This work proposes a mathematical model on partial nitritation/anammox (PN/A) granular bioreactors, with a particular interest in the start-up phase. The formation and growth of granular biofilms is modelled by a spherical free boundary problem with radial symmetry and vanishing initial value. Hyperbolic PDEs describe the advective transport and growth of sessile species inhabiting the granules. Parabolic PDEs describe the diffusive transport and conversion of soluble substrates, and the invasion process mediated by planktonic species. Attachment and detachment phenomena are modelled as continuous and deterministic fluxes at the biofilm-bulk liquid interface. The dynamics of planktonic species and substrates within the bulk liquid are modelled through ODEs. A simulation study is performed to describe the start-up process of PN/A granular systems and the development of anammox granules. The aim is to investigate the role that the invasion process of anaerobic ammonia-oxidizing (anammox) bacteria plays in the formation of anammox granules and explore how it affects the microbial species distribution of anaerobic ammonia-oxidizing, aerobic ammonia-oxidizing, nitrite-oxidizing and heterotrophic bacteria. Moreover, the model is used to study the role of two key parameters in the start-up process: the anammox inoculum size and the inoculum addition time. Numerical results confirm that the model can be used to simulate the start-up process of PN/A granular systems and to predict the evolution of anammox granular biofilms, including the ecology and the microbial composition. In conclusion, after being calibrated, the proposed model could provide quantitatively reliable results and support the start-up procedures of full-scale PN/A granular reactors.
Citation: Fabiana Russo, Alberto Tenore, Maria Rosaria Mattei, Luigi Frunzo. Multiscale modelling of the start-up process of anammox-based granular reactors[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10374-10406. doi: 10.3934/mbe.2022486
This work proposes a mathematical model on partial nitritation/anammox (PN/A) granular bioreactors, with a particular interest in the start-up phase. The formation and growth of granular biofilms is modelled by a spherical free boundary problem with radial symmetry and vanishing initial value. Hyperbolic PDEs describe the advective transport and growth of sessile species inhabiting the granules. Parabolic PDEs describe the diffusive transport and conversion of soluble substrates, and the invasion process mediated by planktonic species. Attachment and detachment phenomena are modelled as continuous and deterministic fluxes at the biofilm-bulk liquid interface. The dynamics of planktonic species and substrates within the bulk liquid are modelled through ODEs. A simulation study is performed to describe the start-up process of PN/A granular systems and the development of anammox granules. The aim is to investigate the role that the invasion process of anaerobic ammonia-oxidizing (anammox) bacteria plays in the formation of anammox granules and explore how it affects the microbial species distribution of anaerobic ammonia-oxidizing, aerobic ammonia-oxidizing, nitrite-oxidizing and heterotrophic bacteria. Moreover, the model is used to study the role of two key parameters in the start-up process: the anammox inoculum size and the inoculum addition time. Numerical results confirm that the model can be used to simulate the start-up process of PN/A granular systems and to predict the evolution of anammox granular biofilms, including the ecology and the microbial composition. In conclusion, after being calibrated, the proposed model could provide quantitatively reliable results and support the start-up procedures of full-scale PN/A granular reactors.
[1] | J. E. Baeten, D. J. Batstone, O. J. Schraa, M. C. van Loosdrecht, E. I. Volcke, Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors-a review, Water Res., 149 (2019), 322–341. https://doi.org/10.1016/j.watres.2018.11.026 doi: 10.1016/j.watres.2018.11.026 |
[2] | A. C. Trego, S. Mills, G. Collins, Granular biofilms: Function, application, and new trends as model microbial communities, Crit. Rev. Environ. Sci. Technol., 51 (2021), 1702–1725. https://doi.org/10.1080/10643389.2020.1769433 doi: 10.1080/10643389.2020.1769433 |
[3] | Y. Liu, J.-H. Tay, State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22 (2004), 533–563. https://doi.org/10.1016/j.biotechadv.2004.05.001 doi: 10.1016/j.biotechadv.2004.05.001 |
[4] | L. H. Pol, S. de Castro Lopes, G. Lettinga, P. Lens, Anaerobic sludge granulation, Water Res., 38 (2004), 1376–1389. https://doi.org/10.1016/j.watres.2003.12.002 doi: 10.1016/j.watres.2003.12.002 |
[5] | M.-K. H. Winkler, C. Meunier, O. Henriet, J. Mahillon, M. E. Suárez-Ojeda, G. Del Moro, et al., An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater, Chem. Eng. J., 336 (2018), 489–502. https://doi.org/10.1016/j.cej.2017.12.026 doi: 10.1016/j.cej.2017.12.026 |
[6] | C. Nicolella, M. Van Loosdrecht, J. Heijnen, Wastewater treatment with particulate biofilm reactors, J. Biotechnol., 80 (2000), 1–33. https://doi.org/10.1016/S0168-1656(00)00229-7 doi: 10.1016/S0168-1656(00)00229-7 |
[7] | P. Wu, Y. Chen, X. Ji, W. Liu, G. Lv, Y. Shen, et al., Fast start-up of the cold-anammox process with different inoculums at low temperature (13°c) in innovative reactor, Bioresource Technol., 267 (2018), 696–703. https://doi.org/10.1016/j.biortech.2018.07.026 doi: 10.1016/j.biortech.2018.07.026 |
[8] | C.-j. Tang, P. Zheng, Q. Mahmood, J.-w. Chen, Start-up and inhibition analysis of the anammox process seeded with anaerobic granular sludge, J. Industr. Microbiol. Biotechnol., 36 (2009), 1093. https://doi.org/10.1007/s10295-009-0593-0 doi: 10.1007/s10295-009-0593-0 |
[9] | C.-J. Tang, P. Zheng, L.-Y. Chai, X.-B. Min, Characterization and quantification of anammox start-up in uasb reactors seeded with conventional activated sludge, Int. Biodeter. Biodegr., 82 (2013), 141–148. https://doi.org/10.1016/j.ibiod.2013.02.014 doi: 10.1016/j.ibiod.2013.02.014 |
[10] | L. Xiong, Y.-Y. Wang, C.-J. Tang, L.-Y. Chai, K.-Q. Xu, Y.-X. Song, et al., Start-up characteristics of a granule-based anammox uasb reactor seeded with anaerobic granular sludge, BioMed Res. Int., 2013. https://doi.org/10.1155/2013/396487 |
[11] | M. Strous, J. Heijnen, J. G. Kuenen, M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Applied Microbiol. Biotechnol., 50 (1998), 589–596. https://doi.org/10.1007/s002530051340 doi: 10.1007/s002530051340 |
[12] | K. Isaka, Y. Date, Y. Kimura, T. Sumino, S. Tsuneda, Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures, FEMS Microbiol. Lett., 282 (2008), 32–38. https://doi.org/10.1111/j.1574-6968.2008.01095.x doi: 10.1111/j.1574-6968.2008.01095.x |
[13] | W. R. Van der Star, W. R. Abma, D. Blommers, J.-W. Mulder, T. Tokutomi, M. Strous, et al., Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in rotterdam, Water Res., 41 (2007), 4149–4163. https://doi.org/10.1016/j.watres.2007.03.044 doi: 10.1016/j.watres.2007.03.044 |
[14] | N. Chamchoi, S. Nitisoravut, Anammox enrichment from different conventional sludges, Chemosphere, 66 (2007), 2225–2232. https://doi.org/10.1016/j.chemosphere.2006.09.036 doi: 10.1016/j.chemosphere.2006.09.036 |
[15] | Q. Wang, Y. Wang, J. Lin, R. Tang, W. Wang, X. Zhan, et al., Selection of seeding strategy for fast start-up of anammox process with low concentration of anammox sludge inoculum, Bioresource Technol., 268 (2018), 638–647. https://doi.org/10.1016/j.biortech.2018.08.056 doi: 10.1016/j.biortech.2018.08.056 |
[16] | H. Park, A. Rosenthal, R. Jezek, K. Ramalingam, J. Fillos, K. Chandran, Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities, Water Res., 44 (2010), 5005–5013. 10.1016/j.watres.2010.07.022 doi: 10.1016/j.watres.2010.07.022 |
[17] | D. J. Batstone, J. Keller, L. Blackall, The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass, Water Res., 38 (2004), 1390–1404. https://doi.org/10.1016/j.watres.2003.12.003 doi: 10.1016/j.watres.2003.12.003 |
[18] | H. Feldman, X. Flores-Alsina, P. Ramin, K. Kjellberg, U. Jeppsson, D. J. Batstone, et al., Modelling an industrial anaerobic granular reactor using a multi-scale approach, Water Res., 126 (2017), 488–500. https://doi.org/10.1016/j.watres.2017.09.033 doi: 10.1016/j.watres.2017.09.033 |
[19] | M. Odriozola, I. López, L. Borzacconi, Modeling granule development and reactor performance on anaerobic granular sludge reactors, J. Environ. Chem. Eng., 4 (2016), 1615–1628. https://doi.org/10.1016/j.jece.2016.01.040 doi: 10.1016/j.jece.2016.01.040 |
[20] | L. Pokorna-Krayzelova, K. E. Mampaey, T. P. Vannecke, J. Bartacek, P. Jenicek, E. I. Volcke, Model-based optimization of microaeration for biogas desulfurization in uasb reactors, Biochem. Eng. J., 125 (2017), 171–179. https://doi.org/10.1016/j.bej.2017.06.009 doi: 10.1016/j.bej.2017.06.009 |
[21] | J. Beun, J. Heijnen, M. Van Loosdrecht, N-removal in a granular sludge sequencing batch airlift reactor, Biotechnol. Bioeng., 75 (2001), 82–92. https://doi.org/10.1002/bit.1167 doi: 10.1002/bit.1167 |
[22] | F. Fang, B.-J. Ni, X.-Y. Li, G.-P. Sheng, H.-Q. Yu, Kinetic analysis on the two-step processes of aob and nob in aerobic nitrifying granules, Appl. Microbiol. Biotechnol., 83 (2009), 1159–1169. https://doi.org/10.1007/s00253-009-2011-y doi: 10.1007/s00253-009-2011-y |
[23] | J. B. Xavier, M. K. De Kreuk, C. Picioreanu, M. C. Van Loosdrecht, Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge, Environm. Sci. Technol., 41 (2007), 6410–6417. https://doi.org/10.1021/es070264m doi: 10.1021/es070264m |
[24] | A. K. Vangsgaard, M. Mauricio-Iglesias, K. V. Gernaey, B. F. Smets, G. Sin, Sensitivity analysis of autotrophic n removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics, Bioresource Technol., 123 (2012), 230–241. https://doi.org/10.1016/j.biortech.2012.07.087 doi: 10.1016/j.biortech.2012.07.087 |
[25] | E. Volcke, C. Picioreanu, B. De Baets, M. Van Loosdrecht, Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor, Environ. Technol., 31 (2010), 1271–1280. https://doi.org/10.1080/09593331003702746 doi: 10.1080/09593331003702746 |
[26] | E. Volcke, C. Picioreanu, B. De Baets, M. Van Loosdrecht, The granule size distribution in an anammox-based granular sludge reactor affects the conversion-implications for modeling, Biotechnol. Bioeng., 109 (2012), 1629–1636. https://doi.org/10.1002/bit.24443 doi: 10.1002/bit.24443 |
[27] | S. Van Hulle, J. Callens, K. Mampaey, M. Van Loosdrecht, E. Volcke, N2o and no emissions during autotrophic nitrogen removal in a granular sludge reactor–a simulation study, Environ. Technol., 33 (2012), 2281–2290. https://doi.org/10.1080/09593330.2012.665492 doi: 10.1080/09593330.2012.665492 |
[28] | N. Hubaux, G. Wells, E. Morgenroth, Impact of coexistence of flocs and biofilm on performance of combined nitritation-anammox granular sludge reactors, Water Res., 68 (2015), 127–139. https://doi.org/10.1016/j.watres.2014.09.036 doi: 10.1016/j.watres.2014.09.036 |
[29] | A. Doloman, H. Varghese, C. D. Miller, N. S. Flann, Modeling de novo granulation of anaerobic sludge, BMC Syst. Biol., 11 (2017), 1–12. https://doi.org/10.1186/s12918-017-0443-z doi: 10.1186/s12918-017-0443-z |
[30] | J. Seok, S. J. Komisar, Integrated modeling of anaerobic fluidized bed bioreactor for deicing waste treatment. i: Model derivation, J. Environ. Eng., 129 (2003), 100–109. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:2(100) doi: 10.1061/(ASCE)0733-9372(2003)129:2(100) |
[31] | A. Tenore, F. Russo, M. Mattei, B. D'Acunto, G. Collins, L. Frunzo, Multiscale modelling of de novo anaerobic granulation, Bull. Math. Biol., 83. https://doi.org/10.1007/s11538-021-00951-y |
[32] | M. Fuentes, N. Scenna, P. Aguirre, M. Mussati, Anaerobic biofilm reactor modeling focused on hydrodynamics, Chem. Eng. Commun., 195 (2008), 600–621. https://doi.org/10.1080/00986440701555399 doi: 10.1080/00986440701555399 |
[33] | K.-Z. Su, B.-J. Ni, H.-Q. Yu, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnol. Bioeng., 110 (2013), 1312–1322. https://doi.org/10.1002/bit.24812 doi: 10.1002/bit.24812 |
[34] | M. S. I. Mozumder, C. Picioreanu, M. C. Van Loosdrecht, E. I. Volcke, Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor, Environm. Technol., 35 (2014), 1027–1037. https://doi.org/10.1080/09593330.2013.859711 doi: 10.1080/09593330.2013.859711 |
[35] | L. Corbalá-Robles, C. Picioreanu, M. C. van Loosdrecht, J. Pérez, Analysing the effects of the aeration pattern and residual ammonium concentration in a partial nitritation-anammox process, Environ. Technol., 37 (2016), 694–702. https://doi.org/10.1080/09593330.2015.1077895 doi: 10.1080/09593330.2015.1077895 |
[36] | C. M. Castro-Barros, L. T. Ho, M. K. Winkler, E. I. Volcke, Integration of methane removal in aerobic anammox-based granular sludge reactors, Environ. Technol., 39 (2018), 1615–1625. https://doi.org/10.1080/09593330.2017.1334709 doi: 10.1080/09593330.2017.1334709 |
[37] | B. D'Acunto, L. Frunzo, V. Luongo, M. Mattei, Free boundary approach for the attachment in the initial phase of multispecies biofilm growth, Z. Angew. Math. Phys., 70 (2019), 1–16. https://doi.org/10.1007/s00033-019-1134-y doi: 10.1007/s00033-019-1134-y |
[38] | B. D'Acunto, L. Frunzo, V. Luongo, M. Mattei, A. Tenore, Free boundary problem for the role of planktonic cells in biofilm formation and development, Z. Angew. Math. Phys., 72 (2021). https://doi.org/10.1007/s00033-021-01561-3 |
[39] | O. Wanner, W. Gujer, A multispecies biofilm model, Biotechnol. Bioeng., 28 (1986), 314–328. https://doi.org/10.1002/bit.260280304 doi: 10.1002/bit.260280304 |
[40] | A. Mašić, H. J. Eberl, Persistence in a single species cstr model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74 (2012), 1001–1026. {https://doi.org/10.1007/s11538-011-9707-8} doi: 10.1007/s11538-011-9707-8} |
[41] | K. A. Rahman, R. Sudarsan, H. J. Eberl, A mixed-culture biofilm model with cross-diffusion, Bull. Math. Biol., 77 (2015), 2086–2124. https://doi.org/10.1007/s11538-015-0117-1 doi: 10.1007/s11538-015-0117-1 |
[42] | F. Abbas, R. Sudarsan, H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates, Math. Biosci. Eng., 9 (2012), 215–239. https://doi.org/10.3934/mbe.2012.9.215 doi: 10.3934/mbe.2012.9.215 |
[43] | C. Rollet, L. Gal, J. Guzzo, Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: A comparative study of adhesion and physiological characteristics in pseudomonas aeruginosa, FEMS Microbiol. Lett., 290 (2009), 135–142. https://doi.org/10.1111/j.1574-6968.2008.01415.x doi: 10.1111/j.1574-6968.2008.01415.x |
[44] | M. Berlanga, Ò. Domènech, R. Guerrero, Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating halomonas venusta, Int. Microbiol., 17 (2014), 205–212. https://doi.org/10.2436/20.1501.01.223 doi: 10.2436/20.1501.01.223 |
[45] | K. P. Rumbaugh, K. Sauer, Biofilm dispersion, Nat. Rev. Microbiol., 18 (2020), 571–586. https://doi.org/10.1038/s41579-020-0385-0 |
[46] | B. D'Acunto, L. Frunzo, V. Luongo, M. R. Mattei, Invasion moving boundary problem for a biofilm reactor model, European J. Appl. Math., 29 (2018), 1079–1109. https://doi.org/10.1017/S0956792518000165 doi: 10.1017/S0956792518000165 |
[47] | S. Lackner, E. M. Gilbert, S. E. Vlaeminck, A. Joss, H. Horn, M. C. van Loosdrecht, Full-scale partial nitritation/anammox experiences–an application survey, Water Res., 55 (2014), 292–303. https://doi.org/10.1016/j.watres.2014.02.032 doi: 10.1016/j.watres.2014.02.032 |
[48] | S. E. Vlaeminck, A. Terada, B. F. Smets, H. De Clippeleir, T. Schaubroeck, S. Bolca, et al., Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox, Appl. Environ. Microbiol., 76 (2010), 900–909. https://doi.org/10.1128/AEM.02337-09 doi: 10.1128/AEM.02337-09 |
[49] | B. Kartal, J. v. Kuenen, M. Van Loosdrecht, Sewage treatment with anammox, Science, 328 (2010), 702–703. https://doi.org/10.1126/science.1185941 doi: 10.1126/science.1185941 |
[50] | J. Luo, H. Chen, X. Han, Y. Sun, Z. Yuan, J. Guo, Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process, FEMS Microbiol. Ecol., 93. https://doi.org/10.1093/femsec/fix021 |