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Supplementary

A. Appendices

A.1. Appendix A: Dynamics of (Yt)t≥0 under Q(1)

In this appendix, we derive, for any finite time horizon T > 0, the dynamics of the Lévy process
(Yt)t∈[0,T ] under the particular measure transformation (20). To this end, we denote by (Xc

t )t≥0 and (Xd
t )t≥0

— and (Yc
t )t≥0, (Yd

t )t≥0 — the continuous and discontinuous parts of (Xt)t≥0 — and (Yt)t≥0 respectively —,
i.e. we set

Xc
t := bXt + σXWX

t , Xd
t := Xt − Xc

t , t ≥ 0 (A.1)

— and analogously Yc
t := bY t +σYWY

t , Yd
t := Yt−Yc

t , t ≥ 0. Then, from the independence of the diffusion
and jump parts, we note that

dQ(1)

dQ

∣∣∣∣∣∣
Ft

=
e1·Xt

EQ
[
e1·Xt

] =
e1·Xc

t e1·Xd
t

EQ
[
e1·Xc

t
]
EQ

[
e1·Xd

t

] =:
dQ(1),c

dQ

∣∣∣∣∣∣
Ft

dQ(1),d

dQ

∣∣∣∣∣∣
Ft

(A.2)

Combining this fact with Girsanov’s theorem for multidimensional correlated Brownian motion and the
properties of (Xt)t≥0 and (Yt)t≥0, we obtain, for m ∈ N, (θ0, . . . , θm−1) ∈ Rm and 0 ≤ t0 < t1 < . . . < tm ≤ T ,
that

EQ
(1)
[

exp
{
i

m−1∑
j=0

θ j(Yt j+1 − Yt j)
}]
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= EQ
[ dQ(1)

dQ

∣∣∣∣∣∣
FT

exp
{
i

m−1∑
j=0

θ j(Yt j+1 − Yt j)
}]

= EQ
[ dQ(1),c

dQ
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FT

exp
{
i
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θ j(Yc
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[
exp
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i
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θ j(Yd
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)
}]

= exp
{
i
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j=0

θ jρσXσY(t j+1 − t j)
}
EQ

(1),c
[

exp
{
i

m−1∑
j=0

θ j(Ỹc
t j+1
− Ỹc

t j
)
}]
EQ

[
exp

{
i

m−1∑
j=0

θ j(Yd
t j+1
− Yd

t j
)
}]

=

m−1∏
j=0

EQ
(1)
[
eiθ j

[
(Ỹc

t j+1
−Ỹc

t j
)+ρσXσY (t j+1−t j)

]] m−1∏
j=0

EQ
(1)
[
eiθ j(Yd

t j+1
−Yd

t j
)
]

=

m−1∏
j=0

EQ
(1)
[
eiθ j(Yt j+1−Yt j )

]
(A.3)

where
Ỹc

t := Yc
t − ρσXσY t = bY t + σYW̃Y

t , W̃Y
t := WY

t − ρσXt (A.4)

and we have used the fact that (W̃Y
t )t∈[0,T ] is, under Q(1),c, a Brownian motion — in fact Girsanov’s

theorem tells us that the processes (W̃X
t )t∈[0,T ], W̃X

t := WX
t − σXt, and (W̃Y

t )t∈[0,T ] are correlated Brownian
motions under Q(1). This shows that (Yt)t∈[0,T ] has independent increments under Q(1).

Showing that (Yt)t∈[0,T ] has stationary increments under Q(1) is easily done and follows from the
identity

EQ
(1)
[

exp
{
i

m−1∑
j=0

θ j(Yt j+1−Yt j)
}]

= EQ
[ dQ(1)

dQ

∣∣∣∣∣∣
FT

exp
{
i

m−1∑
j=0

θ j(Yt j+1 − Yt j)
}]

= EQ
[ dQ(1)

dQ

∣∣∣∣∣∣
FT

exp
{
i

m−1∑
j=0

θ jY(t j+1−t j)

}]
= EQ

(1)
[

exp
{
i

m−1∑
j=0

θ jY(t j+1−t j)

}]
(A.5)

Finally, it is clear that equivalent measure transformations do not alter both the starting value and the
path continuity of processes. Hence, (Yt)t∈[0,T ] is also under Q(1) càdlàg and satisfies Y0 = 0. This shows
that (Yt)t∈[0,T ] is under Q(1) again a Lévy process.

Deriving the characteristic exponent of (Yt)t∈[0,T ] under Q(1) is now easily done using the equation

EQ
(1)
[
eiθYt

]
= eiθρσXσY t EQ

(1),c
[
eiθỸc

t

]
EQ

[
eiθYd

t

]
(A.6)

which can be derived as in (A.3). This gives that the Lévy exponent of (Yt)t∈[0,T ] under Q(1), Ψ
(1)
Y (·), is

given by

Ψ
(1)
Y (θ) = −i(bY + ρσXσY)θ +

1
2
σ2

Yθ
2 +

∫
R

(1 − eiθy + iθy1{|y|≤1})ΠY(dy) (A.7)

i.e. (Yt)t∈[0,T ] is under Q(1) an F-Lévy process with triplet
(
bY + ρσXσY , σ

2
Y ,ΠY

)
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A.2. Appendix B: Proofs - deterministic illiquidity horizon

Proof of Proposition 1. Due to the discussion preceding Proposition 1, we only need to show that C?E(·)
has enough regularity, i.e. in particular that

i) x 7→ C?E(T , x) is, for any T ∈ (0,TD), twice continuously differentiable,
ii) t 7→ e−r̃tC?E(T , x) is, for any x ∈ (0,∞), continuously differentiable,

iii) (T , x) 7→ C?E(T , x) is continuous on [0,TD] × [0,∞).

We start by briefly outlining the proof of i). Since this part does not involve any martingale arguments,
we refer the reader for details to Cont and Voltchkova (2005) and Voltchkova (2005). To see i), one first
notices that the European-type option C?E(·) can be re-expressed in terms of the function

u(T , ξ) = EQ
(1) [

e−r̃T (eξ+YT − 1)+
]

(A.8)

as

C
?
E(T , x) = EQ

(1)[
e−r̃T (xeYT − 1)+] = EQ

(1)
[
e−r̃T

(
elog(x)+YT − 1

)+
]

= u
(
T , log(x)

)
(A.9)

Therefore, in order to show the smoothness of x 7→ C?E(T , x) it is enough to prove the smoothness of
u(·) in the log-moneyness coordinate. To this end, two facts can be combined. First, as noted in Cont
and Voltchkova (2005) and Voltchkova (2005), Condition (41) ensures that Yt has, for any t ∈ [0,TD], a
smooth, at least C2, (Q(1)-)density with derivatives vanishing at infinity. We denote this density in the
following by qt(·). Secondly, setting q̃t(y) := qt(−y), we can rewrite u(·) as a convolution of the form

u(T , ξ) = e−rT
∫
R

(
eξ+y − 1

)+
qT (y) dy = e−rT

∫
R

(ez − 1)+ q̃T (ξ − z) dz (A.10)

Therefore, the decay of qT (·) and in particular of its derivatives (Cont and Voltchkova (2005), Voltchkova
(2005)) allows one to use the dominated convergence theorem to differentiate under the integral sign
and to obtain that x 7→ C?E(T , x) is twice continuously differentiable.

We now prove ii) using Fourier methods. This approach was similarly used in Cont and Voltchkova
(2005) and relies on a seminal article of Carr and Madan (Carr and Madan (1999)). Recall, for an
integrable function f (·), the definition of the Fourier transform, F , and Fourier inverse, F −1,

F f (ξ) :=
∫
R

f (y)eiyξ dy, F −1 f (y) :=
1

2π

∫
R

f (ξ)e−iξy dξ (A.11)

and that both operators can be extended to isometries on the space of square-integrable functions. As
noted in i), Condition (41) ensures that Yt has, for any t ∈ [0,TD], a smooth, C2, (Q(1)-)density which we
will denote again by qt(·). Therefore, the characteristic function of YT at θ, χT (θ), can be expressed as

e−TΨ
(1)
Y (θ) = χT (θ) =

∫
R

eiθyqT (y) dy (A.12)

We now consider, for k ∈ R, the modified call price defined by

cT (k) := ek

∞∫
k

e−r̃T (ey − ek)qT (y) dy (A.13)
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and easily see that with k := log
(K

x

)
, x ∈ (0,∞) and K ∈ (0,∞), it satisfies that

x · cT (k) = x · ek EQ
(1) [

e−r̃T (eYT − ek)+
]

= ek EQ
(1)

x

[
e−r̃T (ET − K

)+
]

(A.14)

Additionally, we set c∗
T

(k) := e−r̃tcT (k). Arguing as in Carr and Madan (1999) one sees that
Condition (29) implies both the integrability and square-integrability of the discounted modified call
price k 7→ c∗

T
(k). Furthermore one readily derives, using (A.13), that

F c∗T (v) =

∫
R

c
∗
T (k)eikv dk =

e−r̃TD χT (v − 2i)
(iv + 1)(iv + 2)

(A.15)

Notice that this expression is clearly differentiable with respect to t and that one obtains

∂tF c
∗
T (v) =

e−r̃TD χT (v − 2i) Ψ
(1)
Y (v − 2i)

(iv + 1)(iv + 2)
(A.16)

From the Lévy-Khintchine formula/representation, one additionally sees that Ψ
(1)
Y (v − 2i) = O(|v|2) (as

|v| → ∞) — hence at∞ the denominator compensates Ψ
(1)
Y (v − 2i). Combining these arguments with

the fact that, under (41),

|χT (z)| ≤ C(T ) exp(−c(T )|z|γ) for some γ > 01 and “constants” C(T ), c(T ) > 0 (A.17)

and, in particular, that T 7→ C(T ), T 7→ c(T ) can be chosen to be continuous (by the continuity of
T 7→ χT (z)), tells us that (A.16) is in any case dominated (locally in T ) by an integrable function that
does not have any T -dependency.2 Finally, this allows us to use the dominated convergence theorem in
order to conclude that

∂tc
∗
T (k) = ∂tF

−1F c∗T (k) = F −1∂tF c
∗
T (k) (A.18)

which shows, in particular by means of Relation (A.14) with K = 1, that t 7→ e−r̃tC?E(T , x) is for any
x ∈ (0,∞) differentiable. The continuity of the derivative is easily seen from (A.18) and (A.16) and the
dominated convergence theorem, by noting that t 7→ χT (v − 2i) is continuous (recall that T = TD − t).

Finally, iii) is a direct consequence of Relation (A.14) and the continuity of (T , k) 7→ cT (k), which
follows again from (A.15) by means of Fourier inversion and the dominated convergence theorem. This
finalizes the proof.

Proof of Lemma 1. The first part of a), i.e. the non-decreasing property follows directly from the path
properties of exponential Lévy models. As this is easily proved, we focus on showing the convexity
of the American-type option. To start, let T ∈ [0,TD] be arbitrary but fixed. We define, for any initial
value x ∈ [0,∞) and any stopping time τ ∈ T[0,T ], the two value functions V(·) and V∗(·) by

V(τ, x) := EQ
(1)

x

[
e−r̃τ(Eτ − 1

)+
]

(A.19)

and
V∗(x) := sup

τ∈T[0,T ]

V(τ, x) (A.20)

1γ = 2 if σ , 0 and γ = α if σ = 0 and the second condition is satisfied. This was already noted in Voltchkova (2005) (Sato (1999)).
2It suffices to take, for a given (compact) T -neighborhood U, C? := max

t∈U
C(t) and c? := min

t∈U
c(t) in (A.17).
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and note that V∗(x) = C?A(T , x). Given two initial values x1 and x2 and an arbitrary λ ∈ [0, 1], we set
x̃ := λx1 + (1− λ)x2 and fix some ε > 0. By definition of V∗(·), we can find a stopping time τε satisfying
V∗(x̃) ≤ V(τε , x̃) + ε. Furthermore, from the (strong) Markov property of (Et)t∈[0,TD] and the properties
of the pay-off function, we have that

V(τε , x̃) ≤ λV(τε , x1) + (1 − λ)V(τε , x2) (A.21)

which implies that

V∗(x̃) ≤ V(τε , x̃) + ε ≤ λV(τε , x1) + (1 − λ)V(τε , x2) + ε ≤ λV∗(x1) + (1 − λ)V∗(x2) + ε (A.22)

Since ε was arbitrary, this gives the convexity of the American-type option.
Property b) follows directly by noting that, for 0 ≤ T1 ≤ T2 ≤ TD, any stopping time τ ∈ T[0,T1]

also satisfies τ ∈ T[0,T2]. Therefore, we are left with Part c). To prove this last part, we use the (strong)
Markov property of (Et)t∈[0,TD] as well as the property that, for x, y ∈ [0,∞),

∣∣∣(x− 1)+ − (y− 1)+
∣∣∣ ≤ |x− y|

holds. We then obtain, for a fixed T ∈ [0,TD], that∣∣∣∣ sup
τ∈T[0,T ]

EQ
(1)

x

[
e−r̃τ(Eτ − 1

)+
]
− sup

τ∈T[0,T ]

EQ
(1)

y

[
e−r̃τ(Eτ − 1

)+
] ∣∣∣∣

≤ sup
τ∈T[0,T ]

∣∣∣∣EQ(1)

x

[
e−r̃τ(Eτ − 1

)+
]
− EQ

(1)

y

[
e−r̃τ(Eτ − 1

)+
] ∣∣∣∣

≤
∣∣∣x − y

∣∣∣ · sup
τ∈T[0,T ]

EQ
(1)

[
e−(r̃−Φ

(1)
Y (1))τeYτ−τΦ

(1)
Y (1)

]
(A.23)

Since the process
(
eYt−tΦ(1)

Y (1)
)

t∈[0,TD]
is known to be a (Q(1)-)martingale, we can take

C :=
 1, if r̃ ≥ Φ

(1)
Y (1),

e−(r̃−Φ
(1)
Y (1))T , otherwise,

(A.24)

and obtain from (A.23) that
|C?A(T , x) − C?A(T , y)| ≤ C|x − y| (A.25)

Proof of the smooth-fit property in Proposition 3. This part provides a proof of Equation (60),
i.e. we show that, for all T ∈ (0,TD], we have

∂xL
?(T , bs(T )) = 1 − ∂xC

?
E(T , bs(T )) (A.26)

For this equation to hold, it is sufficient to have that, for any T ∈ (0,TD], the function x 7→ C?A(T , x) is
in bs(T ) differentiable with ∂xC

?
A(T , bs(T )) = 1. We show that this is true.

First, we recall that for a Lévy process (Zt)t≥0 on a probability space (Ω,F ,P) a fixed level z ∈ R is
said to be regular for (z,∞), if we have that

Pz(τ+
z = 0) = 1 (A.27)

where τ+
z is given by

τ+
z := inf{t ≥ 0 : Zt ∈ (z,∞)} (A.28)

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.
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and we set as usual inf ∅ = ∞. As noted for instance in Kyprianou (2006), Theorem 6.5, any Lévy
process of infinite variation has the particularity that the point 0 is regular for the interval (0,∞). Since
we have assumed that σY , 0, the (Q(1)-)Lévy process (Yt)t≥0 has clearly infinite variation (Sato (1999),
Applebaum (2009)). Therefore, it suffices to show that the regularity of 0 for (0,∞) and (Yt)t≥0 implies
the smooth-fit property of C?A(·). We show it by adapting the proof of Theorem 4.1. in Lamberton and
Mikou (2011):

Let us fix T ∈ (0,TD]. We start by noting that

lim
h↓0

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

= 1 (A.29)

This directly follows since any x ≥ bs(T ) satisfies that C?A(T , x) = x − 1. Therefore, we only need to
show that

lim
h↑0

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

= 1 (A.30)

First, we obtain from C?A(T , bs(T )) = (bs(T ) − 1)+ and C?A(T , x) ≥ (x − 1)+ that, for any h < 0,

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

≥
(bs(T ) + h − 1)+

− (bs(T ) − 1)+

h
(A.31)

This gives that

lim inf
h↑0

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

≥ 1 (A.32)

To show that

lim sup
h↑0

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

≤ 1 (A.33)

we consider, for h < 0, the optimal stopping problem related to C?A(T , bs(T ) + h): First, we define the
stopping time

τh := inf{t ∈ [0,T ) : (bs(T ) + h) eYt ≥ bs(T )}

= inf
{

t ∈ [0,T ) : Yt ≥ log
(
bs(T )
bs(T ) + h

)}
(A.34)

and note from the regularity of 0 for the set (0,∞) that τh → 0 a.s. when h ↑ 0. This can be seen by the
following argument: On the almost sure set {τ+

0 = 0}, we can find for any t0 ∈ (0,T ) a point u ∈ [0, t0]
such that Yu > 0. Then, taking h < 0 small enough (i.e. near enough to zero) gives that Yu > log

(
bs(T )
bs(T )+h

)
.

Consequently, lim
h↑0

τh ≤ t0 a.s. and from the arbitrariness of t0 ∈ (0,T ) this already gives that lim
h↑0

τh = 0.

Next, noting that
C
?
A(T , bs(T )) ≥ EQ

(1)

bs(T )

[
e−r̃τh

(
Eτh − 1

)+
]

(A.35)

and combining this inequality with the optimality of the stopping time τh for the starting value bs(T ) + h
gives, for h < 0, that

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

=
EQ

(1)

bs(T )+h

[
e−r̃τh

(
Eτh − 1

)+
]
− C?A(T , bs(T ))

h

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.
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≤ EQ
(1)

e−r̃τh

(
(bs(T ) + h)eYτh − 1

)+
−

(
bs(T )eYτh − 1

)+

h

 (A.36)

Since x 7→ (x − 1)+ is continuously differentiable in a neighbourhood of bs(T ), we have that

lim
h↑0

(
(bs(T ) + h)eYτh − 1

)+
−

(
bs(T )eYτh − 1

)+

h
= 1 (A.37)

Finally, using Lemma 1.c) allows us to apply the dominated convergence theorem, to obtain that

lim sup
h↑0

C?A(T , bs(T ) + h) − C?A(T , bs(T ))
h

≤ 1 (A.38)

which gives the result.

A.3. Appendix C: Proofs - stochastic illiquidity horizon

Proof of Proposition 4. First, we note that the continuity of x 7→ CR,?
E (x) on [0,∞) follows from the

dominated convergence theorem, by combining Condition (73) with Representations (71) and (74).
Additionally, the continuity of x 7→ ∂xC

R,?
E (x) on (0,∞) follows analogously using (71), the continuity

of x 7→ C?E(tR, x) for all tR > 0, and the inequality∣∣∣C?E(tR, x) − C?E(tR, y)
∣∣∣ ≤ e−(r̃−Φ

(1)
Y (1))tR |x − y|, ∀x, y ∈ (0,∞) (A.39)

Therefore, we are left with the proof of Equations (78), (79). Here, we start by re-considering the
r̃-killed version of (Et)t≥0, (Ēt)t≥0, i.e. the process whose transition probabilities are given by

Q(1)
x

(
Ēt ∈ A

)
= EQ

(1)

x

[
e−r̃t

1A(Et)
]

(A.40)

and identify, without loss of generality, its cemetery state with ∂ ≡ 0. We then re-express CR,?
E (·) as

solution to an optimal stopping problem: We view the stochastic illiquidity horizon TR as jump time of a
corresponding Poisson process3 (Nt)t≥0 with intensity ϑ > 0 and consider, for any z = (n, x) ∈ N0×[0,∞),
the (strong) Markov process (Zt)t≥0 defined by means of Zt := (n + Nt, Ēt), Ē0 = x, on the state domain
D := N0 × [0,∞). Then, CR,?

E (·) can be equivalently written as

C
R,?
E (x) = ṼE

(
(0, x)

)
(A.41)

where, for z = (n, x) ∈ D, the value function ṼE(·) is defined, under the measure Q(1),Z
z having initial

distribution Z0 = z, by
ṼE(z) := EQ

(1),Z

z
[
G
(
ZτS

)]
, G(z) := (x − 1)+ (A.42)

and τS := inf{t ≥ 0 : Zt ∈ S}, S :=
(
N × (0,∞)

)
∪

(
N0 × {0}

)
, is a stopping time that is Q(1),Z

z -almost
surely finite for any z = (n, x).4 Furthermore, the stopping domain S forms (under an appropriate

3Our assumptions on TR clearly imply that the Poisson process is independent of (Ēt)t≥0.
4The finiteness of this stopping time directly follows from the properties (e.g. finiteness of the first moment) of the exponential

distribution of any intensity ϑ > 0.

Quantitative Finance and Economics Volume 4, Issue 3, 459–488.
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product-metric) a closed set inD.5 Therefore, standard arguments based on the strong Markov property
of (Zt)t≥0 (Peskir and Shiryaev (2006)) imply that ṼE(·) solves the following problem

AZṼE(z) = 0, on D \ S (A.43)

ṼE(z) = G(z), on S (A.44)

whereAZ denotes the infinitesimal generator of the process (Zt)t≥0. To complete the proof, it therefore
suffices to note that (for any suitable function V : D → R) the infinitesimal generator AZ can be
re-expressed as

AZV
(
(n, x)

)
= An

NV
(
(n, x)

)
+Ax

ĒV
(
(n, x)

)
= ϑ

(
V
(
(n + 1, x)

)
− V

(
(n, x)

))
+Ax

EV
(
(n, x)

)
− r̃V

(
(n, x)

)
(A.45)

whereAN denotes the infinitesimal generator of the Poisson process (Nt)t≥0 and the notationAn
N ,Ax

Ē
,

andAx
E is used to indicate that the generators are applied to n and x respectively. Indeed, recovering

C
R,?
E (·) via (A.41) while noting Relation (A.45) and the fact that for any x ∈ [0,∞) we have

ṼE
(
(1, x)

)
= G

(
(1, x)

)
= (x − 1)+ (A.46)

finally gives the claim.

Proof of Proposition 5. To start, we note that, under r̃ ≤ Φ
(1)
Y (1), the American-type switching option

C
R,?
A (·) reduces to its European counterpart CR,?

E (·). As earlier, this is a direct consequence of the fact
that the process

(
e−r̃tEt

)
t≥0 then becomes a (Q(1)-)submartingale. In this case, the result directly follows

via Proposition 4, with bRs = ∞.
For r̃ > Φ

(1)
Y (1), we first note that Theorem 1 in Mordecki (2002) implies the existence of a finite

optimal stopping boundary bRs > 0. Indeed, this follows by combining Lemma 2 with the fact that, with

C
∞,?
A (x) := sup

τ∈T[0,∞)

C
?(τ, x) (A.47)

{
x ∈ [0,∞) : C∞,?A (x) = (x − 1)+} ⊆ {

x ∈ [0,∞) : CR,?
A (x) = (x − 1)+} (A.48)

and by arguing as in Section 3.2.3. Therefore, by viewing the stochastic illiquidity horizon TR as
jump time of a corresponding Poisson process (Nt)t≥0 with intensity ϑ > 0, we can re-express our
optimal stopping problem in the following form: We consider, for any z = (n, x) ∈ N0 × [0,∞), the
(strong) Markov process (Zt)t≥0 defined by means of Zt := (n + Nt, Ēt), Ē0 = x, on the state domain
D := N0 × [0,∞) and identify again its cemetery state with ∂ ≡ 0. Then, we note that

C
R,?
A (x) = ṼA

(
(0, x)

)
(A.49)

where, for z = (x, n) ∈ D, the value function ṼA(·) is defined, under the measure Q(1),Z
z having initial

distribution Z0 = z, by
ṼA(z) := EQ

(1),Z

z
[
G
(
ZτS

)]
, G(z) := (x − 1)+ (A.50)

5We note that several choices of a product-metric onD give the closedness of the set S. In particular, one may choose on N0 the
following metric

dN0 (m, n) :=
{

1 + |2−m − 2−n|, m , n,
0, m = n,

and consider the product-metric onD obtained by combining dN0 (·, ·) on N0 with the Euclidean metric on [0,∞).
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and τS := inf{t ≥ 0 : Zt ∈ S}, S :=
(
N × (0,∞)

)
∪

(
N0 × {0}

)
∪

(
{0} × [bRs ,∞)

)
is a stopping time

that is Q(1),Z
z -almost surely finite for any z = (n, x). Furthermore, the stopping domain S forms (under

an appropriate product-metric) a closed set inD.6 Therefore, standard arguments based on the strong
Markov property of (Zt)t≥0 (Peskir and Shiryaev (2006)) imply that ṼA(·) solves the following problem

AZṼA(z) = 0, on D \ S (A.51)

ṼA(z) = G(z), on S (A.52)

whereAZ denotes the infinitesimal generator of the process (Zt)t≥0. To complete the proof, we therefore
argue as in the proof of Proposition 4, i.e. we recover CR,?

A (·) via (A.49) and combine Relation (A.45)
with the fact that for any x ∈ [0,∞) we have

ṼA
(
(1, x)

)
= G

(
(1, x)

)
= (x − 1)+ (A.53)

Since Equation (83) is naturally satisfied, this leads to the required problem. The continuity of the
function x 7→ CR,?

A (·) directly follows from its convexity (Lemma 2). Therefore, the proof is complete.

A.4. Appendix D

In this appendix, we briefly derive a semi-analytical solution to the free-boundary problem of
Proposition 6, when the dynamics of (S t)t≥0 and (Et)t≥0 are given by (91) and (8), (92) and assuming
non-positive jumps, i.e. ϕ ≤ 0. This is used to obtain numerical results in Section 5.4.

To start, we first note that, under the given dynamics and with b̃ := b + ρσXσ, the free-boundary
problem reads:

1. If r̃ ≤ b̃, the (absolute) tradeability premium LR,?(·) satisfies

L
R,?(x) = 0, ∀x ∈ [0,∞) (A.54)

2. If r̃ > b̃, the pair
(
LR,?(·), bRs

)
solves the following free-boundary problem:

1
2
σ2x2∂2

xL
R,?(x) +

(
b̃−λ(eϕ−1)

)
x∂xL

R,?(x) +λ
(
L

R,?(xeϕ) − LR,?(x)
)
− (r̃ +ϑ)LR,?(x) = 0 (A.55)

on x ∈ (0, bRs ) and subject to the boundary conditions

L
R,?(bRs ) = bRs − 1 − CR,?

E (bRs ) (A.56)

∂xL
R,?(bRs ) = 1 − ∂xC

R,?
E (bRs ) (A.57)

L
R,?(0) = 0 (A.58)

Therefore, it is sufficient to focus on the non-trivial case, i.e. we assume from now on that r̃ > b̃. Here,
we decompose the full domain [0,∞) into two intervals, I1 := [0, bRs ) and I2 := [bRs ,∞), derive solutions
V1(·) and V2(·) on these respective domains and combine them to recover LR,?(·) via

L
R,?(x) =

{
V1(x), x ∈ I1,

V2(x), x ∈ I2.
(A.59)

6As earlier, this property can be obtained under the product-metric considered in Footnote 5.
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We now turn to the derivation of these solutions. First, it is clear that, on I2, V2(x) = x − 1 − CR,?
E (x)

must hold. Hence, we only need to derive an expression for V1(·). Here, we start by noting that Φ
(1)
Y (θ),

the Laplace exponent of (Yt)t≥0 under Q(1), is well-defined for all θ ∈ R. Furthermore, it can be easily
seen that θ 7→ Φ

(1)
Y (θ) is convex and satisfies Φ

(1)
Y (0) = 0 and lim

|θ|→∞
Φ

(1)
Y (θ) = ∞. Consequently, the

equation Φ
(1)
Y (θ) = y has, for any y > 0, two solutions, a positive and a negative root. In the sequel, we

denote by
(
Φ

(1)
Y

)−1,+(
y
)

its positive root and by
(
Φ

(1)
Y

)−1,−(
y
)

its negative root. Using this notation, one
easily shows that, under ϕ ≤ 0, the general solution of the homogeneous equation (A.55) on I1 takes the
form

V1(x) = c+
1 xγ+ + c−1 xγ− (A.60)

where γ+ =
(
Φ

(1)
Y

)−1,+(
r̃ +ϑ

)
, γ− =

(
Φ

(1)
Y

)−1,−(
r̃ +ϑ

)
and c+

1 , c−1 are constants to be determined. Therefore,
to conclude, we only need to derive c+

1 , c−1 and bRs and make use of Conditions (A.56)-(A.58). First, we
note that (A.58) implies that c−1 ≡ 0. Additionally, Conditions (A.56) and (A.57) give the following
equations:

c+
1
(
b

R
s
)γ+ = bRs − 1 − CR,?

E (bRs ) (A.61)

γ+c+
1
(
b

R
s
)γ+−1

= 1 − ∂xC
R,?
E (bRs ) (A.62)

The latter system can now be solved to obtain c+
1 and bRs . First, rewritting (A.62) gives that

c+
1 =

(
bRs

)1−γ+

γ+

(
1 − ∂xC

R,?
E (bRs )

)
(A.63)

Then, inserting this result in (A.61) leads to the following non-linear equation in bRs :

b
R
s = 1 + CR,?

E (bRs ) +
bRs

γ+

(
1 − ∂xC

R,?
E (bRs )

)
(A.64)

Therefore, solving the latter equation for bRs allows us to subsequently derive c+
1 . This finally allows us

to recover the tradeability premium LR,?(·) via (A.59).
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