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Abstract: The present article provides a novel theoretical way to evaluate tradeability in markets of
ordinary exponential Lévy type. We consider non-tradeability as a particular type of market illiquidity
and investigate its impact on the price of the assets. Starting from an adaption of the continuous-time
optional asset replacement problem initiated by McDonald and Siegel (1986), we derive tradeability
premiums and subsequently characterize them in terms of free-boundary problems. This provides a
simple way to compute non-tradeability values, e.g. by means of standard numerical techniques, and,
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equivalent. Our approach is illustrated via numerical examples where we discuss various properties of
the tradeability premiums.
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1. Introduction

Market liquidity and related risks have played an important role since the emergence of financial
markets and their relevance for various types of financial activities has been noticed by academics
since many years. Recently, the financial crisis has made it again clear how valuable and important
market liquidity is. While trading costs rose for many assets dramatically, other assets could not
be even traded for several months. Under such circumstances, liquidating an open position either
became prohibitively expensive or was just impossible so that many investors were forced to sit on
their positions and accumulated losses. In view of these incidents, it is not surprising that investors
apprehend liquidity-related issues and usually demand a price discount when purchasing illiquid assets.
This behavior is well documented by a vast body of empirical literature that started with the seminal
articles of Amihud and Mendelson (1986, 1989)
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In the literature, market liquidity usually either refers to the possibility to sell and buy — thus
just to trade — financial assets on their respective markets or to the ability to trade them without
initiating significant changes on the market. Although these two concepts are quite close to each other,
there is an essential difference between them. While the first view merely understands liquidity in
the sense of absolute tradeability, the second approach includes the effects that trading may trigger
on the markets. For this reason, considering liquidity in the sense of the second approach generally
offers more modeling flexibility than focussing on the first view. This could possibly explain why
only little theoretical work analyzes the impact of non-tradeability on asset prices.1 Indeed, despite the
importance of non-tradeability issues, most theoretical models focus on the second view and capture
(il-)liquidity by modeling the costs associated with trading the assets. Examples include the financial
economics models2 of Amihud and Mendelson (1986) and Acharya and Pedersen (2005) as well as
many articles in the mathematical literature on liquidity, such as Jarrow (1994), Cetin, Jarrow and Protter
(2004) and Cetin and Rogers (2007) just to name a few.3 In addition to the scarcity of the literature on
tradeability, theoretical articles dealing with non-tradeability issues mostly derive premiums based on
optimal selling strategies and could, therefore, only offer limited explanations for the existence and, in
particular, the size of tradeability premiums. This includes the works of Longstaff (1995, 2018), as well
as the articles of Koziol and Sauerbier (2007) and of Chesney and Kempf (2012). For these reasons,
there is a clear need for alternative models that complement this literature and its current approaches.
Such an alternative is proposed in the present article.

We propose a novel theoretical way to analyze the impact of non-tradeability on the price of
assets in exponential Lévy markets. As we shall see, our framework starts from an adaption of the
continuous-time optional asset replacement problem initiated in the seminal paper of McDonald and
Siegel (1986). Considering an investor that holds an asset of (ordinary) exponential Lévy type and
that faces the decision to replace it with an alternative investment project allows us to analyze two
different tradeability scenarios for the asset: A fully liquid and a fully illiquid scenario. By assuming
that the investor acts optimally in any of these scenarios, we derive absolute tradeability premiums as
differences between the value of the replacement option in the respective scenarios and subsequently
provide a free-boundary characterization of the latter premiums. This finally gives us a way to compute
non-tradeability values, e.g. by means of standard numerical techniques, and, in particular, to express
the price of an illiquid asset as a percentage of the price of a tradeable equivalent.

Our method has some similarities with the approaches taken in Longstaff (1995) and Longstaff (2018),
Koziol and Sauerbier (2007) and Chesney and Kempf (2012). As in these articles, valuing tradeability
is linked to the opportunity costs of holding the asset. However, there are essential differences in the
way the worthiness of tradeability is triggered. For instance, while the value of tradeability arises in
Chesney and Kempf (2012) from the ability of traders to exploit temporary pricing inefficiencies in
the market, tradeability enables one, in our model, to take advantage of the continuous possibility to
invest in an alternative project. Therefore, instead of valuing tradeability merely out of optimal selling
strategies, our approach considers reinvestment opportunities. In this sense, our model has a higher
degree of completeness and provides more realistic bounds for the (individual) valuation of tradeability.

1 Longstaff (1995), Longstaff (2018) and Chesney and Kempf (2012) for examples of articles tackling these issues and additional
explanations on the challenges encountered when modeling non-tradeability.

2 Amihud, Mendelson and Pedersen (2005) for a survey of this literature.
3 Gökay, Roch and Soner (2011) for a survey of the mathematical literature on liquidity.
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The remaining of this paper is structured as follows: In Section 2, we establish the general framework
in which we model tradeability. This section essentially focuses on a proper introduction of the broad
model as well as of the notation used in the rest of the paper. For this reason, the discussion therein does
not include any tradeability aspects and the latter are only introduced in Sections 3 and 4. Sections 3 and
4 are both divided into two parts. While the first part introduces our tradeability modeling approaches,
the second part deals with partial integro-differential equations (PIDEs) and ordinary integro-differential
equations (OIDEs) for tradeability valuation. Here, our main results are Proposition 3 and Proposition 6
where free-boundary characterizations of the (absolute) tradeability premiums are provided. The
importance of these propositions is illustrated in Section 5 where the respective free-boundary problems
are solved for a particular model and numerical results are discussed. The paper concludes with Section
6. All proofs and complementary results are presented in the Appendices (Appendix A, B, C and D).

2. General framework and notation

We start with a setting similar to that of the investment problem introduced in the seminal paper of
McDonald and Siegel (1986): We consider the investment decision of an investor that holds an asset
(S t)t≥0 and that has the option to replace it with an investment alternative. At any time t ≥ 0, the investor
can pay S t to enter (or acquire a corresponding share of) an investment project that generates positive,
net instantaneous cash-flow per unit of investment (Cu)u≥t and has to make the decision to either continue
holding the asset or to switch to the alternative project. As in McDonald and Siegel (1986), this asset
replacement is understood as a continuous-time and irreversible decision to be taken. Whether or not
the investment project is fully owned by the investor will not play any role in our analysis.4

2.1. Dynamics of the initial asset

We denote by r the risk-free interest rate, fix with (Ω,F ,F,Q) a filtered probability space — a
chosen risk-neutral probability space5 — and assume that the filtration F = (Ft)t≥0 satisfies the usual
conditions. Determining the properties of the asset replacement involves a complete description of its
components, the initial asset and the alternative project. We start by characterizing the investor’s initial
investment: We assume that the investor’s initial asset (S t)t≥0 trades on a usual market that is described,
under the risk neutral measure Q, by an (ordinary) exponential Lévy model, i.e. we assume that the
price dynamics of the asset are given by

S t = S 0eXt , S 0 > 0, t ≥ 0 (1)

Here, the process (Xt)t≥0 is an F-Lévy process associated with a triplet (bX, σ
2
X,ΠX), i.e. a càdlàg (right-

continuous with left limits) process having independent and stationary increments and Lévy-exponent
ΨX(·) defined, for θ ∈ R, by

ΨX(θ) := − log
(
EQ

[
eiθX1

])
= −ibXθ +

1
2
σ2

Xθ
2 +

∫
R

(1 − eiθy + iθy1{|y|≤1})ΠX(dy) (2)

4 We assume that the project’s remuneration is proportional to the investment and, in particular, that the cash-flow generated out of the
project does not depend on the type of ownership.

5 It is well-known that exponential Lévy markets are incomplete as defined by Harrison and Pliska (Harrison and Pliska (1981)). Specifying
or discussing a particular choice of risk-neutral measure is not the sake of this article. Instead, we assume that a pricing measure under
which our model has the required dynamics was previously fixed.
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where EQ[·] refers to expectation with respect to the measure Q. Applying the well-known Lévy-Itô
decomposition theorem (Sato (1999), Applebaum (2009)) allows one to separate (Xt)t≥0 into its diffusion
and jump parts: Indeed, there exists an F-Brownian motion (WX

t )t≥0 and an independent Poisson random
measure NX on [0,∞) × R \ {0} having intensity measure ΠX, such that

Xt = bXt + σXWX
t +

∫
R

y N̄X(t, dy), t ≥ 0 (3)

where we use for t ≥ 0 and any Borel set A ∈ B(R \ {0}) the notation

NX(t, A) := NX((0, t] × A) (4)
ÑX(dt, dy) := NX(dt, dy) − ΠX(dy)dt (5)

N̄X(dt, dy) :=
{

ÑX(dt, dy) if |y| ≤ 1
NX(dt, dy) if |y| > 1

(6)

This directly gives a corresponding factorization of the price dynamics (S t)t≥0 into exponentials of
the diffusion and jump parts of (Xt)t≥0.

Additionally, the Laplace exponent of the Lévy process (Xt)t≥0 is defined, for any θ ∈ R satisfying
the condition EQ

[
eθX1

]
< ∞, by the following identity:

ΦX(θ) := log
(
EQ

[
eθX1

])
= bXθ +

1
2
σ2

Xθ
2 −

∫
R

(1 − eθy + θy1{|y|≤1})ΠX(dy) (7)

In the sequel, we will assume that this quantity is at least for θ = 1 well defined, i.e. that EQ
[
eX1

]
< ∞,

and finally require that ΦX(1) ≤ r. The latter condition has an important feature: It is well-known that
discounted, exponential Lévy models of the form of (1) have the martingale property if and only if the
usual integrability condition6 and additionally ΦX(1) = r are satisfied (Jeanblanc, Yor and Chesney
(2006), Applebaum (2009)). Hence, requiring ΦX(1) ≤ r to hold under the measure Q allows the asset
to pay a (continuous) dividend and the discounted asset dynamics have the martingale structure only
under a lower, adjusted discount factor r − r̃. Such dynamics are typically found in foreign exchange
markets, where r̃ represents the foreign risk-free interest rate (Garman and Kohlhagen (1983), Jeanblanc
and Chesney (2004)).

2.2. Dynamics of the investment alternative

We next turn to the investor’s investment alternative. As we shall see in a moment, characterizing
the investor’s investment project reduces to specifying the dynamics of the process (Ct)t≥0, the net
instantaneous cash-flow generated out of a one-unit investment in the project. Indeed, once this process
is specified the project’s value can be easily recovered by computing the expected net present value
of the project’s future cash-flows. Therefore, we start by determining the dynamics of the cash-flow
process and assume that (Ct)t≥0 follows under Q another exponential Lévy model of the form

Ct = C0eYt , C0 > 0, t ≥ 0 (8)
6 EQ

[
eXt

]
< ∞ or, equivalently,

∫
{|y|>1}

ey ΠX(dy) < ∞ (Sato (1999), Theorem 25.3). This is clearly satisfied by our assumptions.
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where (Yt)t≥0 denotes an F-Lévy process with Lévy triplet (bY , σ
2
Y ,ΠY). As for (Xt)t≥0, one obtains (by

means of the Lévy-Itô decomposition theorem) a separation of (Yt)t≥0 into its diffusion and jump parts
of the form

Yt = bY t + σYWY
t +

∫
R

y N̄Y(t, dy), t ≥ 0 (9)

where (WY
t )t≥0 denotes an F-Brownian motion and NY a corresponding Poisson random measure on

[0,∞) × R \ {0} that is independent of (WY
t )t≥0. The dependence structure between the two processes

(Xt)t≥0 and (Yt)t≥0 (and so between both exponential Lévy models (S t)t≥0 and (Ct)t≥0) is additionally
fixed by assuming that the Poisson random measures NX and NY are independent and that the Brownian
parts (WX

t )t≥0 and (WY
t )t≥0 have correlation coefficient |ρ| ≤ 1, i.e. that

[
WX,WY]

t = ρt. As earlier, we
require the existence of the Laplace exponent ΦY(1) and demand that ΦY(1) < r.

2.3. Asset replacement dynamics

To finally derive the time-t value of the asset replacement, we first compute for any t ≥ 0 the expected
net present value of the future cash-flow generated out of a one-unit investment in the project, Et: Using
Fubini’s theorem for conditional expectation and the dynamics (8), one obtains that

Et = EQ
[ ∞∫

t

e−r(u−t)Cu du
∣∣∣∣∣Ft

]
=

∞∫
t

e−r(u−t) EQ [Cu|Ft] du

=

∞∫
t

e−r(u−t)Cte(u−t)ΦY (1) du = Ct

∞∫
t

e−(r−ΦY (1))(u−t) du =
Ct

r − ΦY(1)
(10)

Hence, the dynamics of (Et)t≥0 are proportional to those of (Ct)t≥0 and Et equals, at any t ≥ 0,

Et = E0eYt , E0 =
C0

r − ΦY(1)
(11)

The time-t value of a one-unit investment in the project, Vt, is now easily deduced. Clearly, this value
corresponds to the difference of the expected net present value of the future cash-flows generated out of
a one-unit investment in the project, Et, and 1, the costs of such an investment. As a consequence, we
obtain by (10) that

Vt = Et − 1 =
Ct

r − ΦY(1)
− 1 (12)

At any possible switching date t ≥ 0, the investor holds the option to sell his asset and to reinvest
its full proceeds in the alternative project. Hence, the investor’s possible time-t level of investment
corresponds to the value S t of the asset currently held. This finally gives that the time-t value of the
asset replacement, VS

t , equals
VS

t = S t · Vt = S t (Et − 1) (13)

Remark 1.

i) Equation (13) describes a version of the asset replacement that is scaled to one unit of the initial
asset. However, looking at more general holdings does not change the replacement problem
significantly and any such problem can be easily reduced to the one-unit situation.
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ii) Notice that we did not make any assumption on the exclusiveness of the investment project: The
project may represent an investment opportunity that is linked to the investor — if one thinks of
the investor as a company, this could represent for instance a company’s internal project — and so
that is unique and not necessarily available (at least not in the exact same conditions) to any other
competitor. But also more standard and open investment alternatives could be considered. In this
context, any evaluation of the investment alternative under the risk-neutral measure Q does not
correspond to a real pricing attempt but merely serves as an assessment of the project from the
point of view of a “typical investor” within the market.

3. Valuing tradeability: deterministic illiquidity horizon

3.1. Generalities

Up to this point, our general framework did not include any element that aimed to model differences
in tradeability. This should be addressed next. To this end, we fix a (deterministic) time horizon TD > 0
and consider variants of the optional asset replacement problem introduced in Section 2 on the time
interval [0,TD].7 We assume that the investment project is available at any date t ∈ [0,TD] and derive
tradeability premiums by varying the marketability of the initial asset (S t)t≥0 on [0,TD] and analyzing
the behavior of an investor that acts optimally in the resulting asset replacement problem. Hereby we
compare two scenarios:

1. An illiquid scenario, where any attempt to sell the asset (S t)t≥0 at time t ∈ [0,TD) fails and the
investor has to make a new decision at TD. Hence, T := TD − t is interpreted as illiquidity horizon.

2. A liquid scenario, where the tradeability of the investor’s asset is guaranteed at any time t ∈ [0,TD].

Remark 2.
It is important to note that the present tradeability valuation approach is in line with Longstaff (1995),

Longstaff (2018), and Chesney and Kempf (2012), and therefore understands tradeability to only occur
at very few points in time. Under this assumption, restricting the analysis to the first illiquidity interval
[0,TD] already provides sensible results while keeping a certain degree of tractability. Nevertheless,
we emphasize that other approaches could be considered. As an example, analyzing a situation where
non-tradeability is a temporary state beyond which the asset remains fully tradeable could be addressed
as part of future research.

3.1.1. Illiquid scenario

We start by analyzing the investor’s trading behavior in the illiquid scenario. Being modeled by
ordinary exponential Lévy models, the processes (S t)t≥0 and (Et)t≥0 are assumed to be efficient. Hence,
the investor cannot anticipate future fluctuations and base his decision at any time t ∈ [0,TD] on his
current information Ft. At any time t ∈ [0,TD] at which VS

t > 0, the investment project is more valuable
than the asset and switching from S t to S tEt, i.e. investing S t in the project, provides an immediate
increase in wealth in the amount of VS

t > 0. Since the investor can only switch, in the illiquid scenario,
at t = TD, he will do so if and only if VS

TD
> 0. As a consequence, the time-t value of this switching

7 Although TD = ∞ could also be considered, it is not very meaningful. Therefore, we implicitly understand TD to be finite and consider
finite analogues of the optional asset replacement problem introduced in Section 2.
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option CE(·) is obtained as

CE(T , S t, Et) := EQS t ,Et

[
e−rT

(
VS
T
∨ 0

) ]
= EQS t ,Et

[
e−rTS T (ET − 1)+ ]

(14)

where we denote by EQs0,e0[·] the expectation under Qs0,e0 , the probability measure under which (S t)t≥0

and (Et)t≥0 start at S 0 = s0 and E0 = e0, respectively. This corresponds to the time-t value of a European
exchange option.

3.1.2. Liquid scenario

Deriving the investor’s trading behavior in the liquid scenario can be done by the very same arguments.
However, since the initial asset is now perfectly tradeable there are no restrictions on the investor’s
switching possibilities. Hence, the investor will choose a switching rule that maximizes his immediate
increase in wealth in expectation. As a consequence, evaluating the switching option in the liquid
scenario reduces to valuing an American exchange option CA(·) of the form

CA(T , S t, Et) := sup
τ∈T[0,T ]

EQS t ,Et

[
e−rτ

(
VS
τ ∨ 0

) ]
= sup

τ∈T[0,T ]

EQS t ,Et

[
e−rτS τ (Eτ − 1)+ ]

(15)

where T[0,T ] denotes the set of stopping times that take values in the time interval [0,T ].

3.1.3. Tradeability premium and transformation

The above optimal trading strategies can now be used to value tradeability: Both options CE(·) and
CA(·) yield a monetization of the benefits that can be generated out of the exchange opportunity within
the respective tradeability scenarios. Since the asset’s tradeability is the only changing parameter, any
inequality in these benefits must be a consequence of its variation. Therefore, we identify the (absolute)
time-t tradeability/liquidity8 premium L(·) with the difference of CA(·) and CE(·), i.e. we set

L(T , S t, Et) := CA(T , S t, Et) − CE(T , S t, Et) (16)

At this point, we already notice a few properties of the tradeability premium (16). First, it is
clear that our tradeability premium substantially depends on the dynamics of the alternative project.
Since the dynamics and characteristics of available projects depend themselves on the investor’s
relations, resources, etc., our tradeability premium results in an individual value.9 In addition, this value
provides a theoretical lower bound for the (individual) valuation of tradeability. Indeed, our setting
examines investment alternatives that are irreversible, at least during the time horizon [0,TD] considered.
However, reversible investment possibilities clearly exist in practice. Therefore, extending the analysis
to investment projects that can be themselves exchanged against others would provide more accuracy in
our valuation approach. This extension is left out and could be part of future research.

8 As emphasized in the introduction, we understand liquidity in the sense of absolute tradeability and will use, from now on, both terms
interchangeably.

9 Remember that we evaluate the investment alternative under the risk-neutral measure. Therefore, the resulting tradeability premium
provides an individual, though market-weighted value.
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Remark 3.
Instead of considering absolute values, it is often more informative to look at relative quantities.

For this reason, our numerical results in Section 5 will focus on figures related to the relative time-t
tradeability premium, defined as

LRel.(T , S t, Et) :=
L(T , S t, Et)
CE(T , S t, Et)

=
CA(T , S t, Et)
CE(T , S t, Et)

− 1 (17)

Valuing both switching options CE(·) and CA(·) and so the tradeability premium L(·) underQ, i.e. from
the point of view of a “typical investor” in the market, reduces to the usual pricing procedure: First, we
introduce, for any stopping time τ ∈ T[0,∞) ∪ {∞},10 the following notations

C(τ, S t, Et) := EQS t ,Et

[
e−rτ

(
VS
τ ∨ 0

) ]
(18)

C
?(τ, Et) := C(τ, 1, Et) (19)

and show in Appendix A that, under the new measure Q(1) defined by the (1-)Esscher transform11

dQ(1)

dQ

∣∣∣∣∣∣
Ft

:=
e1·Xt

EQ
[
e1·Xt

] = eXt−tΦX(1) (20)

the process (Yt)t∈[0,T ] is, for any finite time horizon T > 0, again a Lévy process with Lévy-exponent
Ψ

(1)
Y (·) having the form

Ψ
(1)
Y (θ) = −i(bY + ρσXσY)θ +

1
2
σ2

Yθ
2 +

∫
R

(1 − eiθy + iθy1{|y|≤1})ΠY(dy) (21)

Then, rewriting C(·) under the change of measure (20) while bearing in mind the dynamics (1), (13) and
(20) readily provides, for any T > 0, the expression

C(T ∧ τ, S t, Et) = S t · C
?(T ∧ τ, Et) = S t · E

Q(1)

Et

[
e−(r−ΦX(1))(T∧τ) (ET∧τ − 1)+ ]

(22)

where EQ
(1)

e0 [·] denotes expectation under Q(1)
e0 , the probability measure (associated to Q(1) and) under

which (Et)t≥0 starts at E0 = e0. This latter equation substantially simplifies the valuation problem for
both CE(·) and CA(·). Indeed, combining the relations

CE(T , S t, Et) = C(T , S t, Et) and CA(T , S t, Et) = sup
τ∈T[0,T ]

C(τ, S t, Et) (23)

with (22) while introducing the notations C?E(T , Et) := CE(T , 1, Et) and C?A(T , Et) := CA(T , 1, Et)
allows us to rewrite

CE(T , S t, Et) = S t · C
?
E(T , Et) = S t · E

Q(1)

Et

[
e−(r−ΦX(1))T (ET − 1)+ ]

(24)

10 At t = ∞ we set S t := Et := 0. This is just for the sake of accuracy as it will not play a real role in this article.
11 The Esscher transform was first introduced 1932 by Esscher and later established in the theory of option pricing by Gerber and Shiu

(Gerber and Shiu (1994)). An economic interpretation of this pricing technique in the continuous-time framework can be found in Gerber
and Shiu (1994).
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CA(T , S t, Et) = S t · C
?
A(T , Et) = S t · sup

τ∈T[0,T ]

EQ
(1)

Et

[
e−(r−ΦX(1))τ (Eτ − 1)+ ]

(25)

Hence, both switching options are linear in the value S t of the asset initially held. Furthermore, the
scaled versions C?E(·) and C?A(·) correspond to simple European and American-type options written on
the exponential Lévy process (Et)t∈[0,TD]. Consequently, valuing — under Q— any of the switching
options CE(·) and CA(·) reduces – under Q(1) — to the consideration of corresponding valuation problems
for simple options on the exponential Lévy model, Et = E0eYt , E0 > 0, t ∈ [0,TD], with Lévy exponent
Ψ

(1)
Y (·) defined as in (21), risk-free interest rate r̃ := r − ΦX(1), and strike price K := 1.

3.2. PIDEs for tradeability valuation

Our next goal consists in deriving partial integro-differential equations that can be used to value
tradeability. As argued in the previous section, we focus from now on on the respective valuation
problems for C?E(·) and C?A(·). We then define

L
?(T , Et) := L(T , 1, Et) = C?A(T , Et) − C?E(T , Et) (26)

and recover L(·) from its scaled version L?(·) by means of the obvious relation

L(T , S t, Et) = S t · L
?(T , Et) (27)

Remark 4.

Note that we can also express the relative time-t tradeability premium, using the above notation, as

LRel.(T , S t, Et) = LRel.(T , 1, Et) =
L?(T , Et)
C?E(T , Et)

=
C?A(T , Et)
C?E(T , Et)

− 1 (28)

In what follows, we will always assume that the second moment of the (Q(1)-)Lévy model (Et)t∈[0,TD]

exists, or equivalently (Sato (1999), Theorem 25.3) that∫
{|y|>1}

e2y ΠY(dy) < ∞ (29)

and note that this is a weak assumption that could be even relaxed (Cont and Voltchkova (2005)).
We start by determining the dynamics of the process (Et)t∈[0,TD] under the measure Q(1). This is done

using Itô’s Lemma and readily gives that

dEt = Et−

(
Φ

(1)
Y (1)dt + σYdW̃Y

t +

∫
R

(ey − 1)ÑY(dt, dy)
)

(30)

where (W̃Y
t )t∈[0,TD] denotes a Q(1)-Brownian motion (Appendix A) and Φ

(1)
Y (·) refers to the Laplace-

exponent of (Yt)t∈[0,TD] under Q(1).12 Therefore, whenever well-defined, its infinitesimal generator is a
partial integro-differential operator obtained, for V : [0,TD] × R→ R, by

12 Note that the existence of Φ
(1)
Y (1) directly follows from our initial assumptions, since the measure change defined by (20) does not alter

the jump component of (Yt)t≥0 and we initially assumed that
∫

{|y|>1}
ey ΠY (dy) < ∞.
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AEV(T , x) := lim
t↓0

EQ
(1)

x
[
V(T , Et)

]
− V(T , x)

t

=
1
2
σ2

Y x2∂2
xV(T , x) + Φ

(1)
Y (1)x∂xV(T , x)

+

∫
R

[
V(T , xey) − V(T , x) − x(ey − 1)∂xV(T , x)

]
ΠY(dy) (31)

3.2.1. PIDE I: illiquid scenario

We first deal with the illiquid scenario and rewrite, for (T , x) ∈ [0,TD] × [0,∞), the European-type
switching option in the form

C
?
E(T , x) = EQ

(1)

x
[ (

ĒT − 1
)+ ]

(32)

where (Ēt)t∈[0,TD] refers to the (strong) Markov process13 obtained by “killing” the sample path of
(Et)t∈[0,TD] at the proportional rate r̃ := r − ΦX(1). The process’ transition probabilities are then given by

Q(1)
x

(
Ēt ∈ A

)
= EQ

(1)

x

[
e−r̃t

1A(Et)
]

(33)

and we identify its cemetery state, without loss of generality, with ∂ ≡ 0. Therefore, for any initial value
z = (t, x) ∈ [0,TD] × [0,∞), the process (Zt)t∈[0,t] defined via Zt := (t − t, Ēt), Ē0 = x, is a strong Markov
process with state domain given byDt := [0, t] × [0,∞). Additionally, C?E(·) can be re-expressed as

C
?
E(T , x) = VE

(
(T , x)

)
(34)

where the value function VE(·) has the following representation under the measure Q(1),Z
z having initial

distribution Z0 = z:

VE(z) := EQ
(1),Z

z
[
G(ZτS)

]
, G(z) := (x − 1)+ (35)

and τS := inf{t ≥ 0 : Zt ∈ S}, S :=
(
{0} × [0,∞)

)
∪

(
[0, t] × {0}

)
, is a stopping time that satisfies τS ≤ t,

under Q(1),Z
z with z = (t, x). Furthermore, the stopping region S is for any t ∈ [0,TD] a closed set inDt.

Therefore, standard arguments based on the strong Markov property of (Zt)t∈[0,t] (Peskir and Shiryaev
(2006)) imply that VE(·) satisfies the following problem

AZVE(z) = 0, on DTD \ S (36)
VE(z) = G(z), on S (37)

whereAZ denotes the infinitesimal generator of the process (Zt)t∈[0,t]. Additionally, we note that (for
any suitable function V : Dt → R) the infinitesimal generatorAZ can be re-expressed as

AZV
(
(t, x)

)
= −∂tV

(
(t, x)

)
+AĒV

(
(t, x)

)
= −∂tV

(
(t, x)

)
+AEV

(
(t, x)

)
− r̃V

(
(t, x)

)
(38)

13 It is well-known (Peskir and Shiryaev (2006)) that the process (Ēt)t∈[0,TD] defined this way preserves the (strong) Markov property of the
underlying process (Et)t∈[0,TD].
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Consequently, recovering C?E(·) via (34) finally gives the following PIDE:

−∂TC
?
E(T , x) +AEC

?
E(T , x) − r̃C?E(T , x) = 0, on (0,TD] × (0,∞) (39)

C
?
E(0, x) = (x − 1)+, x ∈ [0,∞) (40)

Under few additional assumptions,14 smoothness of the European-type switching option can be
additionally shown. This is the content of the following proposition.

Proposition 1. Assume that

either σY , 0 or ∃α ∈ (0, 2) : lim inf
ε↓0

1
ε2−α

ε∫
−ε

|y|2 ΠY(dy) > 0 (41)

Then, the value of the European-type switching option under deterministic illiquidity horizon, C?E(·),
is continuous on [0,TD] × [0,∞), C1,2 on (0,TD) × (0,∞) and solves the partial integro-differential
equation

− ∂TC
?
E(T , x) +AEC

?
E(T , x) − r̃C?E(T , x) = 0 (42)

on (0,TD] × (0,∞) with initial condition

C
?
E(0, x) = (x − 1)+, x ∈ [0,∞) (43)

The proof of Proposition 1 is similar to that of Proposition 2 in Cont and Voltchkova (2005). In this
article, the authors work with exponential Lévy processes that have the martingale property. However,
since (Et)t∈[0,TD] does not necessarily satisfy this property, we provide in Appendix B an adaption of
their proof that works in our more general context. Parts of the proof that do not involve any martingale
argument will be directly referred to Cont and Voltchkova (2005).

3.2.2. PIDE II: liquid scenario

We next turn to the liquid scenario. As in the illiquid scenario, we derive a characterization of
the American-type switching option C?A(·) by adapting well-established results for standard American
options on exponential Lévy models. This leads to the next proposition.

Proposition 2. The value of the American-type switching option under deterministic illiquidity horizon,
C?A(·), is continuous on [0,TD] × [0,∞) and solves the non-linear Hamilton-Jacobi-Bellman (HJB)
equation

max
{
− ∂TC

?
A(T , x) +AEC

?
A(T , x) − r̃C?A(T , x), (x − 1)+ − C?A(T , x)

}
= 0 (44)

on (0,TD] × [0,∞) with initial condition

C
?
A(0, x) = (x − 1)+, x ∈ [0,∞) (45)

Proposition 2 is due to Pham (Pham (1997), Pham (1998)), who proved it in greater generality.
The proof can be found in his seminal article Pham (1998). Alternatively, we note that Proposition 2
could be derived via similar techniques as the ones used in the proof of the upcoming Proposition 5
(Appendix C).

14 Numerous Lévy models considered in the financial literature as well as the model considered in Section 5 satisfy these assumptions.
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3.2.3. PIDE III: free-boundary characterization

Motivated by the theory of early exercise premiums in classical American option settings, we finally
aim to derive a free-boundary characterization of the (absolute) tradeability premium L?(·). We start by
collecting in Lemma 1 a few useful properties of C?A(·) that essentially follow from the (strong) Markov
property of Lévy processes. A proof of this result is provided in Appendix B.

Lemma 1. The American-type switching option C?A(·) satisfies the following properties:

a) For every T ∈ [0,TD], the function x 7→ C?A(T , x) is non-decreasing and convex on [0,∞).
b) For every x ∈ [0,∞), the function T 7→ C?A(T , x) is non-decreasing on [0,TD].
c) For every T ∈ [0,TD], we have that

|C?A(T , x) − C?A(T , y)| ≤ C|x − y|, ∀x, y ∈ [0,∞) (46)

with C = 1 whenever r̃ ≥ Φ
(1)
Y (1).

As in the classical theory of American options, we next decompose the domain (0,TD] × [0,∞) into
two regions, the holding region Dh and the switching region Ds. First, combining the results in Lemma 1
with Proposition 2 ensures that by defining

Dh :=
{
(T , x) ∈ (0,TD] × [0,∞) : C?A(T , x) > (x − 1)+

}
(47)

Ds :=
{
(T , x) ∈ (0,TD] × [0,∞) : C?A(T , x) = (x − 1)+

}
(48)

we obtainDh∪̇Ds = (0,TD]×[0,∞). At this point, one should note that nothing has been said about these
sets. In fact, while it is easily seen that Dh is non-empty, Ds = ∅ could still hold. Looking at Lemma 1.c)
already suggests that this may depend on the sign of r̃ − Φ

(1)
Y (1). Indeed, for r̃ ≤ Φ

(1)
Y (1) we obtain

that Ds = ∅ and the American-type switching option C?A(·) reduces to its European counterpart C?E(·).
This follows since, under r̃ ≤ Φ

(1)
Y (1), the process (e−r̃tEt)t∈[0,TD] is a (Q(1)-)submartingale.15 Hence, for

r̃ ≤ Φ
(1)
Y (1) the tradeability premium is zero and we focus in the following on the case where r̃ > Φ

(1)
Y (1).

Here, we show that for any T ∈ (0,TD] there exists a switching boundary bs(T ) above which switching
to the alternative project is optimal and that it is defined by bs(T ) := infDs,T , where

Ds,T :=
{
x ∈ [0,∞) : C?A(T , x) = (x − 1)+

}
(49)

To prove the existence of such boundary, we start by proving that, for any T ∈ (0,TD], the set Ds,T

is non-empty. This is done via similar techniques to the ones used in Filipovic and Kitapbayev (2018)
and Detemple and Kitapbayev (2018). First, we compute, for x ∈ (0,∞) and f (x) := (x − 1)+, the
instantaneous benefit of waiting to switch, H(x) := (AE f − r̃ f )(x), and obtain that

H(x) =

(
Φ

(1)
Y (1)x − r̃(x − 1) − x

∫
R

(ey − 1)ΠY(dy)
)
1{x≥1} +

∫
R

(
f (xey) − f (x)

)
ΠY(dy) (50)

Then, using Peskir’s generalized change-of-variable formula (Peskir (2007)), we obtain that, for any
stopping-time τ ∈ T[0,T ] and x0 ∈ (0,∞),

EQ
(1)

x0

[
e−r̃τ(Eτ − 1)+

]
= (x0 − 1)+ + EQ

(1)

x0


τ∫

0

e−r̃sH(Es)ds

 +
1
2
EQ

(1)

x0


τ∫

0

e−r̃s
1{Es−=1, Es=1} d`1

s(E)

 (51)

15 For r̃ = Φ
(1)
Y (1) it is actually a martingale. However, the submartingale property is for our purpose sufficient (Jeanblanc, Yor and Chesney

(2006)).
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Here,
(
`1

t (E)
)

t∈[0,T ]
is the local time of (Et)t∈[0,T ] at the level 1 which is defined, for t ∈ [0,T ], by means

of the equation

∣∣∣Et − 1
∣∣∣ =

∣∣∣E0 − 1
∣∣∣ + t∫

0

sgn(Es− − 1)dEs + `1
t (E) +

∑
0<s≤t

(∣∣∣Es − 1
∣∣∣ − ∣∣∣Es− − 1

∣∣∣ − sgn(Es− − 1)∆Es

)
(52)

where sgn(0) := 0, and d`1
s(E) refers to integration with respect to the continuous increasing function

s 7→ `1
s(E). We claim that Equation (51) already gives that Ds,T , ∅. Indeed, one first obtains that the

local time term goes to zero as x0 becomes large. At the same time, as x ↑ ∞ we have that H(x) ↓ −∞.
This can be seen by combining the condition r̃ > Φ

(1)
Y (1) with the fact that, for any x > e1,∣∣∣∣∣ ∫

R

f (xey) − f (x) − x(ey − 1)ΠY(dy)
∣∣∣∣∣ ≤ ΠY

(
{|y| > 1}

)
< ∞ (53)

holds, since for such x we have that∫
{|y|≤1}

(
f (xey) − f (x) − x(ey − 1)

)
ΠY(dy) = 0 (54)

and, for x ∈ (0,∞), the function x 7→ | f (xey) − f (x) − x(ey − 1)| is bounded by 1 (in general, by
the strike K), uniformly in y. Due to the lack of time to compensate for the very negative H(·), it is
therefore optimal to stop for large x0 at once. Consequently, (x0 − 1)+ = C?A(T , x0) must be true for
some x0 ∈ (0,∞). This gives that Ds,T , ∅. To see that, for any T ∈ (0,TD], bs(T ) := infDs,T gives a
boundary with the required properties, we use Lemma 1. Indeed, combining Properties a) and c) of
Lemma 1 we obtain that whenever (x − 1)+ = C?A(T , x) is satisfied for some x ∈ [0,∞), we must also
have for y ≥ x that (y − 1)+ = C?A(T , y). This implies that, for any T ∈ (0,TD], Ds,T is an up-connected
set and that it can be written as Ds,T = [infDs,T ,∞), which gives the required properties.

The previous discussion provides an alternative expression for the holding and switching regions, as

Dh =
{
(T , x) ∈ (0,TD] × [0,∞) : x < bs(T )

}
(55)

Ds =
{
(T , x) ∈ (0,TD] × [0,∞) : x ≥ bs(T )

}
(56)

Together with an appropriate smooth-fit property (Appendix B), these results finally lead to the following
free-boundary characterization of the (absolute) tradeability premium L?(·).
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Proposition 3. Assume that σY , 0. Then, we have the following properties:

1. If r̃ ≤ Φ
(1)
Y (1), the (absolute) tradeability premium L?(·) satisfies

L
?(T , x) = 0, ∀(T , x) ∈ [0,TD] × [0,∞) (57)

2. If r̃ > Φ
(1)
Y (1), the pair

(
L?(·), bs(·)

)
solves the following free-boundary problem:

− ∂TL
?(T , x) +AEL

?(T , x) − r̃L?(T , x) = 0, x ∈ (0, bs(T )), T ∈ (0,TD] (58)

subject to the boundary conditions

L
?(T , bs(T )) = bs(T ) − 1 − C?E(T , bs(T )), T ∈ (0,TD] (59)

∂xL
?(T , bs(T )) = 1 − ∂xC

?
E(T , bs(T )), T ∈ (0,TD] (60)

L
?(T , 0) = 0, T ∈ (0,TD] (61)

and initial condition
L
?(0, x) = 0, x ∈ (0, bs(T )) (62)

Remark 5.

i) Proposition 3 is of great practical importance. Although we did not obtain an analytical expression for
the (absolute) tradeability premium L?(·), there exist several well-established numerical methods that
deal with free-boundary problems in the form of Proposition 3. Using such methods, our tradeability
valuation problem can be solved for any model that satisfy our (very few) assumptions.

ii) We have just seen that the tradeability premium reduces to zero whenever r̃ ≤ Φ
(1)
Y (1), or

equivalently whenever −
(
ΦY(1)− r

)
≤ ΦX(1) + ρσXσY . From a financial perspective this condition

is very intuitive. Indeed, in view of Equation (30) (and of its derivation), one first obtains that the
Laplace exponents ΦX(1) and ΦY(1) describe the growth rate of the corresponding processes
(S t)t≥0 and (Ct)t≥0, i.e. of the initial asset and of the net instantaneous cash-flow generated out of a
one-unit investment in the project, respectively. With this understanding, the above condition has
the following meaning: It demands that the growth rate of asset (S t)t≥0 adjusted for covariance
effects across the dynamics of the asset and of the alternative investment exceeds the negative
growth, i.e. the loss in terms of the discounted cash-flow level, incurred while waiting to switch to
the alternative project.

4. Valuing tradeability: stochastic illiquidity horizon

4.1. Generalities

In Section 3, we provided a characterization of tradeability premiums when the illiquidity horizon
is fully known in advance. Although this characterization already allows for an efficient evaluation
of tradeability, starting from a deterministic illiquidity horizon is clearly not a realistic assumption:
In practice, agents do not usually know the exact duration of a non-tradeability period and fixing
ahead a deterministic illiquidity horizon TD may seem very simplistic. For this reason, we next extend
the previous analysis to the case of a stochastic illiquidity horizon TR > 0. We assume that TR is
exponentially distributed with rate ϑ > 0 and derive tradeability premiums by analyzing randomized
versions of the original scenarios:
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1. A randomized illiquid scenario, where any attempt to sell the asset (S t)t≥0 at time t ∈ [0,TR) fails
and the investor has to make a new decision at TR.

2. A randomized liquid scenario, where the tradeability of the investor’s asset is guaranteed at any
date t ∈ [0,TR].

Ideally, we would like to allow for any possible dependency between TR and the processes (S t)t≥0

and (Et)t≥0 characterizing the asset replacement. However, dealing with a general stochastic illiquidity
horizon can quickly become cumbersome. For this reason, we assume in the sequel that TR is independent
of (VS

t )t≥0. Extending our model to allow for a more general dependency structure between TR and
(VS

t )t≥0 could be part of future research.

4.1.1. Tradeability premium: definition

Analyzing both the (randomized) illiquid and liquid scenario can be done via similar arguments to
the ones used in their deterministic version and leads to comparable switching options. However, due to
the memoryless property of the exponential distribution, the passage of time has no effect on either of
the resulting switching options. Consequently, the time-t value of these options is not time-dependent
anymore and this leads to the following time-t representations of the investor’s trading behavior under
stochastic illiquidity horizon:

C
R
E(S t, Et) := EQS t ,Et

[
e−rTR

(
VS

TR
∨ 0

) ]
= EQS t ,Et

[
e−rTRS TR

(
ETR − 1

)+ ]
(63)

C
R
A(S t, Et) := sup

τ∈T[0,∞)

EQS t ,Et

[
e−r(TR∧τ)

(
VS

TR∧τ
∨ 0

) ]
= sup

τ∈T[0,∞)

EQS t ,Et

[
e−r(TR∧τ)S TR∧τ

(
ETR∧τ − 1

)+ ]
(64)

We therefore identify the (absolute) time-t tradeability premium under stochastic illiquidity horizon
LR(·) by means of the relation

L
R(S t, Et) := CR

A(S t, Et) − CR
E(S t, Et) (65)

and finally note that its relative counterpart is defined accordingly, as

L
R
Rel.(S t, Et) :=

LR(S t, Et)
CR

E(S t, Et)
=
CR

A(S t, Et)
CR

E(S t, Et)
− 1 (66)

4.1.2. Tradeability premium: transformation

Following the steps taken in the deterministic version of the problem, we next transform the
tradeability valuation Equation (65) into a more tractable expression. First, we introduce, for any
τ ∈ T[0,∞) ∪ {∞}, the following notation

C
R(τ, S t, Et) := EQS t ,Et

[
e−r(TR∧τ)

(
VS

TR∧τ
∨ 0

) ]
(67)

C
R,?(τ, Et) := CR(τ, 1, Et) (68)

and note that both CR
E(·) and CR

A(·) can be expressed in terms of CR(·) as

C
R
E(S t, Et) = CR(∞, S t, Et) and C

R
A(S t, Et) = sup

τ∈T[0,∞)

C
R(τ, S t, Et) (69)
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Then, conditioning on the random time TR, allows us to write

C
R(τ, S t, Et) = S t · C

R,?(τ, Et) = S t ·

∞∫
0

ϑe−ϑtR C
?(tR ∧ τ, Et) dtR (70)

which implies via Relation (69) and with CR,?
E (Et) := CR

E(1, Et) and CR,?
A (Et) := CR

A(1, Et) that

C
R
E(S t, Et) = S t · C

R,?
E (Et) = S t ·

∞∫
0

ϑe−ϑtR C
?
E(tR, Et) dtR (71)

C
R
A(S t, Et) = S t · C

R,?
A (Et) = S t · sup

τ∈T[0,∞)

∞∫
0

ϑe−ϑtR C
?(tR ∧ τ, Et) dtR (72)

Therefore, we focus in the sequel on the valuation of CR,?
E (·) and CR,?

A (·) and solve these valuation
problems by relying on results for their deterministic versions C?E(·) and C?A(·).

At this point, we should notice that, in general, the switching options CR,?
E (·) and CR,?

A (·) may have
infinite value for certain parameter choices. To avoid this to happen, we assume in the sequel that the
following condition is satisfied

ϑ + r̃ − Φ
(1)
Y (1) > 0 (73)

That this condition indeed rules out infinite values for CR,?
E (·) and CR,?

A (·) can be seen by combining
Representation (72) with Theorem 1 in Mordecki (2002), the submartingale property of the process
(Et)t≥0 under r̃ ≤ Φ

(1)
Y (1), and the well-known representation

C
?
E(tR, x) = xe−(r̃−Φ

(1)
Y (1))tR Q̃(1)(EtR ≥ 1

)
− e−r̃tR Q(1)(EtR ≥ 1

)
(74)

where
dQ̃(1)

dQ(1)

∣∣∣∣∣∣
Ft

:= eYt−tΦ(1)
Y (1) (75)

4.2. OIDE for tradeability valuation

We now turn to the derivation of ordinary integro-differential equations (OIDEs) that can be used for
tradeability valuation. As earlier, we assume Condition (29) and focus on the corresponding valuation
problems for CR,?

A (·) and CR,?
E (·). We therefore set

L
R,?(Et) := LR(1, Et) = CR,?

A (Et) − CR,?
E (Et) (76)

and note, as in Remark 4, that

L
R
Rel.(S t, Et) = LR

Rel.(1, Et) =
LR,?(Et)
C

R,?
E (Et)

=
C

R,?
A (Et)

C
R,?
E (Et)

− 1 (77)
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4.2.1. OIDE I: illiquid scenario

To tackle the illiquid scenario we use Representation (71) and relevant results for the deterministic
valuation problem. Indeed, combining few integrability results with Proposition 1 and (strong)
Markovian arguments leads to the next proposition. A proof is provided in Appendix C.

Proposition 4. Assume that Conditions (73) and (41) hold. Then, the value of the European-type
switching option under stochastic illiquidity horizon, CR,?

E (·), is continuous on [0,∞), C1 on (0,∞) and
solves the ordinary integro-differential equation

ϑ
(
(x − 1)+

− C
R,?
E (x)

)
+AEC

R,?
E (x) − r̃CR,?

E (x) = 0 (78)

on (0,∞) with initial condition

C
R,?
E (0) = 0 (79)

4.2.2. OIDE II: liquid scenario

To deal with the liquid scenario, we start by collecting few properties of the American-type switching
option CR,?

A (·) in Lemma 2. These results are analogues of the properties presented in Lemma 1 and
their proof does not substantially differ from the proof provided, for C?A(·), in Appendix B. Therefore,
we only state the results here.

Lemma 2. The following properties hold:

a) The American-type switching option x 7→ CR,?
A (x) is non-decreasing and convex on [0,∞).

b) For r̃ ≥ Φ
(1)
Y (1) we have that

|C
R,?
A (x) − CR,?

A (y)| ≤ |x − y|, ∀x, y ∈ [0,∞) (80)

Combining Lemma 2 with well-known results for perpetual American options under exponential
Lévy models (Mordecki (2002)) allows us to derive the next proposition, which is the analogue of
Proposition 2 under stochastic illiquidity horizon. This result extends the findings obtained in Carr
(1998) in the classical Black & Scholes model. A proof is provided in Appendix C.

Proposition 5. Assume that Condition (73) holds. Then, the value of the American-type switching
option under stochastic illiquidity horizon, CR,?

A (·), is continuous on [0,∞) and satisfies the following
problem

ϑ
(
(x − 1)+

− C
R,?
A (x)

)
+AEC

R,?
A (x) − r̃CR,?

A (x) = 0, x ∈ (0, bRs ) (81)

C
R,?
A (x) = (x − 1)+, x ∈ [bRs ,∞) (82)

with (unknown) boundary bRs > 0 and initial condition

C
R,?
A (0) = 0 (83)

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.



476

4.2.3. OIDE III: free-boundary characterization

Deriving a free-boundary characterization for the (absolute) tradeability premium under stochastic
illiquidity horizon can now be done by relying on the previous results and proofs. First, the proof of
Proposition 5 reveals that, for r̃ ≤ Φ

(1)
Y (1), the American-type switching option CR,?

A (·) reduces to its
European counterpart CR,?

E (·). Secondly, combining the latter proof with Lemma 2 allows us to derive a
representation of the holding and switching regions as

Dh :=
{
x ∈ [0,∞) : CR,?

A (x) > (x − 1)+ }
=

[
0, bRs

)
(84)

Ds :=
{
x ∈ [0,∞) : CR,?

A (x) = (x − 1)+ }
=

[
b

R
s ,∞

)
(85)

Since the smooth-fit property can be obtained using the same methods as in the deterministic version
of the problem (Appendix B), these results finally lead to the following free-boundary characterization
of the (absolute) tradeability premium LR,?(·).

Proposition 6. Assume that σY , 0 holds. Then, we have the following properties:

1. If r̃ ≤ Φ
(1)
Y (1), the (absolute) tradeability premium LR,?(·) satisfies

L
R,?(x) = 0, ∀x ∈ [0,∞) (86)

2. If r̃ > Φ
(1)
Y (1), the pair

(
LR,?(·), bRs

)
solves the following free-boundary problem:

AEL
R,?(x) −

(
r̃ + ϑ

)
L

R,?(x) = 0, x ∈ (0, bRs ) (87)

subject to the boundary conditions

L
R,?(bRs ) = bRs − 1 − CR,?

E (bRs ) (88)

∂xL
R,?(bRs ) = 1 − ∂xC

R,?
E (bRs ) (89)

L
R,?(0) = 0 (90)

Remark 6.

i) Proposition 6 is the analogue of Proposition 3 under stochastic illiquidity horizon. As such, it
allows for an easy derivation of tradeability values via the application of well-established numerical
methods and is therefore of great practical importance.

ii) Recall the financial interpretation of Condition r̃ ≤ Φ
(1)
Y (1) from Remark 5. ii).

5. Numerical results

To illustrate our approach, we finally derive tradeability premiums by combining the results from
Section 3 and Section 4 with the algorithm developed in Mathys (2019) and Appendix D.

5.1. Model consideration and illiquidity factor

We consider the general asset dynamics defined by (1)-(3), i.e. we assume that the initial asset
dynamics (S t)t≥0 are described (under Q) by

dS t = S t−

(
ΦX(1)dt + σXdWX

t +

∫
R

(ey − 1)ÑX(dt, dy)
)

(91)

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.



477

and let the cash-flow process (Ct)t≥0 evolve (under Q) according to (8) with (Yt)t≥0 specified by

Yt :=
(
b − λ(eϕ − 1) −

1
2
σ2)t + σWY

t + ϕNt, t ≥ 0 (92)

As in Section 2, (WX
t )t≥0 and (WY

t )t≥0 are correlated Brownian motions with correlation ρ ∈ [−1, 1]
and (Nt)t≥0 denotes a Poisson process with deterministic intensity λ > 0 and that is independent of the
Poisson random measure NX. We emphasize that (m)any more advanced models could be considered
for the dynamics of the cash-flow process (Ct)t≥0. In particular, the algorithm used in the computation
of the liquidity premiums under deterministic illiquidity horizon could be analogously applied under
Merton’s model as well as under any hyper-exponential jump-diffusion model (Mathys (2019), Cai
and Kou (2011), Cai and Sun (2014)). Neveretheless, we stick for simplicity of the exposition with
Dynamics (92). We will determine (the range of) the relevant parameters in a moment. For now, we just
note that ΦY(1) = b.

Instead of considering absolute tradeability premiums, we next rely on relative quantities.
Additionally, we slightly change our approach: While the relative tradeability premiums LRel.(·) and
LR

Rel.(·) provide a simple way to evaluate a tradeable asset based on the value of an illiquid
equivalent,16 one is more often interested in the reverse, i.e. in evaluating an illiquid asset given the
value of a tradeable equivalent. This motivates the consideration of corresponding time-t illiquidity
factors IRel.(·) and IR

Rel.(·), defined via

IRel.(T , S t, Et) := IRel.(T , 1, Et) :=
(
1 + LRel.(T , 1, Et)

)−1 (93)

I
R
Rel.(S t, Et) := IR

Rel.(1, Et) :=
(
1 + LR

Rel.(1, Et)
)−1 (94)

Our numerical results will focus on these quantities, i.e. we will always express the value of an
illiquid asset as percentage of the value of a liquid equivalent. However, as should be clear from (93)
and (94), relative tradeability premiums and illiquidity factors are dual objects. We will therefore always
compute illiquidity factors by means of Relations (93), (94) and of the tradeability valuation approach
discussed in the previous sections.

5.2. Parameter specification

We next specify the parameters in our model: First, we note from the discussion in Section 3 and
Section 4 that dynamics (91) only influences the relative tradeability premium via the value of its
parameters ΦX(1), σX and ρ. Therefore, (time-t) illiquidity factors can be computed (by means of
relative tradeability premiums), once the following parameters are specified: T , ϑ, r, ΦX(1), σX, ρ, b, σ,
ϕ, λ, C0.

We determine these parameters by adjusting the parameter choice in McDonald and Siegel (1986) to
current (US-)market data. For instance, all our numerical experiments assume a risk-free rate of 2.25%,
which corresponds to a rough average of the US treasury yields with maturity T ∈ {0.5, 1, 2, 5} as of the
end of March 2018.17 Since our numerical experiments consider the following illiquidity horizons and

16 The (time-t) value of a tradeable asset under deterministic and stochastic illiquidity horizon can be readily obtained by multiplying the
value of its illiquid equivalent with the factor

(
1 + LRel.(T , 1, E0)

)
and

(
1 + LR

Rel.(1, E0)
)
, respectively.

17 The following values were extracted from Bloomberg, as of Friday 30 March 2018: 6-month US treasury yield, 1.91%; 1-year US treasury
yield, 2.08%; 2-year US treasury yield, 2.27%; 5-year treasury yield, 2.56%.
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rates of arrival

T ∈ {0.5, 1.5, 2.5, 5} and ϑ ∈
{ 1
T

: T ∈ {0.5, 1.5, 2.5, 5}
}

this risk-free rate seems to be a sensible choice. In analogy to the typical choices made in the option
pricing literature, we take the volatility of the initial asset to be either σX = 20% or σX = 40%.
Additionally, we set ΦX(1) = 0.005 and allow this way for a dividend rate of δ := r − ΦX(1) = 1.75%.

Table 1. Theoretical illiquidity factor, IRel.(T , 1, E0), for b = 0.00, σ = 0.2, λ = 0.5 and
ΦX(1) = 0.005.

Illiquidity Factor IRel.(T , 1, E0)

Parameters Correlation ρ

No Jump Jumps: ϕ = log(0.85) Jumps: ϕ = log(0.7)

E0 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5

(1.1.) 0.9 1.000 0.998 0.986 1.000 0.999 0.993 1.000 0.999 0.999
r = 2.25% 1.0 1.000 0.998 0.982 1.000 0.999 0.990 1.000 0.999 0.999
σX = 20% 1.1 1.000 0.997 0.975 1.000 0.998 0.985 1.000 0.999 0.997
T = 0.5 1.2 1.000 0.996 0.965 1.000 0.998 0.977 1.000 0.999 0.995

(1.2.) 0.9 1.000 0.994 0.966 1.000 0.996 0.975 1.000 0.998 0.991
r = 2.25% 1.0 1.000 0.994 0.958 1.000 0.995 0.968 1.000 0.998 0.987
σX = 20% 1.1 1.000 0.993 0.947 1.000 0.994 0.960 1.000 0.997 0.983
T = 1.5 1.2 1.000 0.991 0.936 1.000 0.993 0.951 1.000 0.997 0.978

(1.3.) 0.9 1.000 0.990 0.946 1.000 0.992 0.957 1.000 0.995 0.979
r = 2.25% 1.0 1.000 0.989 0.935 1.000 0.991 0.948 1.000 0.994 0.973
σX = 20% 1.1 1.000 0.987 0.922 1.000 0.989 0.938 1.000 0.994 0.966
T = 2.5 1.2 1.000 0.985 0.909 1.000 0.987 0.927 1.000 0.992 0.959

(1.4.) 0.9 1.000 0.979 0.897 1.000 0.981 0.912 1.000 0.986 0.942
r = 2.25% 1.0 1.000 0.976 0.880 1.000 0.978 0.898 1.000 0.984 0.932
σX = 20% 1.1 1.000 0.973 0.863 1.000 0.976 0.884 1.000 0.982 0.922
T = 5 1.2 1.000 0.969 0.846 1.000 0.972 0.869 1.000 0.980 0.913
(2.1.) 0.9 1.000 0.998 0.971 1.000 0.999 0.984 1.000 0.999 0.999
r = 2.25% 1.0 1.000 0.998 0.960 1.000 0.999 0.975 1.000 0.999 0.999
σX = 40% 1.1 1.000 0.997 0.943 1.000 0.998 0.962 1.000 0.999 0.993
T = 0.5 1.2 1.000 0.996 0.921 1.000 0.998 0.945 1.000 0.999 0.985

(2.2.) 0.9 1.000 0.994 0.927 1.000 0.996 0.944 1.000 0.998 0.979
r = 2.25% 1.0 1.000 0.994 0.906 1.000 0.995 0.927 1.000 0.998 0.968
σX = 40% 1.1 1.000 0.993 0.883 1.000 0.994 0.909 1.000 0.997 0.957
T = 1.5 1.2 1.000 0.991 0.857 1.000 0.993 0.888 1.000 0.997 0.945

(2.3.) 0.9 1.000 0.990 0.883 1.000 0.992 0.906 1.000 0.995 0.951
r = 2.25% 1.0 1.000 0.989 0.857 1.000 0.991 0.884 1.000 0.994 0.937
σX = 40% 1.1 1.000 0.987 0.830 1.000 0.989 0.862 1.000 0.993 0.922
T = 2.5 1.2 1.000 0.985 0.802 1.000 0.987 0.839 1.000 0.992 0.907

(2.4.) 0.9 1.000 0.979 0.779 1.000 0.981 0.811 1.000 0.986 0.874
r = 2.25% 1.0 1.000 0.976 0.747 1.000 0.978 0.783 1.000 0.984 0.854
σX = 40% 1.1 1.000 0.973 0.715 1.000 0.976 0.756 1.000 0.982 0.835
T = 5 1.2 1.000 0.969 0.683 1.000 0.972 0.730 1.000 0.980 0.816
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For the project’s cash-flow dynamics, we take three different jump parameters (no jump, negative
jump of 15% and negative jump of 30%) and assume that jumps occur on average every 2 years (λ = 0.5).
The volatility of the project is specified by σ = 20%. This parameter was already used in McDonald
and Siegel (1986) where it represents the average standard deviation for unlevered equity in the US. The
authors obtained it based on the average standard deviation of stocks on the New York Stock Exchange
while assuming a debt to value ratio of 1/3 (McDonald and Siegel (1986)). For the correlation, we
take three generic correlation coefficients (ρ = 0.5, ρ = 0 and ρ = −0.5) that were similarly used in
McDonald and Siegel (1986). Finally, instead of specifying C0, we express the results in terms of E0,
the expected net present value of the future cash-flow generated out of a one-unit investment in the
project, and take E0 ∈ {0.9, 1.0, 1.1, 1.2}. This is only done for the sake of simpler presentation and does
not constitute a restriction. Indeed, C0 can be easily recovered, for each set of parameter, out of E0 via
the relation E0 = C0

r−b (Section 2 with ΦY(1) = b).

5.3. Numerical results: deterministic illiquidity horizon

We first consider the illiquidity factor under deterministic illiquidity horizon, IRel.(·), and derive
numerical results by combining Proposition 3 with the algorithm developed in Mathys (2019). The
results are displayed for b = 0.00 in Table 1 and for b = −0.04 in Table 2.

As seen from Table 1 and Table 2, the (relative) tradeability premium substantially depends on
the parameter choices and can become very large. Additionally, several properties of the (relative)
tradeability premium can be extracted from these tables: As expected, one first sees that the discount for
illiquidity, and hence the (relative) tradeability premium, increases with increasing illiquidity horizon T .
Moreover, increasing the initial value of the alternative project E0 (or, equivalently, the initial cash-flow
level C0), increases the discount for illiquidity. Secondly, we notice that diminishing the growth rate of
the cash-flow process (i.e. diminishing b) seems to have a positive impact on the value of tradeability.
This is intuitively clear, since reducing the growth rate of the cash-flow process induces a reduction of
the project’s expected value as time increases. When holding an illiquid asset the investor is forced to
keep its position until tradeability (i.e. time TD) and its final exchange decision will have, in expectation,
less value than before.

Next, looking at the illiquidity factor when varying both the correlation coefficient ρ and the asset’s
volatility σX leads to other interesting properties.18 First, we note that any increase in correlation leads to
a decrease in the discount for illiquidity. However, an increase in the asset’s volatility can have various
effects on the value of tradeability. Indeed, while an increase in the asset’s volatility has no impact on
the illiquidity factor, and so on the discount for illiquidity, when the initial asset and the alternative
project are uncorrelated (ρ = 0), a non-zero correlation can lead to either an increase or a decrease in
the discount for illiquidity. In fact, the effect mainly depends on the sign of the correlation coefficient
ρ. While an increase in the asset’s volatility leads, for ρ > 0, to a reduction in the value of tradeability
(higher illiquidity factor), the same increase will lead to a higher tradeability premium (lower illiquidity
factor), if the correlation coefficient is negative, i.e. if ρ < 0.

Finally, we look at the effect of negative jumps on the size of the tradeability premium. Here, we note
that the discount for illiquidity seems to decrease with increasing jump size. Indeed, although negative
jumps lead to an abrupt devaluation of the project, they also have a positive effect on the risk-adjusted
drift in Dynamics (92). While these effects neutralize each other in expectation for a fixed time TD,

18 These properties can be also formally derived by combining the representation of LRel.(·) with Relations (21) and (30).
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jumps may substantially affect the value of earlier investments and therefore lead to a decrease in the
value of tradeability.

Table 2. Theoretical illiquidity factor, IRel.(T , 1, E0), for b = −0.04, σ = 0.2, λ = 0.5 and
ΦX(1) = 0.005.

Illiquidity Factor IRel.(T , 1, E0)

Parameters Correlation ρ

No Jump Jumps: ϕ = log(0.85) Jumps: ϕ = log(0.7)

E0 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5

(1.1.) 0.9 0.986 0.971 0.954 0.993 0.984 0.973 1.000 1.000 1.000
r = 2.25% 1.0 0.982 0.960 0.932 0.990 0.975 0.955 0.999 0.999 0.996
σX = 20% 1.1 0.975 0.943 0.903 0.985 0.962 0.932 0.997 0.993 0.985
T = 0.5 1.2 0.965 0.921 0.870 0.977 0.945 0.902 0.995 0.985 0.969

(1.2.) 0.9 0.966 0.927 0.878 0.975 0.944 0.905 0.991 0.979 0.961
r = 2.25% 1.0 0.958 0.906 0.843 0.968 0.928 0.876 0.987 0.968 0.941
σX = 20% 1.1 0.947 0.883 0.805 0.960 0.909 0.845 0.983 0.957 0.921
T = 1.5 1.2 0.936 0.857 0.763 0.951 0.888 0.811 0.978 0.945 0.900

(1.3.) 0.9 0.946 0.883 0.805 0.957 0.906 0.840 0.979 0.951 0.912
r = 2.25% 1.0 0.935 0.857 0.764 0.948 0.884 0.806 0.973 0.937 0.888
σX = 20% 1.1 0.922 0.830 0.723 0.938 0.862 0.771 0.966 0.922 0.863
T = 2.5 1.2 0.909 0.802 0.680 0.927 0.839 0.735 0.959 0.907 0.839

(1.4.) 0.9 0.897 0.779 0.642 0.912 0.811 0.691 0.942 0.874 0.788
r = 2.25% 1.0 0.880 0.747 0.599 0.898 0.783 0.652 0.932 0.854 0.758
σX = 20% 1.1 0.863 0.715 0.556 0.884 0.756 0.615 0.922 0.835 0.730
T = 5 1.2 0.846 0.683 0.515 0.869 0.730 0.579 0.913 0.816 0.703

(2.1.) 0.9 0.998 0.971 0.935 0.999 0.984 0.958 1.000 1.000 1.000
r = 2.25% 1.0 0.998 0.960 0.901 0.999 0.975 0.930 0.999 0.999 0.989
σX = 40% 1.1 0.997 0.943 0.858 0.999 0.962 0.896 0.999 0.993 0.970
T = 0.5 1.2 0.996 0.921 0.820 0.998 0.945 0.854 0.999 0.985 0.944

(2.2.) 0.9 0.994 0.927 0.820 0.996 0.944 0.857 0.998 0.979 0.935
r = 2.25% 1.0 0.994 0.906 0.771 0.995 0.928 0.816 0.998 0.968 0.906
σX = 40% 1.1 0.993 0.883 0.718 0.994 0.909 0.772 0.997 0.957 0.876
T = 1.5 1.2 0.991 0.857 0.662 0.993 0.888 0.725 0.996 0.945 0.844

(2.3.) 0.9 0.990 0.883 0.715 0.992 0.906 0.763 0.995 0.951 0.862
r = 2.25% 1.0 0.989 0.857 0.663 0.991 0.884 0.717 0.994 0.937 0.828
σX = 40% 1.1 0.987 0.830 0.609 0.989 0.862 0.671 0.993 0.922 0.793
T = 2.5 1.2 0.985 0.802 0.554 0.987 0.839 0.624 0.992 0.907 0.759

(2.4.) 0.9 0.979 0.779 0.505 0.981 0.811 0.565 0.986 0.874 0.691
r = 2.25% 1.0 0.976 0.747 0.456 0.978 0.783 0.520 0.984 0.854 0.653
σX = 40% 1.1 0.973 0.715 0.408 0.976 0.756 0.477 0.982 0.835 0.618
T = 5 1.2 0.969 0.683 0.364 0.972 0.730 0.436 0.980 0.816 0.584

5.4. Numerical results: stochastic illiquidity horizon

We next consider the illiquidity factor under stochastic illiquidity horizon, IR
Rel.(·). As shown in

Appendix D, the tradeability premium LR,?(·) is now available in semi-closed form. Using these results
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as well as Relation (94), we derive corresponding illiquidity factors for b = 0.00 and b = −0.04. The
results are summarized in Table 3 and Table 4, respectively.

Table 3. Theoretical illiquidity factor, IR
Rel.(1, E0), for b = 0.00, σ = 0.2, λ = 0.5 and

ΦX(1) = 0.005.
Illiquidity Factor IR

Rel.(1, E0)

Parameters Correlation ρ

No Jump Jumps: ϕ = log(0.85) Jumps: ϕ = log(0.7)

E0 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5

(1.1.) 0.9 1.000 0.999 0.986 1.000 0.977 0.967 1.000 0.937 0.928
r = 2.25% 1.0 1.000 0.999 0.986 1.000 0.977 0.967 1.000 0.937 0.928
σX = 20% 1.1 1.000 0.999 0.984 1.000 0.993 0.983 1.000 0.978 0.972
T = 0.5 1.2 1.000 0.998 0.977 1.000 0.997 0.984 1.000 0.996 0.991

(1.2.) 0.9 1.000 0.995 0.957 1.000 0.987 0.957 1.000 0.974 0.954
r = 2.25% 1.0 1.000 0.995 0.957 1.000 0.987 0.957 1.000 0.974 0.954
σX = 20% 1.1 1.000 0.994 0.955 1.000 0.991 0.960 1.000 0.986 0.967
T = 1.5 1.2 1.000 0.993 0.949 1.000 0.993 0.958 1.000 0.993 0.974

(1.3.) 0.9 1.000 0.989 0.928 1.000 0.984 0.934 1.000 0.978 0.944
r = 2.25% 1.0 1.000 0.989 0.928 1.000 0.984 0.934 1.000 0.978 0.944
σX = 20% 1.1 1.000 0.988 0.926 1.000 0.987 0.935 1.000 0.984 0.951
T = 2.5 1.2 1.000 0.987 0.921 1.000 0.987 0.933 1.000 0.988 0.954

(1.4.) 0.9 1.000 0.970 0.861 1.000 0.968 0.874 1.000 0.968 0.898
r = 2.25% 1.0 1.000 0.970 0.861 1.000 0.968 0.874 1.000 0.968 0.898
σX = 20% 1.1 1.000 0.969 0.860 1.000 0.969 0.874 1.000 0.970 0.901
T = 5 1.2 1.000 0.969 0.854 1.000 0.969 0.871 1.000 0.972 0.901

(2.1.) 0.9 1.000 0.999 0.963 1.000 0.977 0.949 1.000 0.937 0.915
r = 2.25% 1.0 1.000 0.999 0.963 1.000 0.977 0.949 1.000 0.937 0.915
σX = 40% 1.1 1.000 0.999 0.957 1.000 0.993 0.964 1.000 0.978 0.962
T = 0.5 1.2 1.000 0.998 0.937 1.000 0.997 0.956 1.000 0.996 0.981

(2.2.) 0.9 1.000 0.995 0.899 1.000 0.987 0.909 1.000 0.974 0.924
r = 2.25% 1.0 1.000 0.995 0.899 1.000 0.987 0.909 1.000 0.974 0.924
σX = 40% 1.1 1.000 0.994 0.894 1.000 0.991 0.911 1.000 0.986 0.937
T = 1.5 1.2 1.000 0.993 0.877 1.000 0.993 0.902 1.000 0.993 0.942

(2.3.) 0.9 1.000 0.989 0.844 1.000 0.984 0.863 1.000 0.978 0.896
r = 2.25% 1.0 1.000 0.989 0.844 1.000 0.984 0.863 1.000 0.978 0.896
σX = 40% 1.1 1.000 0.988 0.840 1.000 0.987 0.863 1.000 0.984 0.902
T = 2.5 1.2 1.000 0.987 0.825 1.000 0.987 0.854 1.000 0.988 0.903

(2.4.) 0.9 1.000 0.970 0.732 1.000 0.968 0.761 1.000 0.968 0.814
r = 2.25% 1.0 1.000 0.970 0.732 1.000 0.968 0.761 1.000 0.968 0.814
σX = 40% 1.1 1.000 0.969 0.729 1.000 0.969 0.760 1.000 0.970 0.816
T = 5 1.2 1.000 0.969 0.717 1.000 0.969 0.752 1.000 0.972 0.814

A brief look at Table 3 and Table 4 reveals that the (relative) tradeability premium under stochastic
illiquidity horizon, LR,?(·), has many similarities to its deterministic equivalent L?(·). Indeed, as its
deterministic version, LR,?(·) is an increasing function of the (expected) illiquidity horizon T = 1

ϑ
and

a decreasing function in the correlation coefficient ρ. Additionally, reducing the growth rate in the
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dynamics of the cash-flow process (i.e. reducing b) leads to an increase in the discount for illiquidity
(and hence in the value of tradeability). Finally, varying the asset’s volatility σX may also have various
effects on the value of tradeability. Indeed, while an increase in σX does not impact the illiquidity factor
when ρ = 0, the same increase induces, for ρ > 0, a reduction and, for ρ < 0, an increase in the discount
for illiquidity.

Table 4. Theoretical illiquidity factor, IR
Rel.(1, E0), for b = −0.04, σ = 0.2, λ = 0.5 and

ΦX(1) = 0.005.
Illiquidity Factor IR

Rel.(1, E0)

Parameters Correlation ρ

No Jump Jumps: ϕ = log(0.85) Jumps: ϕ = log(0.7)

E0 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = 0.5 ρ = 0 ρ = −0.5

(1.1.) 0.9 0.986 0.963 0.933 0.967 0.949 0.926 0.928 0.915 0.899
r = 2.25% 1.0 0.986 0.963 0.933 0.967 0.949 0.926 0.928 0.915 0.899
σX = 20% 1.1 0.984 0.957 0.922 0.983 0.964 0.938 0.972 0.962 0.948
T = 0.5 1.2 0.977 0.937 0.891 0.984 0.956 0.918 0.991 0.981 0.965

(1.2.) 0.9 0.957 0.899 0.831 0.957 0.909 0.853 0.954 0.924 0.886
r = 2.25% 1.0 0.957 0.899 0.831 0.957 0.909 0.853 0.954 0.924 0.886
σX = 20% 1.1 0.955 0.894 0.823 0.960 0.911 0.852 0.967 0.937 0.900
T = 1.5 1.2 0.949 0.877 0.793 0.958 0.902 0.834 0.974 0.942 0.901

(1.3.) 0.9 0.928 0.844 0.752 0.934 0.863 0.784 0.944 0.896 0.840
r = 2.25% 1.0 0.928 0.844 0.752 0.934 0.863 0.784 0.944 0.896 0.840
σX = 20% 1.1 0.926 0.840 0.746 0.935 0.863 0.782 0.951 0.902 0.846
T = 2.5 1.2 0.921 0.825 0.720 0.933 0.854 0.764 0.954 0.903 0.843

(1.4.) 0.9 0.861 0.732 0.611 0.874 0.761 0.651 0.898 0.814 0.728
r = 2.25% 1.0 0.861 0.732 0.611 0.874 0.761 0.651 0.898 0.814 0.728
σX = 20% 1.1 0.860 0.729 0.606 0.874 0.760 0.648 0.901 0.816 0.730
T = 5 1.2 0.854 0.717 0.586 0.871 0.752 0.634 0.901 0.814 0.724

(2.1.) 0.9 0.999 0.963 0.898 0.977 0.949 0.898 0.937 0.915 0.881
r = 2.25% 1.0 0.999 0.963 0.898 0.977 0.949 0.898 0.937 0.915 0.881
σX = 40% 1.1 0.999 0.957 0.880 0.993 0.964 0.906 0.978 0.962 0.931
T = 0.5 1.2 0.998 0.937 0.848 0.997 0.956 0.876 0.996 0.981 0.944

(2.2.) 0.9 0.995 0.899 0.761 0.987 0.909 0.792 0.974 0.924 0.844
r = 2.25% 1.0 0.995 0.899 0.761 0.987 0.909 0.792 0.974 0.924 0.844
σX = 40% 1.1 0.994 0.894 0.748 0.991 0.911 0.788 0.986 0.937 0.857
T = 1.5 1.2 0.994 0.877 0.708 0.993 0.902 0.752 0.993 0.942 0.853

(2.3.) 0.9 0.989 0.844 0.664 0.984 0.863 0.704 0.978 0.896 0.780
r = 2.25% 1.0 0.989 0.844 0.664 0.984 0.863 0.704 0.978 0.896 0.780
σX = 40% 1.1 0.988 0.840 0.654 0.987 0.863 0.700 0.984 0.902 0.785
T = 2.5 1.2 0.987 0.825 0.617 0.987 0.854 0.674 0.988 0.903 0.778

(2.4.) 0.9 0.970 0.732 0.506 0.968 0.761 0.552 0.968 0.814 0.646
r = 2.25% 1.0 0.970 0.732 0.506 0.968 0.761 0.552 0.968 0.814 0.646
σX = 40% 1.1 0.970 0.729 0.499 0.969 0.760 0.548 0.970 0.816 0.646
T = 5 1.2 0.969 0.717 0.473 0.969 0.752 0.528 0.972 0.814 0.637
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(a) IRel.(·) and IR
Rel.(·) as functions of T = 1

ϑ
. (b) IRel.(·) and IR

Rel.(·) as functions of ϕ.

(c) IRel.(·) and IR
Rel.(·) as functions of ρ.

Figure 1. Illiquidity factor under stochastic illiquidity horizon, IR
Rel.(·), and under deterministic

illiquidity horizon, IRel.(·), for λ = 0.5 and as functions of the (expected) illiquidity horizon
T = 1

ϑ
, the jump size ϕ, or the correlation coefficient ρ. In Figure 1b and Figure 1c, we have

chosen T = 1
ϑ

= 0.5.
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Although LR,?(·) resembles in many ways its deterministic version L?(·), the results in Table 3 and
Table 4 also indicate clear differences between them. Other than for a deterministic illiquidity horizon,
the tradeability premium under stochastic illiquidity horizon is no longer monotone in the initial value
of the project, E0. Additionally, the discount for illiquidity is not anymore monotone in the jump size ϕ.

5.5. Comparison of the illiquidity factors

To finalize the discussion of our numerical results, we provide in Figure 1 and Figure 2, comparative
plots for the illiquidity factor under deterministic and under stochastic illiquidity horizon. Whenever the
parameters are not further specified, the following default values are used: r = 2.25%, ΦX(1) = 0.005,
σX = 0.2, ρ = −0.5, b = −0.04, σ = 0.2, ϕ = log(0.85), E0 = 1.

The results in Figure 1 and Figure 2 confirm several of the properties discussed in Section 5.3 and
Section 5.4. More interestingly, they also show that the tradeability premium under stochastic illiquidity
horizon, LR,?(·), may become smaller than its deterministic counterpart. This happens for instance in
Figure 1a and Figure 2a when large (expected) illiquidity horizons T are considered. In such cases,
increasing the uncertainty over the duration of the asset’s non-tradeability period raises the asset’s
value. In particular, this means that “typical market participants” would prefer, under certain parameter
specifications, an asset with stochastic illiquidity horizon over an equivalent one with deterministic
illiquidity horizon, i.e. the market would exhibit a risk-loving behavior. Although this may be at first
surprising, it is a well-documented fact that individuals tend to become risk-loving when confronted
with negative events and happen to prefer a gamble over a sure (large) loss. Since illiquidity is, in
general, an undesirable feature of an asset, it seems reasonable to observe that individuals may try
to avoid large non-tradeability periods by gambling over the illiquidity horizon, i.e. by preferring a
stochastic illiquidity horizon over a deterministic illiquidity horizon.

6. Conclusion

We proposed a new framework to evaluate tradeability and discussed it in the context of exponential
Lévy markets. We first introduced our tradeability valuation approach under the simplistic assumption
of a deterministic illiquidity horizon and subsequently extended our methods to deal with stochastic
illiquidity horizons. Our general framework is linked to the asset replacement problem introduced in
McDonald and Siegel (1986) and allows for a characterization of (individual) tradeability premiums by
means of free-boundary problems. The resulting characterizations are of great practical importance,
since they allow for a simple computation of tradeability values via the use of well-established
numerical schemes. Using such schemes, we illustrated our approach by deriving numerical results and
discussing various properties of the tradeability premiums. In particular, we found that, under certain
parameter specifications, “typical market participants” may exhibit a risk-loving behavior in the sense
that they may prefer an asset with stochastic illiquidity horizon over an equivalent asset with
deterministic illiquidity horizon.
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(a) IRel.(·) and IR
Rel.(·) as functions of T = 1

ϑ
. (b) IRel.(·) and IR

Rel.(·) as functions of ϕ.

(c) IRel.(·) and IR
Rel.(·) as functions of ρ.

Figure 2. Illiquidity factor under stochastic illiquidity horizon, IR
Rel.(·), and under deterministic

illiquidity horizon, IRel.(·), for λ = 1.0 and as functions of the (expected) illiquidity horizon
T = 1

ϑ
, the jump size ϕ, or the correlation coefficient ρ. In Figure 2b and Figure 2c, we have

chosen T = 1
ϑ

= 1.5.
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473–493.

McDonald R, Siegel D (1986) The value of waiting to invest. Q J Econ 101: 707–727.

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.



488

Peskir G (2007) A Change-of-variable formula with local time on surface. In Séminaire de
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