This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional $ {\rm{It\hat o}} $ formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.
Citation: Lichao Tao, Yuefu Lai, Yanting Ji, Xiangxing Tao. Asian option pricing under sub-fractional vasicek model[J]. Quantitative Finance and Economics, 2023, 7(3): 403-419. doi: 10.3934/QFE.2023020
This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional $ {\rm{It\hat o}} $ formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.
[1] | Bojdecki T, Gorostiza LG, Talarczyk A (2004) Sub-fractional Brownian motion and its relation to occupation times. Stat Probability Lett 69: 405-419. https://doi.org/10.1016/j.spl.2004.06.035 doi: 10.1016/j.spl.2004.06.035 |
[2] | Cajueiro D, Tabak B (2007) Long-range dependence and multifractality in the term structure of LIBOR interest rates. Phys A 373: 603-614. https://doi.org/10.1016/j.physa.2006.04.110 doi: 10.1016/j.physa.2006.04.110 |
[3] | Cheridito P (2003) Arbitrage in fractional Brownian motion models. Financ Stochastics 7: 533-553. https://doi.org/10.1007/s007800300101 doi: 10.1007/s007800300101 |
[4] | Duncan TE, Hu Y, Pasik-Duncan B (2000) Stochastic calculus for fractional Brownian motion I. Theory. SIAM J Control Optim 38: 582-612. https://doi.org/10.1137/S036301299834171 doi: 10.1137/S036301299834171 |
[5] | Gen Y, Zhou S (2018) Pricing Asian option under mixed jump-fraction process. J East China Normal Univ (Natural Science Edition) 3: 29-38. https://doi.org/10.1016/S2077-1886(12)70002-1 doi: 10.1016/S2077-1886(12)70002-1 |
[6] | Guo J, Zhang Y (2017) European Option Pricing Under Subfractional Vasicek Stochastic Interest Rate Model. Appl Math 30: 503-511. Available from: https://en.cnki.com.cn/Article_en/CJFDTotal-YISU201703005.htm |
[7] | Greene MT, Fielitz BD (1977) Long-term dependence in common stock returns. J Financ Econ 4: 339-349. https://doi.org/10.1016/0304-405X(77)90006-X doi: 10.1016/0304-405X(77)90006-X |
[8] | Huang W, Tao X, Li S (2012) Pricing Formulae for European Options under the Fractional Vasicek Interest Rate Model. Acta Mathematica Sinica. Chinese Series 55: 219-230. Available from: https://en.cnki.com.cn/Article_en/CJFDTOTAL-SXXB201202005.htm |
[9] | Hu Y, Øksendal B (2003) Fractional white noise calculus and applications to finance. Infin Dimens Anal Qu 6: 1-32. Available from: http://urn.nb.no/URN: NBN: no-47034 |
[10] | Hull JC (2003) Options futures and other derivatives. Pearson Education India, Springer US, Boston, MA, 9-26. |
[11] | Ji B, Tao X, Ji Y (2022) Barrier Option Pricing in the Sub-Mixed Fractional Brownian Motion with Jump Environment. Fractal Fract 6: 244. https://doi.org/10.3390/fractalfract6050244 doi: 10.3390/fractalfract6050244 |
[12] | Liu Y, Zhou S, Suo X (2008) The Pricing Formulas of Exotic Options in a Fractional Brownian Motion. Pract Cognition Math 15: 54-59. Available from: https://en.cnki.com.cn/Article_en/CJFDTOTAL-SSJS200815009.htm |
[13] | Lo AW (1991) Long-term memory in stock market prices. Econometrica: J Econometric Soc 1: 1279-1313. Available from: http://www.nber.org/papers/w2984 |
[14] | Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10: 422-437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093 |
[15] | Rao BLSP (2016) Pricing geometric Asian power options under mixed fractional Brownian motion environment. Phys A 446: 92-99. https://doi.org/10.1016/j.physa.2015.11.013 doi: 10.1016/j.physa.2015.11.013 |
[16] | Rogers L (1997) Arbitrage with fractional Brownian motion. Math Financ 7: 95–105. https://doi.org/10.1111/1467-9965.00025 doi: 10.1111/1467-9965.00025 |
[17] | Sander W (2019) Asian option pricing with orthogonal polynomials. Quant Financ 19: 605-618. https://doi.org/10.1080/14697688.2018.1526396 doi: 10.1080/14697688.2018.1526396 |
[18] | Tudor C (2008) Inner product spaces of integrands associated to subfractional Brownian motion. Stat Probability Lett 78: 2201-2209. https://doi.org/10.1016/j.spl.2008.01.087 doi: 10.1016/j.spl.2008.01.087 |
[19] | Wang W, Cai G, Tao X (2021) Pricing geometric Asian power options in the sub-fractional brownian motion environment. Chaos, Solitons and Fractals 145: 1-6. https://doi.org/10.1016/j.chaos.2021.110754 doi: 10.1016/j.chaos.2021.110754 |
[20] | Xiao Y, Zhou J (2008) Measure Transformation and Option Pricing in Fractional Brownian Motion Environment. Pract Cognition Math 20: 58-62. Available from: https://en.cnki.com.cn/Article_en/CJFDTOTAL-SSJS200820007.htm |
[21] | Xiao WL, Zhou Q, Wu WX (2021) Arbitrage opportunities in sub-fractional Black-Scholes model (in Chinese). Sci Sin Math 51: 1877-1894. https://doi.org/10.1360/SSM-2020-0156 doi: 10.1360/SSM-2020-0156 |
[22] | Yan L, Shen G, He K (2011) Itós formula for a sub-fractional Brownian motion. Commun Stoch Anal 5: 135-159. Available from: https://digitalcommons.lsu.edu/cosa/vol5/iss1/9 |
[23] | Yang Z, Zhang L, Tao X, et al. (2022) Heston-GA Hybrid Option Pricing Model Based on ResNet50. Discrete Dyn Nat Soc 2022: 1-17. https://doi.org/10.1155/2022/7274598 doi: 10.1155/2022/7274598 |
[24] | Yao Y, Li G (2018) Portfolio Insurance Strategy Based on the Geometric Average Asian Option. J Syst Manage 27: 529-537. https://doi.org/10.1287/mnsc.40.12.1705 doi: 10.1287/mnsc.40.12.1705 |
[25] | Zhou Q, Li C (2014) Pricing Formulas for Geometric Average Asian Options under the Fractional Vasicek Rate Model. J Appl Math 37: 662-675. Available from: https://applmath.cjoe.ac.cn/jweb_yysxxb/EN/10.12387/C2014060 |
[26] | Zhang PG (1997) Exotic options: a guide to second generation options. World Sci Available from: https://EconPapers.repec.org/RePEc: wsi: wsbook: 3800 |