[1]
|
A. T. Beck, W. J. D. Gomes, A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty, Probabilist. Eng. Mech., 28 (2012), 18-29.
|
[2]
|
T. Zou, S. Mahadevan, A direct decoupling approach for efficient reliability-based design optimization, Struct. Multidiscip. O., 31 (2006), 190-200. doi: 10.1007/s00158-005-0572-7
|
[3]
|
R. H. Lopez, A. T. Beck, Reliability-based design optimization strategies based on FORM: A review, J. Braz. Soc. Mech. Sci., 34 (2012), 506-514. doi: 10.1590/S1678-58782012000400012
|
[4]
|
Z. Z. Chen, H. B. Qiu, L. Gao, P. G. Li, An optimal shifting vector approach for efficient probabilistic design, Struct. Multidiscip. O., 47 (2013), 905-920. doi: 10.1007/s00158-012-0873-6
|
[5]
|
L. Shi, S. P. Lin, A new RBDO method using adaptive response surface and first-order score function for crashworthiness design, Reliab. Eng. Syst. Safe, 156 (2016), 125-133. doi: 10.1016/j.ress.2016.07.007
|
[6]
|
B. D. Youn, K. K. Choi, L. Du, Enriched performance measure approach for reliability-based design optimization, AIAA J., 43 (2005), 874-884. doi: 10.2514/1.6648
|
[7]
|
S. Goswami, S. Chakraborty, R. Chowdhury, T. Rabczuk, Threshold shift method for reliability-based design optimization, Struct. Multidiscip. O., 60 (2019), 2053-2072. doi: 10.1007/s00158-019-02310-x
|
[8]
|
X. P. Du, W. Chen, A most probable point-based method for efficient uncertainty analysis, J. Design. Manuf. Autom., 4 (2001), 47-66. doi: 10.1080/15320370108500218
|
[9]
|
X. P. Du, W. Chen, Y. Wang, Most probable point-based methods, A. Singhee, R. Rutenbar (eds), Extreme Statistics in Nanoscale Memory Design, Boston, MA, 2010.
|
[10]
|
J. E. Hurtado, D. A. Alvarez, A method for enhancing computational efficiency in Monte Carlo calculation of failure probabilities by exploiting FORM results, Comput. Struct., 117 (2013), 95-104. doi: 10.1016/j.compstruc.2012.11.022
|
[11]
|
A. E. Ismail, A. K. Ariffin, S. Abdullah, M. J. Ghazali, Probabilistic Assessments of the Plate Using Monte Carlo Simulation, IOP. Conf. Ser. Mater. Sci. Eng., 17 (2011), 012029.
|
[12]
|
R. H. Lopez, J. E. S. de-Cursi, D. Lemosse, Approximating the probability density function of the optimal point of an optimization problem, Eng. Optimiz., 43 (2011), 281-303. doi: 10.1080/0305215X.2010.489607
|
[13]
|
Z. Liang, Reliability-based design optimization using surrogate model with assessment of confidence level, The University of Iowa, 2011.
|
[14]
|
E. Zio, Reliability engineering: Old problems and new challenges, Reliab. Eng. Syst. Safe., 94 (2009), 125-141. doi: 10.1016/j.ress.2008.06.002
|
[15]
|
T. W. Lee, B. M. Kwak, A reliability-based optimal design using advanced first order second moment method, Mech. Struct. Mach., 15 (1987), 523-542. doi: 10.1080/08905458708905132
|
[16]
|
M. Hohenbichler, S. Gollwitzer, W. Kruse, R. Rackwitz, New light on first-and second-order reliability methods, Struct. Saf., 4 (1987), 267-284. doi: 10.1016/0167-4730(87)90002-6
|
[17]
|
J. Lim, B. Lee, I. Lee, Second‐order reliability method‐based inverse reliability analysis using Hessian update for accurate and efficient reliability‐based design optimization, Int. J. Numer. Meth. Eng., 100 (2014), 773-792. doi: 10.1002/nme.4775
|
[18]
|
J. F. Zhang, X. P. Du, A second-order reliability method with first-order efficiency, J. Mech. Design, 132 (2010), 101006.
|
[19]
|
G. Lee, S. Yook, K. Kang, D. H. Choi, Reliability-based design optimization using an enhanced dimension reduction method with variable sampling points, Int. J. Precis. Eng. Man., 13 (2012), 1609-1618. doi: 10.1007/s12541-012-0211-3
|
[20]
|
G. Bird, Monte-Carlo simulation in an engineering context, Rare. Gas. Dynam., 1 (1981), 239-255.
|
[21]
|
M. A. Valdebenito, G. I. Schueller, A survey on approaches for reliability-based optimization, Struct. Multidiscip. O., 42 (2010), 645-663. doi: 10.1007/s00158-010-0518-6
|
[22]
|
B. Echard, N. Gayton, M. Lemaire, AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation, Struct. Saf., 33 (2011), 145-154. doi: 10.1016/j.strusafe.2011.01.002
|
[23]
|
P. W. Glynn, D. L. Iglehart, Importance sampling for stochastic simulations system, Manage. Sci., 35 (1989), 1367-1392.
|
[24]
|
S. K. Au, J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Struct. Saf., 21 (1999), 135-158. doi: 10.1016/S0167-4730(99)00014-4
|
[25]
|
I. Depina, T. M. H. Le, G. Fenton, G. Eiksund, Reliability analysis with Metamodel Line Sampling, Struct. Saf., 60 (2016), 1-15. doi: 10.1016/j.strusafe.2015.12.005
|
[26]
|
S. F. Song, Z. Z. Lu, W. W. Zhang, Z. Y. Ye, Reliability and Sensitivity Analysis of Transonic Flutter Using Improved Line Sampling Technique, Chinese. J. Aeronaut., 22 (2009), 513-519. doi: 10.1016/S1000-9361(08)60134-X
|
[27]
|
P. Bjerager, Probability integration by directional simulation, J. Eng. Mech-Asce., 114 (1988), 1285-1302. doi: 10.1061/(ASCE)0733-9399(1988)114:8(1285)
|
[28]
|
O. Ditlevsen, R. E. Melchers, H. Gluver, General multi-dimensional probability integration by directional simulation, Comput. Struct., 36 (1990), 355-368. doi: 10.1016/0045-7949(90)90134-N
|
[29]
|
S. k. Au, J. L. Beck, Subset simulation and its application to seismic risk based on dynamic analysis, J. Eng. Mech-Asce., 129 (2003), 901-917. doi: 10.1061/(ASCE)0733-9399(2003)129:8(901)
|
[30]
|
I. Papaioannou, W. Betz, K. Zwirglmaier, D. Straub, MCMC algorithms for subset simulation, Probabilist. Eng. Mech., 41 (2015), 89-103.
|
[31]
|
S. F. Song, Z. Z. Lu, H. W. Qiao, Subset simulation for structural reliability sensitivity analysis, Reliab. Eng. Syst. Safe., 94 (2009), 658-665. doi: 10.1016/j.ress.2008.07.006
|
[32]
|
M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Stat., 23 (1952), 470-472. doi: 10.1214/aoms/1177729394
|
[33]
|
P. L. Liu, A. D. Kiureghian, Multivariate distribution models with prescribed marginals and covariances, Probabilist. Eng. Mech., 1 (1986), 105-112. doi: 10.1016/0266-8920(86)90033-0
|
[34]
|
P. T. Lin, H. C. Gea, Y. Jaluria, A modified reliability index approach for reliability-based design optimization, J. Mech. Design, 133 (2011), 044501.
|
[35]
|
I. Enevoldsen, J. D. Sørensen, Reliability-based optimization in structural engineering, Struct. Saf., 15 (1994), 169-196. doi: 10.1016/0167-4730(94)90039-6
|
[36]
|
S. C. Kang, H. M. Koh, J. F. Choo, Reliability-based design optimisation combining performance measure approach and response surface method, Struct. Infrastruct. E., 7 (2011), 477-489. doi: 10.1080/15732479.2010.493335
|
[37]
|
B. D. Youn, K. K. Choi, L. Du, Enriched performance measure approach for reliability-based design optimization, AIAA J., 43 (2005), 874-884. doi: 10.2514/1.6648
|
[38]
|
J. Tu, K. K. Choi, Y. H. Park, A new study on reliability-based design optimization, J. Mech. Design, 121 (1999), 557-564. doi: 10.1115/1.2829499
|
[39]
|
H. O. Madsen, P. F. Hansen, A comparison of some algorithms for reliability based structural optimization and sensitivity analysis, Springer, Berlin, Heidelberg, (1992), 443-451.
|
[40]
|
N. Kuschel, R. Rackwitz, Two basic problems in reliability-based structural optimization, Math. Method. Oper. Res., 46 (1997), 309-333. doi: 10.1007/BF01194859
|
[41]
|
H. Agarwal, C. K. Mozumder, J. E. Renaud, L. T. Watson, An inverse-measure-based unilevel architecture for reliability-based design optimization, Struct. Multidiscip. O., 33 (2007), 217-227. doi: 10.1007/s00158-006-0057-3
|
[42]
|
C. Jiang, H. B. Qiu, L. Gao, X. W. Cai, P. G. Li, An adaptive hybrid single-loop method for reliability-based design optimization using iterative control strategy, Struct. Multidiscip. O., 56 (2017), 1271-1286. doi: 10.1007/s00158-017-1719-z
|
[43]
|
Y. Aoues, A. Chateauneuf, Benchmark study of numerical methods for reliability-based design optimization, Struct. Multidiscip. O., 41 (2010), 277-294. doi: 10.1007/s00158-009-0412-2
|
[44]
|
M. Yang, D. Q. Zhang D, X. Han. Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems, Eng. Comput-Germany., 2020.
|
[45]
|
D. Lehký, O. Slowik, D. Novák, Reliability-based design: Artificial neural networks and double-loop reliability-based optimization approaches, Adv. Eng. Softw., 117(2018), 123-135. doi: 10.1016/j.advengsoft.2017.06.013
|
[46]
|
J. Ni, K. H. Yu, Z. F. Yue, Reliability-based multidisciplinary design optimization for turbine blade using double loop approach, J. Aerospace. Power., 24 (2009), 2051-2056.
|
[47]
|
W. Li, Y. Li, An effective optimization procedure based on structural reliability, Comput. Struct., 52 (1994), 1061-1067. doi: 10.1016/0045-7949(94)90090-6
|
[48]
|
H. Agarwal, J. E. Renaud, New decoupled framework for reliability-based design optimization, AIAA J., 44 (2006), 1524-1531. doi: 10.2514/1.13510
|
[49]
|
K. Y. Chan, S. J. Skerlos, P. Papalambros, An adaptive sequential linear programming algorithm for optimal design problems with probabilistic constraints, J. Mech. Design, 129 (2007), 140-149. doi: 10.1115/1.2337312
|
[50]
|
G. D. Cheng, L. Xu, L. Jiang, A sequential approximate programming strategy for reliability-based structural optimization, Comput. Struct., 84 (2006), 1353-1367. doi: 10.1016/j.compstruc.2006.03.006
|
[51]
|
Y. T. Wu, W. Wang, Efficient probabilistic design by converting reliability constraints to approximately equivalent deterministic constraints, J. Integr. Des. Process. Sci., 2 (1998), 13-21.
|
[52]
|
X. P. Du, W. Chen, Sequential optimization and reliability assessment method for efficient probabilistic design, J. Mech. Design, 126 (2004), 225-233. doi: 10.1115/1.1649968
|
[53]
|
C. Jiang, H. B. Qiu, X. K. Li, Z. Z. Chen, L. Gao, P. G. Li, Iterative reliable design space approach for efficient reliability-based design optimization, Eng. Comput-Germany., 36 (2020), 151-169.
|
[54]
|
Z. Z. Chen, H. B. Qiu, L. Gao, L. Su, P. G. Li, An adaptive decoupling approach for reliability-based design optimization, Comput. Struct., 117 (2013), 58-66. doi: 10.1016/j.compstruc.2012.12.001
|
[55]
|
T. M. Cho, B. C. Lee, Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method, Struct. Saf., 33 (2011), 42-50. doi: 10.1016/j.strusafe.2010.05.003
|
[56]
|
X. P. Du, Saddlepoint Approximation for Sequential Optimization and Reliability Analysis, J. Mech. Design, 130 (2008), 011011.
|
[57]
|
G. Kharmanda, A. Mohamed, M. Lemaire, Efficient reliability-based design optimization using a hybrid space with application to finite element analysis, Struct. Multidiscip. O., 24 (2002), 233-245. doi: 10.1007/s00158-002-0233-z
|
[58]
|
G. Kharmanda, S. Sharabaty, H. Ibrahim, A. El-Hami, Reliability-based design optimization using semi-numerical methods for different engineering application, Int. J. Cad/Cam., (2009).
|
[59]
|
A. Mohsine, G. Kharmanda, A. El-Hami, Improved hybrid method as a robust tool for reliability-based design optimization, Struct. Multidiscip. O., 32 (2006), 203-213. doi: 10.1007/s00158-006-0013-2
|
[60]
|
A. Mohsine, A. El-Hami, A robust study of reliability-based optimization methods under eigen-frequency, Comput. Method. Appl. M., 199 (2010), 1006-1018. doi: 10.1016/j.cma.2009.11.012
|
[61]
|
G. Kharmanda, M. H. Ibrahim, A. A. Al-Kheer, F. Guerin, A. El-Hami, Reliability-based design optimization of shank chisel plough using optimum safety factor strategy, Comput. Electron. Agr., 109 (2014), 162-171. doi: 10.1016/j.compag.2014.09.001
|
[62]
|
G. Kharmanda, N. Olhoff, Extension of optimum safety factor method to nonlinear reliability-based design optimization, Struct. Multidiscip. O., 34 (2007), 367-380. doi: 10.1007/s00158-007-0107-5
|
[63]
|
A. Yaich, G. Kharmanda, A. El-Hami, L. Walha, M. Haddar, Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method, J. Mech., 34 (2018), 551-566. doi: 10.1017/jmech.2017.44
|
[64]
|
K. Dammak, A. Yaich, A. El-Hami, L. Walha, An efficient optimization based on the robust hybrid method for the coupled acoustic-structural system, Mech. Adv. Mater. Struc., 27 (2019), 1816-1826.
|
[65]
|
B. Debich, A. El-hami, A. Yaich, W. Gafsi, L. Walha, M. Haddar, An efficient reliability-based design optimization study for PCM-based heat-sink used for cooling electronic devices, Mech. Adv. Mater. Struc., (2020), 1-13.
|
[66]
|
A. Kamel, K. Dammak, A. Yaich, A. El-Hami, M. Ben-Jdidia, L. Hammami, M. Haddar, A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine, Mech. Adv. Mater. Struc., 6 (2020), 1-14.
|
[67]
|
A. Garakani, M. Bastami, An evolutionary approach for structural reliability, Struct. Eng. Mech., (2019).
|
[68]
|
R. Yadav, R. Ganguli, Reliability based and robust design optimization of truss and composite plate using particle swarm optimization, Mech. Adv. Mater. Struc., 6 (2020), 1-11.
|
[69]
|
C. Tong, H. L. Gong, A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling, IOP. Conf. Ser. Earth. Environ. Sci., 128 (2018), 012094.
|
[70]
|
J. Q. Chen, X. S. Zhang, Z. Jing, A cooperative PSO-DP approach for the maintenance planning and RBDO of deteriorating structures, Struct. Multidiscip. O., 58 (2018), 95-113. doi: 10.1007/s00158-017-1879-x
|
[71]
|
X. N. Fan. J. X. Zhou, A Reliability-based Design optimization of Crane Metallic Structure based on Ant colony optimization and LHS, 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, PRC, 1470-1475, 2018.
|
[72]
|
M. G. C. Santos, J. L. Silva, A. T. Beck, Reliability-based design optimization of geosynthetic-reinforced soil walls, Geosynth. Int., 25 (2018), 442-455. doi: 10.1680/jgein.18.00028
|
[73]
|
N. M. Okasha, Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables using the Improved Firefly Algorithm, Engineering-Prc., 6 (2016), 964-971.
|
[74]
|
C. Jiang, Z. Hu, Y. Liu, Z. P. Mourelatos, P. Jayakumar, A sequential calibration and validation framework for model uncertainty quantification and reduction, Comput. Method. Appl. M., 368 (2020), 113172.
|
[75]
|
K. Dammak, A. Elhami, Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink, Int. J. Heat. Mass. Tran., 166 (2021), 120745.
|
[76]
|
K. Dammak, A. Elhami, Multi-objective reliability-based design optimization using Kriging surrogate model for cementless hip prosthesis, Comput. Method. Biomec., 23 (2020), 854-867. doi: 10.1080/10255842.2020.1768247
|
[77]
|
X. K. Li, F. H. Yan, J. Ma, Z. Z. Chen, X. Y. Wen, Y. Cao, RBF and NSGA-Ⅱ based EDM process parameters optimization with multiple constraints, Math. Biosci. Eng., 16 (2019), 5788-5803. doi: 10.3934/mbe.2019289
|
[78]
|
Y. S. Yeun, B. J. Kim, Y. S. Yang, W. S. Ruy, Polynomial genetic programming for response surface modeling Part 2: adaptive approximate models with probabilistic optimization problems, Struct. Multidiscip. O., 29 (2005), 35-49. doi: 10.1007/s00158-004-0461-5
|
[79]
|
Y. Shi, Z. Lu, R. He, Y. Zhou, S. Chen, A novel learning function based on Kriging for reliability analysis, Reliab. Eng. Syst. Safe, 198 (2020), 106857.
|
[80]
|
B. H. Ju, B. C. Lee, Reliability-based design optimization using a moment method and a Kriging metamodel, Eng. Optimiz., 40 (2008), 421-438. doi: 10.1080/03052150701743795
|
[81]
|
J. Ma, X. Y. Han, Q. Xu, S. H. Chen, W. B. Zhao, X. K. Li, Reliability-based EDM process parameter optimization using kriging model and sequential sampling, Math. Biosci. Eng., 16 (2019), 7421-7432. doi: 10.3934/mbe.2019371
|
[82]
|
M. Q. Chau, X. Han, C. Jiang, Y. C. Bai, T. N. Tran, V. H. Truong, An efficient PMA-based reliability analysis technique using radial basis function, Eng. Computation., 31 (2014), 1098-1115. doi: 10.1108/EC-04-2012-0087
|
[83]
|
Y. Wang, X. Q. Yu, X. P. Du, Improved reliability-based optimization with support vector machines and its application in aircraft wing design, Math. Probl. Eng., 17(2015), 3127-3141.
|
[84]
|
Q. Zhou, Y. Wang, S. K. Choi, P. Jiang, X. Y. Shao, J. X. Hu, A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based. Syst., 134 (2017), 199-212.
|
[85]
|
T. D. Robinson, M. S. Eldred, K. E. Willcox, R. Haimes, Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping, AIAA J., 46 (2008), 2814-2822. doi: 10.2514/1.36043
|
[86]
|
S. E. Gano, J. E. Renaud, H. Agarwal, A. Tovar, Reliability-based design using variable-fidelity optimization, Struct. Infrastruct. E., 2 (2006), 247-260. doi: 10.1080/15732470600590408
|
[87]
|
X. K. Li, H. B. Qiu, Z. Jiang, L. Gao, X. Y. Shao, A VF-SLP framework using least squares hybrid scaling for RBDO, Struct. Multidiscip. O., 55 (2017), 1629-1640. doi: 10.1007/s00158-016-1588-x
|
[88]
|
M. G. Fernández-Godino, C. Park, N. H. Kim, R. T. Haftka, Issues in deciding whether to use multifidelity surrogates, AIAA J., (2019), 1-16.
|
[89]
|
E. Acar, M. Rais-Rohani, Ensemble of metamodels with optimized weight factors, Struct. Multidiscip. O., 37 (2009), 279-294. doi: 10.1007/s00158-008-0230-y
|
[90]
|
T. Goel, R. T. Haftka, W. Shyy, N. V. Queipo, Ensemble of surrogates, Struct. Multidiscip. O., 33 (2007), 199-216.
|
[91]
|
X. K. Li, J. G. Du, Z. Z. Chen, W. Y. Ming, Y. Cao, W. B. He, J. Ma, Reliability-based NC milling parameters optimization using ensemble metamodel, Int. J. Adv. Manuf. Tech., 97 (2018), 3359-3369. doi: 10.1007/s00170-018-2211-7
|
[92]
|
L. M. Chen, H. B. Qiu, C. Jiang, X. W. Cai, L. Gao, Ensemble of surrogates with hybrid method using global and local measures for engineering design, Struct. Multidiscip. O., 57 (2017), 1711-1729.
|
[93]
|
K. Crombecq, E. Laermans, T. Dhaene, Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling, Eur. J. Oper. Res., 214 (2011), 683-696. doi: 10.1016/j.ejor.2011.05.032
|
[94]
|
T. Golshani, E. Jorjani, C. S. Chehreh, S. Z. Shafaei, H. Y. Nafechi, a Modeling and process optimization for microbial desulfurization of coal by using a two-level full factorial design, Int. J. Min. Sci. Techno., 23 (2013), 261-265. doi: 10.1016/j.ijmst.2013.04.009
|
[95]
|
M. Buragohain, C. Mahanta, A novel approach for ANFIS modelling based on full factorial design, Appl. Soft. Comput., 8 (2008), 609-625. doi: 10.1016/j.asoc.2007.03.010
|
[96]
|
P. G. Duan, Y. Y. Wang, Y. Yang, L. Y. Dai, Optimization of Adiponitrile Hydrolysis in Subcritical Water Using an Orthogonal Array Design, J. Solution. Chem., 38 (2009), 241-258. doi: 10.1007/s10953-008-9362-3
|
[97]
|
J. Liu, Q. B. Wang, H. T. Zhao, J. A. Chen, Y. Qiu, Optimization design of the stratospheric airship's power system based on the methodology of orthogonal experiment, J. Zhejiang. Univ-Sc. A., 14 (2013), 38-46. doi: 10.1631/jzus.A1200138
|
[98]
|
K. T. Fang, D. K. J. Lin, Uniform design in computer and physical experiments, Springer, Tokyo, (2008), 105-125.
|
[99]
|
K. T. Fang, Z. H. Yang, On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains, Stat. Probabil. Lett., 46 (2000), 113-120. doi: 10.1016/S0167-7152(99)00095-4
|
[100]
|
B. G. M. Husslage, G. Rennen, E. R. V. Dam, D. D. Hertog, Space-filling Latin hypercube designs for computer experiments, Optim. Eng., 4 (2006), 611-630.
|
[101]
|
G. G. Wang, Adaptive response surface method using inherited latin hypercube design points, J. Mech. Design, 125 (2003), 210-220. doi: 10.1115/1.1561044
|
[102]
|
Z. Z. Chen, H. B. Qiu, L. Gao, X. K. Li, P. G. Li, A local adaptive sampling method for reliability-based design optimization using Kriging model, Struct. Multidiscip. O., 49 (2014), 401-416. doi: 10.1007/s00158-013-0988-4
|
[103]
|
C. Jiang, H. B. Qiu, Z. Yang, L. M. Chen, L. Gao, P. G. Li, A general failure-pursuing sampling framework for surrogate-based reliability analysis, Reliab. Eng. Syst. Safe., 183 (2019), 47-59. doi: 10.1016/j.ress.2018.11.002
|
[104]
|
X. Li, H. B. Qiu, Z. Z. Chen, L. Gao, X. Y. Shao, A local Kriging approximation method using MPP for reliability-based design optimization, Comput. Struct., 162 (2016), 102-115. doi: 10.1016/j.compstruc.2015.09.004
|
[105]
|
N. C. Xiao, M. J. Zuo, C. N. Zhou, A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis, Reliab. Eng. Syst. Safe., 169 (2018), 330-338. doi: 10.1016/j.ress.2017.09.008
|
[106]
|
L. Zhao, K. K. Choi, I. Lee, L. Du, Response surface method using sequential sampling for reliability-based design optimization, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, California, USA, 2009.
|
[107]
|
S. Mahadevan, R. Rebba, Inclusion of model errors in reliability-based optimization, J. Mech. Design, 128 (2006), 936-994. doi: 10.1115/1.2204973
|
[108]
|
C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, A Bayesian Approach to the Design and Analysis of Computer Experiments, Office of scientific & technical information technical reports, USA, 1988.
|
[109]
|
G. Li, V. Aute and S. Azarm, An accumulative error based adaptive design of experiments for offline metamodeling, Struct. Multidiscip. O., 40 (2010), 137-155. doi: 10.1007/s00158-009-0395-z
|
[110]
|
C. Jiang, H. B. Qiu, L. Gao, D. P. Wang, Z. Yang, L. M. Chen, Real-time estimation error-guided active learning Kriging method for time-dependent reliability analysis, Appl. Math. Model., 77 (2020), 82-98. doi: 10.1016/j.apm.2019.06.035
|
[111]
|
M. E. Johnson, L. M. Moore, D. Ylvisaker, Minimax and maximin distance designs, J. Stat. Plan. Infer., 26 (1990), 131-148.
|
[112]
|
S. L. Xu, H. T. Liu, X. F. Wang, X. M. Jiang, A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation, J. Mech. Design, 136 (2014), 69-74.
|
[113]
|
T. H. Lee, J. J. Jung, A sampling technique enhancing accuracy and efficiency of metamodel-based RBDO: Constraint boundary sampling, Comput. Struct., 86 (2008), 1463-1476. doi: 10.1016/j.compstruc.2007.05.023
|
[114]
|
Z. Meng, D. Q. Zhang, Z. T. Liu, G. Li, An adaptive directional boundary sampling method for efficient reliability-based design optimization, J. Mech. Design, 140 (2018), 121406.
|
[115]
|
B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, J. M. McFarland, Efficient global reliability analysis for nonlinear implicit performance functions, AIAA J., 46 (2008), 2459-2468. doi: 10.2514/1.34321
|
[116]
|
S. Q. Shan, G. G. Wang, Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions, Struct. Multidiscip. O., 41 (2010), 219-241. doi: 10.1007/s00158-009-0420-2
|
[117]
|
G. Shieh, Improved shrinkage estimation of squared multiple correlation coefficient and squared cross-validity coefficient, Organ. Res. Methods., 11 (2008), 387-407. doi: 10.1177/1094428106292901
|
[118]
|
C. J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30 (2005), 79-82. doi: 10.3354/cr030079
|
[119]
|
X. K. Li, X. Y. Han, Z. Z. Chen, W. Y. Ming, Y. Cao, J. Ma, A multi-constraint failure-pursuing sampling method for reliability-based design optimization using adaptive Kriging, Eng. Comput-Germany., 2020.
|
[120]
|
I. Lee, K. K. Choi, D. Gorsich, Sensitivity analyses of FORM-based and DRM-based performance measure approach (PMA) for reliability-based design optimization (RBDO), Int. J. Numer. Meth. Eng., 82 (2010), 26-46. doi: 10.1002/nme.2752
|
[121]
|
Z. Z. Chen, S. P. Peng, X. K. Li, H. B. Qiu, H. D. Xiong, L. Gao, P. G. Li, An important boundary sampling method for reliability-based design optimization using kriging model, Struct. Multidiscip. O., 52 (2015), 55-70. doi: 10.1007/s00158-014-1173-0
|
[122]
|
L. Zhao, K. K. Choi, I. Lee, D. Gorsich, Conservative surrogate model using weighted kriging variance for sampling-based RBDO, J. Mech. Design, 135 (2014), 1-10.
|
[123]
|
M. Moustapha, B. Sudret, Surrogate-assisted reliability-based design optimization: a survey and a new general framework, Struct. Multidiscip. O., 60 (2019), 2157-2176. doi: 10.1007/s00158-019-02290-y
|
[124]
|
B. J. Bichon, S. Mahadevan, M. S. Eldred, Reliability-based design optimization using efficient global reliability analysis, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009.
|
[125]
|
A. Basudhar, C. Dribusch, S. Lacaze, S. Missoum, Constrained efficient global optimization with support vector machines, Struct. Multidiscip. O., 46 (2012), 201-221. doi: 10.1007/s00158-011-0745-5
|
[126]
|
B. J. Bichon, M. S. Eldred, S. Mahadevan, J. M. McFarland, Efficient Global Surrogate Modeling for Reliability-Based Design Optimization, J. Mech. Design, 135 (2013), 011009.
|
[127]
|
K. Crombecq, D. Gorissen, D. Deschrijver, T. Dhaene, A novel hybrid sequential design strategy for global surrogate modeling of computer experiments, Siam. J. Sci. Comput., 33 (2011), 1948-1974. doi: 10.1137/090761811
|
[128]
|
X. K. Li, H. B. Qiu, Z. Z. Chen, L. Gao, X. Y. Shao, A local sampling method with variable radius for RBDO using Kriging, Eng. Computation., 32 (2015), 1908-1933. doi: 10.1108/EC-09-2014-0188
|
[129]
|
X. Liu, Y. Z. Wu, B. X. Wang, J. W. Ding, H. X. Jie, An adaptive local range sampling method for reliability-based design optimization using support vector machine and Kriging model, Struct. Multidiscip. O., 55 (2017), 2285-2304. doi: 10.1007/s00158-016-1641-9
|
[130]
|
I. Lee, K. K. Choi, L. Zhao, Sampling-based RBDO using the stochastic sensitivity analysis and Dynamic Kriging method, Struct. Multidiscip. O., 44 (2011), 299-317. doi: 10.1007/s00158-011-0659-2
|
[131]
|
X. Liu, Y. Z. Wu, B. X. Wang, Q. Yin, J. J. Zhao, An efficient RBDO process using adaptive initial point updating method based on sigmoid function, Struct. Multidiscip. O., 58 (2018), 2583-2599. doi: 10.1007/s00158-018-2038-8
|