-9074-0
    [15] Cont R, Voltchkova E (2005) Integro-differential equations for option prices in exponential Lévy models. Financ Stoch 9: 299-325. doi: 10.1007/s00780-005-0153-z
    [16] De Donno M, Palmowski Z, Tumilewicz J (2020) Double continuation regions for American and swing options with negative discount rate in Lévy models. Math Financ 30: 196-227. doi: 10.1111/mafi.12218
    [17] Detemple J, Kitapbayev Y (2018) On American VIX options under the generalized 3/2 and 1/2 models. Math Financ 28: 550-581. doi: 10.1111/mafi.12153
    [18] Fajardo J, Mordecki E (2014) Skewness premium with Lévy processes. Quant Financ 14: 1619-1626. doi: 10.1080/14697688.2011.618809
    [19] Filipovic D, Kitapbayev Y (2018) On the American swaption in the linear-rational framework. Quant Financ 18: 1865-1876. doi: 10.1080/14697688.2018.1446547
    [20] Garman M, Kohlhagen S (1983) Foreign currency option values. J Int Money Financ 2: 231-237. doi: 10.1016/S0261-5606(83)80001-1
    [21] Gerber H, Shiu E (1994) Option pricing by Esscher transforms. Trans Society Actuaries 46: 99-191.
    [22] Gökay S, Roch A, Soner M (2011) Liquidity models in continuous and discrete time, In Advanced Mathematical Methods for Finance, Springer, Heidelberg, 333-365.
    [23] Harrison M, Pliska S (1981) Martingales and stochastic integrals in the theory of continuous trading. Stoch Processes Appl 11: 215-260. doi: 10.1016/0304-4149(81)90026-0
    [24] Jarrow R (1994) Derivative securities markets, market manipulation and option pricing theory. J Financ Quant Anal 29: 241-261. doi: 10.2307/2331224
    [25] Jeanblanc M, Chesney M (2004) Pricing American currency options in an exponential Lévy model. Appl Math Financ 11: 207-225. doi: 10.1080/1350486042000249336
    [26] Jeanblanc M, Yor M, Chesney M (2006) Mathematical methods for financial markets, Springer Finance, Springer, Berlin.
    [27] Koziol C, Sauerbier P (2007) Valuation of bond illiquidity: An option-theoretical approach. J Fixed Income 16: 81-107. doi: 10.3905/jfi.2007.683320
    [28] Kyprianou A (2006) Fluctuations of Lévy processes with applications: Introductory lectures, Universitext, Springer, Berlin.
    [29] Lamberton D, Mikou M (2011) The smooth-fit property in an exponential Lévy model. J Appl Probab 49: 137-149. doi: 10.1017/S0021900200008901
    [30] Longstaff F (1995) How much can marketability affect securities values. J Financ 50: 1767-1774. doi: 10.1111/j.1540-6261.1995.tb05197.x
    [31] Longstaff F (2018) Valuing thinly traded assets. Manage Sci 64: 3868-3878. doi: 10.1287/mnsc.2016.2718
    [32] Mathys L (2019) On extensions of the Barone-Adesi & Whaley method to price American-type options. Working paper. Available at SSRN 3482064.
    [33] Merton R (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3: 125-144. doi: 10.1016/0304-405X(76)90022-2
    [34] Mordecki E (2002) Optimal stopping and perpetual options for Lévy processes. Financ Stoch 6: 473-493. doi: 10.1007/s007800200070
    [35] McDonald R, Siegel D (1986) The value of waiting to invest. Q J Econ 101: 707-727. doi: 10.2307/1884175
    [36] Peskir G (2007) A Change-of-variable formula with local time on surface. In Séminaire de Probabilités XL, Springer, Berlin, 69-96.
    [37] Peskir G, Shiryaev A (2006) Optimal stopping and free-boundary problems, Lectures in Mathematics, Birkhäuser, Zurich.
    [38] Pham H (1997) Optimal stopping, free boundary and American option in a jump-diffusion model. Appl Math Optim 35: 145-164. doi: 10.1007/s002459900042
    [39] Pham H (1998) Optimal stopping of controlled jump diffusion processes: A viscosity solution approach. J Math Syst Estim Control 8: 1-27.
    [40] Sato KI (1999) Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge.
    [41] Takahashi A, Yamazaki A (2009) Efficient static replication of European options under exponential Lévy models. J Futures Mark 29: 1-15. doi: 10.1002/fut.20339
    [42] Trigeorgis L, Tsekrekos A (2018) Real options in operations research: A review. Eur J Oper Res 270: 1-24. doi: 10.1016/j.ejor.2017.11.055
    [43] Voltchkova E (2005) Equations intégro-différentielles d'évolution: Méthodes numériques et applications en finance. PhD thesis, Ecole Polytechnique.
  • QFE-04-03-021-s001.pdf
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3136) PDF downloads(241) Cited by(5)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog