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Abstract: This paper investigates the pricing formula for geometric Asian options where the underlying
asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional
Vasicek model. By applying the sub-fractional Itô formula, the Black-Scholes (B-S) type Partial
Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle.
Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the
Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst
index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option
and the interest rate model, respectively. The results show that the main parameters such as Hurst index
have a significant influence on the price of Asian options.
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1. Introduction

Since the emerge of Black-Scholes framework in the 1970s, option pricing has always been one
of the hot issues in financial research. Classic Black-Scholes framework heavily relies on unrealistic
assumptions, and only works for plain vanilla options, like European options. However, plain vanilla
options are susceptible to possible spot manipulation at maturity. As a natural and reasonable extension,
exotic options, especially the path-dependence options, attract the attention of both partitioner and
researchers. Asian options, generally described as options whose payoff depends on the average price
of the underlying asset during a pre-specified period within an option’s lifetime and pre-specified

http://www.aimspress.com/journal/QFE
http://dx.doi.org/ 10.3934/QFE.2023020


404

observation frequency, is one of the most-used hedging tools in the over-the-counter (OTC) marketplace
(Zhang, 1997).

Theoretically, there are two types of Asian options, arithmetic Asian options and geometric Asian
options. The key difference between them is that when the underlying asset prices are log-normally
distributed, the geometric Asian options follow the same distribution while the arithmetic Asian options
do not. In real-world practice, the arithmetic Asian option is the only type traded in the market, whose
closed-form expression is very difficult to obtain. The pricing process of arithmetic Asian options
involves the price of geometric Asian options as a control variate, due to the fact that the closed-form
solution of geometric Asian options is relatively easy to obtain. Therefore, it is worth studying the pricing
dynamics of geometric Asian options. In recent years, there are some research results regarding geometric
Asian options, such as Sander (2019),Yao and Li (2018) and Gen and Zhou (2018). However, up to
the authors’ best knowledge, for most existing literature, the underlying asset price is modelled by a
stochastic process driven by standard Brownian motion, which is a martingale with the Markov property.
The Markovian setting is equivalent to the weak form of efficient market hypothesis (Hull, 2003), which
is very ideal and unrealistic. According to Greene and Fielitz (1977) and Lo (1991), there is empirical
evidence showing that the asset pricing dynamics involve past information. As a result, it is natural to
introduce fractional Brownian motion (fBm), a stochastic process which preserves long-dependence and
self-similarity properties. Mandelbrot and Van Ness (1968) firstly used fBm to model financial asset
pricing dynamics, Xiao and Zhou (2008) and Liu et al. (2008) use fractional Brownian motion to describe
the evolution process of financial asset prices, and more research results can be found in Duncan et
al. (2000) and Hu and Øksendal (2003) and references there in. Since fractional Brownian motion has
stationary increment, which can’t match the virtue of financial data, a more general Gaussian process,
the sub-fractional Brownian motion (sfBm), has been introduced to model the dynamics of financial
assets. According to Bojdecki et al. (2004), the sub-fractional Brownian motion not only preserves the
long-dependence and self-similarity properties, but also has a faster degeneration. In Tudor (2008), it
has been shown that the sub-fractional Brownian motion can be a good choice to describe the volatility.
Although, both fractional Brownian motion and sub-fractional Brownian motion are neither Markovian
nor martingale, and there are arbitrages in such market models, which was first proved by Rogers (1997).
However, it still worth discussing in the pricing formula of financial derivatives under such environment,
since such arbitrages can be excluded from these models by restricting the class of trading strategies, more
details can be found in Cheridito (2003) and Xiao et al. (2021).

The classical B-S model assumes that the interest rate is a constant, but in the real financial market,
the interest rate preserves the term structure. Especially in the long run, the interest rate fluctuates within a
certain range under the influence of both macro and micro economic factors, that is, the interest rate has
the phenomenon of “mean reversion”. To characterize the stochastic behavior of interest rates, the Vasicek
model has been proposed and widely used in the study of stochastic interest rates. Cajueiro and Tabak
(2007) found that there is a long-term dependence of stochastic interest rates. Zhou and Li (2014), Huang et
al. (2012) studied the option pricing formulae under the fractional Vasicek rate model. Tudor (2008) found
that sub-fractional Brownian motion had stronger memory than fractional Brownian motion and could
better describe the long-term dependence of financial assets. Guo and Zhang (2017) used the sub-fractional
Vasicek model to price European options and obtained the pricing formula of European options. See Ji et al.
(2022), Yang et al. (2022) and Wang et al. (2021) for more recent progress.
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Enlightened by these existing results, in this paper underlying asset is assumed to follow the
sub-fractional Brownian motion and the interest rates satisfy the sub-fractional Vasicek model, then
the B-S type PDE corresponding to Asian geometric average option pricing formula is derived, and a
close-form of such formula can be obtained. Such a formula will play an essential role when a more
precise control variate price is required in the pricing of arithmetic Asian options.

The rest of this paper is organized as follows: In Section 2, we introduce some necessary preliminary
knowledge about option pricing and the zero-coupon bond pricing model. In Section 3, we investigate
the Asian geometric average option pricing model, and give the analytical solution and the pricing
formula for Asian geometric average options where the underlying asset is driven by the sub-fractional
Brownian motion with interest rate satisfying the sub-fractional Vasicek model. In Section 4, we
discusses the influence of Hurst index, stock price and zero-coupon bond price on Asian option price.
Some further implications will be added in the last section as well.

2. Preliminaries

Let (Ω,Ft, P) be a complete probability space with a filtration {Ft}t≥0 satisfying usual conditions.

Definition 2.1. Let H ∈ (0, 1) be the Hurst index. The sub-fractional Brownian motion ξH =
{
ξH

t : t ∈ R
}

with the Hurst index H is a continuous Gaussian process satisfying that

1. E[ξH
t ] = 0,

2. E[ξH
t ξ

H
s ] = t2H + s2H − 1

2

(
|t + s|2H + |t − s|2H

)
, s, t ∈ R,

where E = Ep denotes the expectation under the probability measure P .

In case H = 1/2 , ξH
t is a standard Brownian motion. The sub-fractional Brownian motion is a

modified fractional Brownian motion, which has the properties of self-similarity and long memory. More
details can be found in Tudor (2008),Guo and Zhang (2017), Bojdecki et al. (2004) and references therein.

Definition 2.2. Rao (2016): Assumes that At is the path-dependent variable of Asian options, which
represents the average value of stock price on [0, t]. It is a geometric average, that is,

At = exp
{

1
t

∫ t

0
ln S τdτ

}
.

The Asian option corresponding to this path is called the Asian geometric average option. If at the
maturity time t, the Asian option is executed at the fixed strike price K, the return of Asian geometric
average call option can be expressed as (At − K)+ and the return of Asian geometric average put option
can be expressed as (K − At)+.

Lemma 2.3. Yan et al. (2011): Suppose {Y(t)} is a sub-fractional Itô process on probability space
(Ω,F , P), which is given by dY(t) = rdt + σdξH

t . Let f (t,Y(t)) ∈ C1,2(R+ × R→ R), and that f (t,Y(t)),∫ t

0
∂ f
∂τ

(τ,Y(τ))dτ,
∫ t

0
∂2 f
∂Y2 (τ,Y(τ))dτ,

∫ t

0
∂2 f
∂Y2 (τ,Y(τ))τ2H−1dτ belong to the L2(P) space, then we have the

following sub-fractional Itô formula,

f (t,Y(t)) = f (0, 0) +
∫ t

0
[
∂ f
∂τ

(τ,Y(τ)) + σ2H(2 − 22H−1)
∂2 f
∂Y2 (τ,Y(τ))τ2H−1

+ r
∂ f
∂Y

(τ,Y(τ))]dτ +
∫ t

0
σ
∂ f
∂Y

(τ,Y(τ))dξH
t .

(1)
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The proof of Lemma 2.3 can be found in Yan et al. (2011).
Before proceeding to our main results, the term structure of interest rate should be discussed.

Suppose that interest rate rt satisfies the following stochastic differential equation under risk neutral
measure Q (Guo and Zhang, 2017)

drt = a(θ − rt)dt + σdξH
t , (2)

where a, θ, σ are constants,
{
ξH

t ; t > 0
}

is sub-fractional Brownian motion, a is the speed of interest
rate adjustment, θ is the long-term interest rate, σ is the coefficient of influence on interest rates. This
equation model is the so-called sub-fractional Vasicek model.

The sub-fractional Vasicek model is a modified form and an extension of the fractional Vasicek model.
In this paper, we use the sub-fractional Brownian motion in place of the fractional Brownian motion,
simultaneously, we use the sub-fractional Vasicek model instead of the fractional Vasicek model.

We give the corresponding assumptions as follows.

1. Financial markets are complete and frictionless;
2. Short selling is allowed;
3. Underlying assets pay no dividend;
4. There is no transaction cost and it is tax-free;
5. The expected return rate of the risk-free portfolio is equal to the risk-free interest rate;

Suppose there are two kinds of continuous free-trade assets in the market, one is the risk-free asset,
such as treasury bills, and the other is the risky asset, for instant stocks. The stock price, S t, satisfies the
following equation

dS t = rtS tdt + σ1S tdξH
1 (t), (3)

while rt , the risk-free interest rate, satisfies the following sub-fractional Vasicek model

drt = a(θ − rt)dt + σ2dξH
2 (t), (4)

where σ1 and σ2 are constants, and
{
ξH

1 (t); t > 0
}

and
{
ξH

2 (t); t > 0
}

are two correlated sub-fractional
Brownian motions such that

dξH
1 (t)dξH

2 (t) = ρ(2 − 22H−1)dt2H.

Since the interest rate is non-exchangeable, a zero-coupon bond, as its carrier, plays a unique role
in the study of option pricing when the interest rate is of stochastic nature. In this paper, we denote the
face value of the zero-coupon bond at time t as F(rt, t; T ), and the face value of the zero-coupon rate at
maturity is 1 dollar, i.e. F(rT ,T ; T ) = 1.

An application of Delta hedging principle, together with Lemma 2.3, yields that price of zero-
coupon bond F(rt, t; T ) satisfies the following partial differential equation:

∂F
∂t
+ a

(
θ̂ − rt

) ∂F
∂rt
+ (2 − 22H−1)Hσ2

2t2H−1∂
2F
∂r2

t
− rtF = 0,

F (rT ,T ; T ) = 1,
(5)

Quantitative Finance and Economics Volume 7, Issue 3, 403–419.



407

where θ̂ = θ −
λ

a
σ2, λ is the price of the financial market with interest rate risk. According to Guo and

Zhang (2017), Equation (5) has unique explicit solution

F(rt, t; T ) = e−rt B(t,T )−A(t,T ), (6)

where 
A(t,T ) = θ̂(T − t) − θ̂B(t,T ) − (2 − 22H−1)H

∫ T

t
σ2

2s2H−1B2(t,T )ds,

B(t,T ) = 1
a (1 − e−a(T−t)).

When T − t ≪ 1,we can get A(t,T ) ∼ 0 ,B(t,T ) ∼ T − t, and the zero-coupon bond price is F(rt, t; T ) =
e−rt(T−t).

3. Main result

Theorem 3.1. Assume that stock price S t satisfies Equation (3), interest rate rt satisfies Equation (4),
denote V(t, rt, S t, At) as the Asian geometric average call option at time t (0 ≤ t ≤ T), with fixed strike
pricing K and maturity T , then V(t, rt, S t, At) satisfies the partial differential equation

∂V
∂t
+ (2 − 22H−1)Hσ2

2t2H−1∂
2V
∂r2

t
+ (2 − 22H−1)Hσ2

1S 2
t t2H−1∂

2V
∂S 2

t
+ a(θ̂ − rt)

∂V
∂rt

+ 2(2 − 22H−1)Hρσ1σ2S tt2H−1 ∂
2V
∂rt∂S t

+
(ln S t − ln At)

t
At
∂V
∂At
+ rt
∂V
∂S t

S t − rtV = 0,

with terminal condition

V(T, rT , S T , AT ) = (AT − K)+,

where At = exp
{

1
t

∫ t

0
ln S τdτ

}
denotes the geometric mean of stock price on [0, t] which is equivalent to

the path of Asian geometric options.

Proof. According to Delta hedging principle, a portfolio is constructed with a long position of one unit
Asian option V , and a short position of ∆1 unit S t and ∆2 zero-coupon bonds F. Define the value of
portfolio at the t as

Πt = V − ∆1S t − ∆2Ft, (7)

then the change of the portfolio in the time interval dt is

dΠt = dV − ∆1dS t − ∆2dFt. (8)

Differentiating At with respect to t yields

dAt = At(−
1
t2

∫ t

0
ln S τdτ +

1
t

ln S t) = At
ln S t − ln At

t
dt. (9)
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According to Lemma 2.3, we can get

dV(t, rt, S t, At) =
[
∂V
∂t
+

(ln S t − ln At)
t

At
∂V
∂At
+ (2 − 22H−1)Hσ2

1S 2
t t2H−1∂

2V
∂S 2

t

+ (2 − 22H−1)Hσ2
2t2H−1∂

2V
∂r2

t

+2(2 − 22H−1)Hρσ1σ2S tt2H−1 ∂
2V
∂rt∂S t

]
dt +
∂V
∂rt

drt +
∂V
∂S t

dS t,

(10)

and

dF(t, rt) =
[
∂F
∂t
+ (2 − 22H−1)Hσ2

2t2H−1∂
2F
∂r2

t

]
dt +
∂F
∂rt

drt. (11)

Applying Equations (10) and (11) over the time interval dt , we can get

dΠt = dV − ∆1dS t − ∆2dF

=

[
∂V
∂t
+

(ln S t − ln At)
t

At
∂V
∂At
+ (2 − 22H−1)Hσ2

1S 2
t t2H−1∂

2V
∂S 2

t

+ (2 − 22H−1)Hσ2
2t2H−1∂

2V
∂r2

t

+2(2 − 22H−1)Hρσ1σ2S tt2H−1 ∂
2V
∂rt∂S t

]
dt +

(
∂V
∂S t
− ∆1

)
dS t+

(
∂V
∂rt
− ∆2
∂F
∂rt

)
drt

− ∆2

(
∂F
∂t
+ (2 − 22H−1)Hσ2

2t2H−1∂
2F
∂r2

t

)
dt.

Let ∆1 =
∂V
∂S t

and ∆2 =
∂V/∂rt

∂F/∂rt
, we have

dΠt = dV − ∆1dS t − ∆2dF

=

[
∂V
∂t
+

(ln S t − ln At)
t

At
∂V
∂At
+ (2 − 22H−1)Hσ2

1S 2
t t2H−1∂

2V
∂S 2

t

+ (2 − 22H−1)Hσ2
2t2H−1∂

2V
∂r2

t

+2(2 − 22H−1)Hρσ1σ2S tt2H−1 ∂
2V
∂rt∂S t

]
dt − ∆2

(
rtF − a(θ̂ − rt)

∂F
∂rt

)
dt.

(12)

A simple application of Delta hedging principle yields

dΠt = rtΠtdt = rt (V − ∆1S t − ∆2F) dt, (13)

By combining (12) and (13), we obtain that

∂V
∂t
+ (2 − 22H−1)Hσ2

2t2H−1∂
2V
∂r2

t
+ (2 − 22H−1)Hσ2

1S 2
t t2H−1∂

2V
∂S 2

t
+ a(θ̂ − rt)

∂V
∂rt

+ 2(2 − 22H−1)Hρσ1σ2S tt2H−1 ∂
2V
∂rt∂S t

+
(ln S t − ln At)

t
At
∂V
∂At
+ rt
∂V
∂S t

S t − rtV = 0,
(14)

with V(T, rT , S T , AT ) = (AT − K)+ . □
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Theorem 3.2. Assume that stock price S t satisfies Equation (3), interest rate rt satisfies Equation (4),
then for fixed strike pricing K and maturity date T , the value of Asian geometric average call option
V(t, rt, S t, At) is given by

V(t, rt, S t, At) = F
aT+1

aT A
t
T
t

(
S t

F
1

aB(t,T )

) T−t
T

eL1 N (d1) − KFeL2 N (d2) ,

where

α1(t) =
aθ̂
T

[
e−a(T−t) − 1

a2 +
T − t

a

]
+ (2 − 22H−1)Ht2H−1

[
−σ2

1
T − t

T

+2σ2
2
e−a(T−t) − 1

aT

(
e−a(T−t) − 1

a2 +
T − t

a

)
+ 2ρσ1σ2

e−a(T−t) − 1
a

T − t
T

]
,

α2(t) = (2 − 22H−1)Ht2H−1
[
σ2

1

(T − t
T

)2

+
σ2

2

T 2

(
e−a(T−t) − 1

a2 +
T − t

a

)2

+2ρσ1σ2

(
e−a(T−t) − 1

a2 +
T − t

a

)
T − t

T 2

]
,

α3(t) = (2 − 22H−1)Ht2H−1σ2
2

(
e−a(T−t) − 1

a2

)2

+ θ̂
(
e−a(T−t) − 1

)
,

L1 =
A(t,T ) [B(t,T )(aT + 1) − (T − t)]

aT B(t,T )
+

∫ T

t
[α1(s) + α2(s) + α3(s)] ds,

L2 = A(t,T )+
∫ T

t
α3(s)ds,

d1 =

1
T

[
t ln At + (T − t) ln S t +

(ln F+A(t,T ))(B(t,T )−T+t)
aB(t,T )

]
+

∫ T

t
[α1(s) + 2α2(s)] ds − ln K√

2
∫ T

t
α2(s)ds

,

d2 = d1 −

√
2
∫ T

t
α2(s)ds,

N(x) =
1
√

2π

∫ x

−∞

e−
t2
2 dt.

Proof. Consider

y =
1
T

[
t ln At + (T − t) ln S t + rt

(
e−a(T−t) − 1

a2 +
T − t

a

)]
,

with

V̂(y, t) =
V

exp
(

1
a

(
e−a(T−t) − 1

)
rt

) .
Let E = exp

(
1
a

(
e−a(T−t) − 1

)
rt

)
, and recall the price solutions of zero-coupon bonds (5), we get

F = Ee−A(t,T ).
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A substitution of rt, At, S t yields that

V(rt, At, S t, t) = EV̂(y, t) = FeA(t,T )V̂(y, t).

A direct calculation yields that

∂V
∂t
= E

{
∂V̂
∂t
+

[
ln At − ln S t

T
+

rt

aT

(
e−a(T−t) − 1

)] ∂V̂
∂y
+ V̂e−a(T−t)rt

}
,

∂V
∂At
= E
∂V̂
∂y

t
T At
,
∂V
∂S t
=

E
S t

∂V̂
∂y

T − t
T
,

∂2V
∂S 2

t
=

E
S 2

t

[(T − t
T

)2∂2V̂
∂y2 −

∂V̂
∂y

T − t
T

]
,

∂V
∂rt
= E

{
1
T

[
e−a(T−t) − 1

a2 +
T − t

a

]
∂V̂
∂y
+ V̂

1
a

(
e−a(T−t) − 1

)}
,

∂2V
∂S t∂rt

=
E

aS t

(
e−a(T−t) − 1

) ∂V̂
∂y

T − t
T
+

E
S t

T − t
T 2

(
e−a(T−t) − 1

a2 +
T − t

a

)
∂2V̂
∂y2 ,

∂2V
∂r2

t
= 2

e−a(T−t) − 1
a

E
[

1
T

(
e−a(T−t) − 1

a2 +
T − t

a

)
∂V̂
∂y

]
+ EV̂

[
e−a(T−t) − 1

a

]2

+
1

T 2

(
e−a(T−t) − 1

a2 +
T − t

a

)2

E
∂2V̂
∂y2 .

Substituting the previous Equation into (14), we obtain that

∂V̂
∂t
+ α1(t)

∂V̂
∂y
+ α2(t)

∂2V
∂y2 + α3(t)V̂ = 0, (15)
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where

α1(t) =
aθ̂
T

[
e−a(T−t) − 1

a2 +
T − t

a

]
+ (2 − 22H−1)Ht2H−1

[
−σ2

1
T − t

T

+2σ2
2
e−a(T−t) − 1

aT

(
e−a(T−t) − 1

a2 +
T − t

a

)
+ 2ρσ1σ2

e−a(T−t) − 1
a

T − t
T

]
,

α2(t) = (2 − 22H−1)Ht2H−1
[
σ2

1

(T − t
T

)2

+
σ2

2

T 2

(
e−a(T−t) − 1

a2 +
T − t

a

)2

+2ρσ1σ2

(
e−a(T−t) − 1

a2 +
T − t

a

)
T − t

T 2

]
,

α3(t) = (2 − 22H−1)Ht2H−1σ2
2

(
e−a(T−t) − 1

a2

)2

+ θ̂
(
e−a(T−t) − 1

)
.

At maturity date T , V(T, rT , S T , AT ) = (AT − K)+ can be rewritten as

V̂(T, y) = (ey − K)+.

For Equation (15), it can be transformed into a heat equation by substitution

τ = γ(t), η = y + α(t), U(η, τ) = V̂(y, t)eβ(t),

where α(t), β(t), γ(t) are undetermined functions.
By calculation,

∂V̂
∂t
= e−β(t)

[
α′(t)
∂U
∂η
+ γ′(t)

∂U
∂τ
− β′(t)U

]
,

∂V̂
∂y
= e−β(t)

∂U
∂η
,

∂2V̂
∂y2 = e−β(t)

∂2U
∂η2 .

Substituting the previous Equations into (15) yields

(
α′(t) + α1(t)

) ∂U
∂η
+ γ′(t)

∂U
∂τ
+ α2(t)

∂2U
∂η2 +

(
α3(t) − β′(t)

)
U = 0. (16)

By letting
α′(t) + α1(t) = 0, γ′(t) + α2(t) = 0, α3(t) − β′(t) = 0,
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According to the terminal conditions α(T ) = β(T ) = γ(T ) = 0, we can get

α(t) =
∫ T

t
α1(s)ds, γ(t) =

∫ T

t
α2(s)ds, β(t) = −

∫ T

t
α3(s)ds,

Substituting them back into (16), one gets

∂U
∂τ
=
∂2U
∂η2 , (17)

while the terminal condition V̂(T, y) = (ey − K)+ can be converted into

U(η, 0) = (eη − K)+.

According to the theory of heat Equation Yao and Li (2018), a solution to Equation (17) can be obtained
as

U(η, τ) =
1

2
√
πτ

∫ +∞

ln K
(ez − K)e−

(z−η)2
4τ dz

=
1

2
√
πτ

∫ +∞

ln K
eze−

(z−η)2
4τ dz −

K
2
√
πτ

∫ +∞

ln K
e−

(z−η)2
4τ dz = I1 + I2,

For I1, let t =
z − η − 2τ
√

2τ
, then

I1 =
1

2
√
πτ

∫ +∞

ln K
eze−

(z−η)2
4τ dz =

1
√

2π
eη+τ

∫ +∞

ln K−η−2τ
√

2τ

e−
t2
2 dt = eη+τN

(
η + 2τ − ln K
√

2τ

)
.

For I2, let ω =
z − η
√

2τ
, then

I2 =
−K

2
√
πτ

∫ +∞

ln K
e−

(z−η)2
4τ dz =

−K
√

2π

∫ +∞

ln K−η
√

2τ

e−
ω2
2 dω = −KN

(
η − ln K
√

2τ

)
.

By transformation U(η, τ) = V̂(y, t)eβ(t),

V̂(y, t) = U(η, τ)e−β(t) = eη+τ−β(t)N
(
η + 2τ − ln K
√

2τ

)
− Ke−β(t)N

(
η − ln K
√

2τ

)
. (18)

By substituting the expression of η, τ, β(t) into (18), we can get

V̂(y, t) = ey+
∫ T

t [α1(s)+α2(s)+α3(s)]dsN (d1) − Ke
∫ T

t α3(s)dsN (d2) , (19)

where,

d1 =
y +

∫ T

t
α1(s)ds + 2

∫ T

t
α2(s)ds − ln K√

2
∫ T

t
α2(s)ds

,

d2 = d1 −

√
2
∫ T

t
α2(s)ds.
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By using substitution of variable conditions, together with Equation (19) , we can get

V(t, rt, S t, At) = F
aT+1

aT A
t
T
t

(
S t

F
1

aB(t,T )

) T−t
T

eL1 N (d1) − KFeL2 N (d2) , (20)

where

L1 =
A(t,T ) [B(t,T )(aT + 1) − (T − t)]

aT B(t,T )
+

∫ T

t
[α1(s) + α2(s) + α3(s)] ds,

L2 = A(t,T )+
∫ T

t
α3(s)ds,

d1 =

1
T

[
t ln At + (T − t) ln S t +

(ln F+A(t,T ))(B(t,T )−T+t)
aB(t,T )

]
+

∫ T

t
[α1(s) + 2α2(s)] ds − ln K√

2
∫ T

t
α2(s)ds

,

d2 = d1 −

√
2
∫ T

t
α2(s)ds.

□

Corollary 3.3. Under the same assumptions in Theorem 3.2. Assume that stock price S t satisfies
Equation (3), interest rate rt Equation formula (4), denote Vp(t, rt, S t, At) as the value of Asian geometric
average put option at time t (0 ≤ t ≤ T) with fixed strike pricing K and maturity T , then

Vp(t, rt, S t, At) = KFeL2 N (−d2) − F
aT+1

aT A
t
T
t

(
S t

F
1

aB(t,T )

) T−t
T

eL1 N (−d1) .

Proof. According to the terminal condition Vp(T, rT , S T , AT ) = (K − AT )+, the value of put option
Vp(t, rt, S t, At) at time t (0 ≤ t ≤ T ) can be obtained by solving Equation (14) with the solution method
in Theorem 3.2.

4. Simulations

In this chapter, the impacts of Hurst index H, stock price S t, interest rate rt and zero-coupon bond
price F on Asian geometric average call option prices are discussed. According to the Asian geometric
average call option pricing formula from Theorem 3.2, the constant parameters in the Asian geometric
average call option formula of Theorem 3.2 are assumed to be as follows:

t = 0,T = 1, a = 0.6, λ = 0.3, θ = 0.8, σ1 = 0.5, σ2 = 0.4, ρ = 0.3.

Under such setting of parameters, Table 1 and Table 2 illustrate that the Asian geometric average call
option prices at fixed strike prices under different Hurst indices, stock prices and zero-coupon bond prices.
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Table 1. Geometric average Asian call option prices under Hurst Index H=0.1 and H=0.11.

parameter
H=0.1 H=0.11

F=0.2 F=0.3 F=0.4 F=0.5 F=0.6 F=0.2 F=0.3 F=0.4 F=0.5 F=0.6

S=20 0.106 0.107 0.113 0.127 0.139 0.103 0.104 0.112 0.123 0.129
S=30 0.129 0.172 0.184 0.504 1.023 0.119 0.143 0.154 0.478 0.994
S=40 0.178 0.188 1.000 1.986 2.924 0.148 0.158 0.958 1.941 2.857
S=50 0.277 1.458 2.862 4.330 5.780 0.245 1.414 2.811 4.273 5.716
S=60 1.683 3.384 5.329 7.368 9.414 1.653 3.340 5.274 7.305 9.343
S=70 3.309 5.564 8.237 10.930 13.649 3.282 5.612 8.184 10.867 13.577
S=80 5.073 8.157 11.461 14.880 18.336 5.049 8.120 11.412 14.819 18.266
S=90 6.924 10.818 14.910 19.112 23.359 6.094 10.786 14.865 19.057 23.294

S=100 8.831 13.589 18.518 23.551 28.632 8.816 13.562 18.480 23.503 28.575
S=110 10.776 16.434 22.241 28.143 34.092 10.764 16.413 22.210 28.103 34.034

Table 2. Geometric average Asian call option prices under Hurst Index H=0.6 and H=0.7.

parameter
H=0.6 H=0.7

F=0.2 F=0.3 F=0.4 F=0.5 F=0.6 F=0.2 F=0.3 F=0.4 F=0.5 F=0.6

S=20 0.006 0.016 0.105 0.114 0.118 0.003 0.014 0.102 0.110 0.114
S=30 0.029 0.039 0.136 0.254 0.387 0.016 0.028 0.124 0.162 0.278
S=40 0.078 0.088 0.188 0.386 0.489 0.065 0.053 0.175 0.275 0.387
S=50 0.177 0.187 1.056 1.065 2.184 0.164 0.165 0.856 1.020 1.182
S=60 0.583 0.706 1.980 3.478 5.032 0.472 0.605 0.919 2.253 3.676
S=70 1.629 3.013 4.772 6.761 8.848 1.154 2.209 3.670 5.414 7.295
S=80 3.524 5.644 8.052 10.667 13.391 3.079 4.884 6.973 9.296 11.762
S=90 5.492 8.461 11.641 14.992 18.448 5.061 7.738 10.602 13.643 16.812

S=100 7.495 11.382 15.419 19.592 23.857 7.067 10.682 14.416 18.279 22.244
S=110 9.517 14.363 19.315 24.370 29.502 9.085 13.672 18.335 23.088 27.919

From Table 1, and Table 2, the interaction of Hurst index, initial price of the stock, face value of
the zero-coupon bond and the price of Asian geometric average call options are illustrated. It is natural
to see that for a call-type option, the price of the Asian geometric average call option is positive-related
with the initial price of the stock. The same pricing dynamic applies for the relationship between the
price of the Asian geometric average call option and face value of the zero-coupon. Keeping the initial
price of the stock and the face value of the zero-coupon unchanged, the data from the Table 1 and Table
2 demonstrates that the prices of Asian geometric average call options are negatively-related to the
Hurst Index.
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Figure 1. The price of the Asian geometric average call option with different Hurst Index.

For more values of Hurst index, this negative-relation stays consistent, as shown in the Figure 1,
where the asset driven by a geometric Brownian motion (GBM) has been employed as a benchmark.
Such convergence results validate our model.

Figure 2 illustrates the prices of Asian geometric average call options when the underlying assets
are modelled by geometric Brownian motion (GBM), which indicates that when H = 0.5, prices of
Asian geometric average call options driven by sfBm will converge to the prices of Asian geometric
average call option driven by GBM.

Figure 2. The price of Asian geometric average call option with different Hurst Index and GBM.

Figure 3 illustrates the Delta of Asian geometric average call option with respect to time to maturity
as well as the price of underlying asset. The Delta is most sensitive when the price of underlying asset
is close to the strike price K = 66. However, such measurement of Delta is not an optional indicator
for the Asian geometric average call option, since it is simultaneous, which is inconsistent with the
path-dependent property of Asian geometric average call options.

Figure 4 and 5 illustrate the Gamma and Vega of Asian geometric average call option with respect
to time to maturity as well as the price of underlying asset. Both Greeks preserve the properties that
they are very sensitive when the price of underlying asset is close to the strike price. Such observations
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Figure 3. The Delta of Asian geometric average call option option with K = 66.

will lead to a natural conclusion that the existing technique of calculation of Greeks does not apply, and
modification of Greeks’ calculation should be taken into consideration in the future research.

Figure 4. The Gamma of Asian geometric average call option with K = 66.
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Figure 5. The Vega of Asian geometric average call option withK = 66.

5. Conclusions

In this paper, the underlying asset is modelled by sfBm and the interest rate follows the sub-
fractional Vasicek model. The explicit pricing formula for the Asian geometric average option has been
derived. According to Theorem 3.2, such a result can be seen as an natural extension of the fractional
Vasicek model Zhou and Li (2014). The numerical simulation also suggests that when H = 0.5, the
price of the Asian geometric average call option driven by sfBm converges to the the Asian geometric
average call option driven by GBM.

The results of this paper have more implications, in both theoretical and industrial aspects. For the
theoretical aspect, Theorem 3.2 can be extended easily to the case where all parameters a, θ, σ are time-
dependent, i.e., the corresponding sub-fractional Hull-White model. However, for the sub-fractional
CIR model, such result is no longer applicable. For the industrial aspects, our simulation results suggest
that the existing calculation technique for Greeks does not work for Asian-type options. More generally
speaking, for the path-dependent option, the Greeks could be redefined, i.e., an “average version” rather
than a “simultaneous” version. In the future, some restriction will be implemented to remove some
trading strategy with arbitrages.
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