Citation: Ghulam Mustafa, Dumitru Baleanu, Syeda Tehmina Ejaz, Kaweeta Anjum, Ali Ahmadian, Soheil Salahshour, Massimiliano Ferrara. A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6659-6677. doi: 10.3934/mbe.2020346
[1] | G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5(1989) 49-68. |
[2] | A. Weissman, A 6-point interpolatory subdivision scheme for curve design, M.S. thesis, Tel-Aviv University, Tel Aviv, Israel, 1990. |
[3] | B. G. Lee, Y. J. Lee, J. Yoon, Stationary binary subdivision schemes using radial basis function interpolation, Adv. Comput. Math., 25 (2006), 57-72. doi: 10.1007/s10444-004-7642-z |
[4] | K. P. Ko, B. G. Lee, G. J. Yoon, A study on the mask of interpolatory symmetric subdivision schemes, Appl. Math. Comput., 187 (2007), 609-621. |
[5] | J. A. Lian, On a-ary subdivision for curve design: i. 4-point and 6-point interpolatory schemes, Appl. Appl. Math., 3 (2008), 18-29. |
[6] | G. Mustafa, P. Ashraf, A new 6-point ternary interpolating subdivision scheme and its differentiability, J. Inf. Comput. Sci., 5 (2010), 199-210. |
[7] | G. Mustafa, J. Deng, P. Ashraf, N. A. Rehman, The mask of odd point n-ary interpolating subdivision scheme, J. Appl. Math., Article ID 205863, 2012 (2012). |
[8] | G. Kanwa, A. Ghaffar, M. M. Hafeezullah, S. A. Manan, M. Rizwan, G. Rahman, Numerical solution of 2-point boundary value problem by subdivision scheme, Commun. Math. Appl., 10(1) (2019), 19-29. |
[9] | G. Mustafa, S. T. Ejaz, Numerical solution of two point boundary value problems by interpolating subdivision schemes, Abstr. Appl. Anal., 2014 (2014). |
[10] | R. Qu, R. P. Agarwal, Solving two point boundary value problems by interpolatory subdivision algorithms, Int J. Comput. Math., 60 (1996), 279-294. doi: 10.1080/00207169608804492 |
[11] | S. A., Manan, A. Ghaffar, M. Rizwan, G. Rahman, G. Kanwal, A subdivision approach to the approximate solution of 3rd order boundary value problem, Commun. Math. Appl., 9 (2018), 499-512. |
[12] | S. T. Ejaz, G. Mustafa, F. Khan, Subdivision schemes based collocation algorithms for solution of fourth order boundary value problems, Math. Probl. Eng., 2015, Article ID 240138, (2015). |
[13] | G. Mustafa, M. Abbas, S. T. Ejaz, A. I. Md Ismail, F. Khan, A numerical approach based on subdivision schemes for solving nonlinear fourth order boundary value problems, J. Comput. Anal. Appl., 23 (2017), 607-623. |
[14] | R. Qu, R. P. Agarwal, An iterative scheme for solving nonlinear two point boundary value problems, Int. J. Comput. Math., 64 (1997), 285-302. doi: 10.1080/00207169708804591 |
[15] | S. T. Ejaz, G. Mustafa, A subdivision based iterative collocation algorithm for nonlinear third order boundary value problems, Adv. Math. Phys., 2016, Article ID 5026504, (2016). |
[16] | G. Mustafa, S. T. Ejaz, A subdivision collocation method for solving two point boundary value problems of order three, J. Appl. Anal. Comput., 7 (2017), 942-956. |
[17] | N. Dyn, Interpolatory subdivision schemes and analysis of convergence and smoothness by the formalism of laurent polynomials, in tutorials on multiresolution in geometric modeling, A. Iske, E. Quak, and M. S. Floater, Eds., pp. 51-68, Springer, Berlin, Germany, (2002). |
[18] | C. Conti, K. Hormann Polynomial reproduction for univariate subdivision schemes of any arity, J. Approx. Theory, 163 (2011), 413-437. doi: 10.1016/j.jat.2010.11.002 |
[19] | G. Strang, Linear algebra and its applications, 4th edition, Cengage Learning India Private Limited, ISBN-10: 81-315-0172-8, 2011. |