Research article Special Issues

A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles

  • Received: 05 March 2023 Revised: 05 April 2023 Accepted: 11 April 2023 Published: 08 May 2023
  • A fast optimization method based on the Gauss pseudospectral method (GPM) and particle swarm optimization (PSO) is studied for trajectory optimization of obstacle-avoidance navigation of autonomous underwater vehicles (AUVs). A multi-constraint trajectory planning model is established according to the dynamic constraints, boundary constraints, and path constraints. The trajectory optimization problem is converted into a non-linear programming (NLP) problem by means of the GPM, which is solved by the sequential quadratic programming (SQP) algorithm. Aiming at the initial values dependence of the SQP algorithm, a method combining PSO pre-planning with the GPM is proposed. The pre-planned trajectory points are configured on the Legendre-Gauss (LG) points of the GPM by fitting as the initial values for the SQP calculated trajectory planning problem. After simulation analysis, the convergence speed of the optimal solution can be accelerated by using the pretreated initial values. Compared to the linear interpolation and the cubic spline interpolation, the PSO pre-planning method improves computational efficiency by 82.3% and 88.6%, which verifies the effectiveness of the PSO-GPM to solve the trajectory optimization problem.

    Citation: Wenyang Gan, Lixia Su, Zhenzhong Chu. A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 11713-11731. doi: 10.3934/mbe.2023521

    Related Papers:

  • A fast optimization method based on the Gauss pseudospectral method (GPM) and particle swarm optimization (PSO) is studied for trajectory optimization of obstacle-avoidance navigation of autonomous underwater vehicles (AUVs). A multi-constraint trajectory planning model is established according to the dynamic constraints, boundary constraints, and path constraints. The trajectory optimization problem is converted into a non-linear programming (NLP) problem by means of the GPM, which is solved by the sequential quadratic programming (SQP) algorithm. Aiming at the initial values dependence of the SQP algorithm, a method combining PSO pre-planning with the GPM is proposed. The pre-planned trajectory points are configured on the Legendre-Gauss (LG) points of the GPM by fitting as the initial values for the SQP calculated trajectory planning problem. After simulation analysis, the convergence speed of the optimal solution can be accelerated by using the pretreated initial values. Compared to the linear interpolation and the cubic spline interpolation, the PSO pre-planning method improves computational efficiency by 82.3% and 88.6%, which verifies the effectiveness of the PSO-GPM to solve the trajectory optimization problem.



    加载中


    [1] T. O. Fossum, G. M. Fragoso, E. J. Davies, J. E. Ullgren, R. Mendes, G. Johnsen, et al., Toward adaptive robotic sampling of phytoplankton in the coastal ocean, Sci. Robot., 4 (2019). https://doi.org/10.1126/scirobotics.aav3041 doi: 10.1126/scirobotics.aav3041
    [2] F. Chai, K. S. Johnson, H. Claustre, X. Xing, Y. Wang, E. Boss, et al., Monitoring ocean biogeochemistry with autonomous platforms, Nat. Rev. Earth Environ., 1 (2020), 315–326. https://doi.org/10.1038/s43017-020-0053-y doi: 10.1038/s43017-020-0053-y
    [3] Y. Tan, J. Wang, J. Liu, Y. Zhang, Unmanned systems security: Models, challenges and future directions, IEEE Network, 34 (2020), 291–297. https://doi.org/10.1109/MNET.001.1900546 doi: 10.1109/MNET.001.1900546
    [4] J. Teague, M. J. Allen, T. B. Scott, The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring, Ocean Eng., 147 (2018), 333–339. https://doi.org/10.1016/j.oceaneng.2017.10.046 doi: 10.1016/j.oceaneng.2017.10.046
    [5] H. R. Karimi, Y. Lu, Guidance and control methodologies for marine vehicles: A survey, Control Eng. Pract., 111 (2021). https://doi.org/10.1016/j.conengprac.2021.104785 doi: 10.1016/j.conengprac.2021.104785
    [6] X. Wang, J. Liu, X. Su, H. Peng, X. Zhao, C. Lu, A review on carrier aircraft dispatch path planning and control on deck, Chinese J. Aeronaut., 33 (2020), 3039–3057. https://doi.org/10.1016/j.cja.2020.06.020 doi: 10.1016/j.cja.2020.06.020
    [7] X. Wang, J. Liu, H. Peng, X. Qie, X. Zhao, C. Lu, A simultaneous planning and control method integrating APF and MPC to solve autonomous navigation for USVs in unknown environments, J. Intell. Robot. Syst., 105 (2022). https://doi.org/10.1007/s10846-022-01663-8 doi: 10.1007/s10846-022-01663-8
    [8] Y. Wu, N. Hu, X. Qu, A general trajectory optimization method for aircraft taxiing on flight deck of carrier, P. I. Mech. Eng. G-J. Aer., 233 (2019). https://doi.org/10.1177/0954410017752224 doi: 10.1177/0954410017752224
    [9] Y. Ren, J. Wang, X. Zhang, Research on AUV path planning based on multi-factor improved A* algorithm, Ship Sci. Tech., 44 (2022), 58–62. http://dx.chinadoi.cn/10.3404/j.issn.1672-7649.2022.11.012 doi: 10.3404/j.issn.1672-7649.2022.11.012
    [10] Y. Liu, J. Xiang, S. Cao, AUV path planning based on improved ant colony algorithm, Comput. Eng. Sci., 44 (2022), 536–544. https://doi.org/10.3969/j.issn.1007-130X.2022.03.021 doi: 10.3969/j.issn.1007-130X.2022.03.021
    [11] Z. Chu, F. Wang, T. Lei, C. Luo, Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance, IEEE Trans. Intell. Vehicles, 8 (2023), 108–120. https://doi.org/10.1109/TIV.2022.3153352 doi: 10.1109/TIV.2022.3153352
    [12] L. Zhang, P. Ge, Trajectory optimization and orbit design of spacecraft in hovering mission, J. Astronaut. Sci., 67 (2020), 44–1373. https://doi.org/10.1007/s40295-020-00226-z doi: 10.1007/s40295-020-00226-z
    [13] H. Li, Trajectory planning method for manipulator of tunnel trolley based on gauss pseudospectral method, Constr. Mach. Technol. Manage., 35 (2022). https://doi.org/10.13824/j.cnki.cmtm.2022.06.029 doi: 10.13824/j.cnki.cmtm.2022.06.029
    [14] H. Chen, L. Guo, X. Gong, B. Gao, L. Zhang, Automotive control in intelligent era, Acta Automatica Sinica, 46 (2020), 1313–1332. https://doi.org/10.16383/j.aas.c190329 doi: 10.16383/j.aas.c190329
    [15] C. Liu, C. Zhang, Multi-stage trajectory optimization of tactical two-stage booster rocket based on gauss pseudospectral method, Acta Armamentarii, 40 (2019), 292–302. https://doi.org/10.3969/j.issn.1000-1093.2019.02.009 doi: 10.3969/j.issn.1000-1093.2019.02.009
    [16] Z. Sun, Z. Liu, P. Zhang, Mars entry trajectory quick optimization method for lifting vehicle based on adaptive GPM, Chinese J. Space Sci., 40 (2020), 547–553. https://doi.org/10.11728/cjss2020.04.547 doi: 10.11728/cjss2020.04.547
    [17] J. Zhang, S. Zhou, J. Zhao, Z. Shi, Path planning and tracking control for corner overtaking of vehicle based on gauss pseudo-spectral method, Journal of Tianjin University(Science and Technology), 54 (2021), 8. https://doi.org/10.11784/tdxbz202001041 doi: 10.11784/tdxbz202001041
    [18] H. Yao, R. Qi, A research progress of trajectory optimization and guidance for mars lander, Aerospace Control, 39 (2021), 3–12. https://www.doi.org/10.16804/j.cnki.issn1006-3242.2021.04.001 doi: 10.16804/j.cnki.issn1006-3242.2021.04.001
    [19] X. Wang, H. Peng, S. Zhang, B. Chen, W. Zhong, A symplectic pseudospectral method for nonlinear optimal control problem with inequality constraints, ISA Trans., 68 (2017), 335–352. https://www.doi.org/10.1016/j.isatra.2017.02.018 doi: 10.1016/j.isatra.2017.02.018
    [20] X. Wang, J. Liu, H. Peng, X. Zhao, An iterative framework to solve nonlinear optimal control with proportional delay using successive convexification and symplectic multi-interval pseudospectral scheme, Appl. Math. Comput., 435 (2022), 127448. https://www.doi.org/10.1016/J.AMC.2022.127448 doi: 10.1016/J.AMC.2022.127448
    [21] J. Huang, Z. Liu, Z. Liu, Q. Wang, Pseudo-spectral method for optimal control problem: theory and application, Electron. Optics Control, 27 (2020), 63–70. http://dx.chinadoi.cn/10.3969/j.issn.1671-637X.2020.06.013 doi: 10.3969/j.issn.1671-637X.2020.06.013
    [22] W. Xu, J. Jiang, S. Jiang, Y. Zheng, Scale optimization of wings in the climbing section of a near-space morphing hypersonic aircraft, J. Harbin Eng. Univer., 40 (2019), 1134–1141. https://www.doi.org/10.11990/jheu.201803082 doi: 10.11990/jheu.201803082
    [23] H. Mai, Convergence for the optimal control problems using collocation at Legendre-Gauss points, Trans. Institute Meas. Control, 44 (2022), 1263–1274. https://www.doi.org/10.1177/01423312211043335 doi: 10.1177/01423312211043335
    [24] W. Qu, H. Zhang, L. Wu, Y. You, Y. Dong, The trajectory design on the captive flight test of booster rocket and the combined-cycled aircraft based on segmented gaussian pseudo-spectral method, Aerospace Control, 39 (2021), 28–35. https://www.doi.org/10.3969/j.issn.1006-3242.2021.04.004 doi: 10.3969/j.issn.1006-3242.2021.04.004
    [25] D. Ma, S. Hao, W. Ma, H. Zheng, X. Xu, An optimal control-based path planning method for unmanned surface vehicles in complex environments, Ocean Eng., 245 (2022), 110532. https://doi.org/10.1016/j.oceaneng.2022.110532 doi: 10.1016/j.oceaneng.2022.110532
    [26] Y. Tang, J. Huang, M. Li, Q. Liu, B. Chen, Multistage iterative optimization strategy for gliding trajectory based on pseudo-spectral method, Computer Meas. Control, 27 (2019) 157–162. http://doi.org/10.16526/j.cnki.11-4762/tp.2019.11.034 doi: 10.16526/j.cnki.11-4762/tp.2019.11.034
    [27] L. Ma, W. Cui, Path following control of autonomous underwater vehicle based upon fuzzy hybrid control, Control Theory Appl., 03 (2006), 341–346. https://www.doi.org/10.3969/j.issn.1000-8152.2006.03.003 doi: 10.3969/j.issn.1000-8152.2006.03.003
    [28] Y. Li, X. Li, S. Liu, P. Kang, Application of gauss pseudo-spectral method in trajectory optimization of variable trust missile, Modern Defense Tech., 47 (2019), 71–77. https://www.doi.org/10.3969/j.issn.1009-086x.2019.03.11 doi: 10.3969/j.issn.1009-086x.2019.03.11
    [29] Y. Zhang, W. Zhang, J. Chen, L. Shen, Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseu-dospectral method, Acta Aeronautica et Astronautica Sinica, 32 (2011), 1240–1251.
    [30] Y. Liu, X. Zhang, Y. Zhang, X. Guan, Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach, Chinese J. Aeronautics, 32 (2019), 1504–1519. https://www.doi.org/10.1016/j.cja.2019.03.026 doi: 10.1016/j.cja.2019.03.026
    [31] X. Wang, B. Li, X. Su, H. Peng, L. Wang, C. Lu, et al., Autonomous dispatch trajectory planning on flight deck: A search-resampling-optimization framework, Eng. Appl. Artif. Intell., 119 (2023), 105792. https://doi.org/10.1016/j.engappai.2022.105792 doi: 10.1016/j.engappai.2022.105792
    [32] H. Peng, X. Wang, M. Li, B. Chen, An hp symplectic pseudospectral method for nonlinear optimal control, Commun. Nonlinear Sci., 42 (2017), 623–644. https://doi.org/10.1016/j.cnsns.2016.06.023 doi: 10.1016/j.cnsns.2016.06.023
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1425) PDF downloads(79) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog