In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-differential equation with a general boundary value condition. New comparison principles are developed, and existence results for extremal solutions are obtained using the established principles and the monotone iterative technique. The results are more general than those of the periodic boundary problems, which may be widely applied in this field.
Citation: Bing Hu, Minbo Xu, Zhizhi Wang, Jiahui Lin, Luyao Zhu, Dingjiang Wang. Existence of solutions of an impulsive integro-differential equation with a general boundary value condition[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4166-4177. doi: 10.3934/mbe.2022192
[1] | Bing Hu, Zhizhi Wang, Minbo Xu, Dingjiang Wang . Quasilinearization method for an impulsive integro-differential system with delay. Mathematical Biosciences and Engineering, 2022, 19(1): 612-623. doi: 10.3934/mbe.2022027 |
[2] | Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303 |
[3] | Mario Lefebvre . An optimal control problem without control costs. Mathematical Biosciences and Engineering, 2023, 20(3): 5159-5168. doi: 10.3934/mbe.2023239 |
[4] | Tongqian Zhang, Ning Gao, Tengfei Wang, Hongxia Liu, Zhichao Jiang . Global dynamics of a model for treating microorganisms in sewage by periodically adding microbial flocculants. Mathematical Biosciences and Engineering, 2020, 17(1): 179-201. doi: 10.3934/mbe.2020010 |
[5] | Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206 |
[6] | Xiaolin Fan, Tingting Xue, Yongsheng Jiang . Dirichlet problems of fractional p-Laplacian equation with impulsive effects. Mathematical Biosciences and Engineering, 2023, 20(3): 5094-5116. doi: 10.3934/mbe.2023236 |
[7] | Yan Zhang, Shujing Gao, Shihua Chen . Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response. Mathematical Biosciences and Engineering, 2021, 18(2): 1485-1512. doi: 10.3934/mbe.2021077 |
[8] | Apassara Suechoei, Parinya Sa Ngiamsunthorn, Waraporn Chatanin, Somchai Chucheepsakul, Chainarong Athisakul, Danuruj Songsanga, Nuttanon Songsuwan . Existence and continuous dependence of solutions for equilibrium configurations of cantilever beam. Mathematical Biosciences and Engineering, 2022, 19(12): 12279-12302. doi: 10.3934/mbe.2022572 |
[9] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
[10] | Ting-Hao Hsu, Tyler Meadows, LinWang, Gail S. K. Wolkowicz . Growth on two limiting essential resources in a self-cycling fermentor. Mathematical Biosciences and Engineering, 2019, 16(1): 78-100. doi: 10.3934/mbe.2019004 |
In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-differential equation with a general boundary value condition. New comparison principles are developed, and existence results for extremal solutions are obtained using the established principles and the monotone iterative technique. The results are more general than those of the periodic boundary problems, which may be widely applied in this field.
In recent years, impulsive integro-differential equations with boundary conditions have attracted much attentions and been studied extensively[1,2,3]. We notice that the periodic and antiperiodic boundary value problems are very common, and they have a wide range of applications[4,5,6,7,8,9,10,11]. The monotone iterative technique is a common method to prove the existence of extremal solutions for impulsive integro-differential equations [4]. The monotone sequences of a linear system is developed from the upper and lower solutions, and this method can prove monotone sequences converge monotonically to the extremal solutions of the original system [12,13]. Luo et al. [5] developed some new comparison principles and existence results of solutions for an impulsive integro-differential equation with the periodic boundary conditions. Recently, Kumar et al. [9] discussed the stability and existence of a fractional integro differential equation with the periodic boundary condition. Gou et al. [14] explored the existence of mild solutions for the periodic boundary conditions in a semilinear fractional evolution system. The existence result for the periodic boundary conditions in the phi-Laplacian impulsive differential equation can refer to [15]. Ibnelazyz et al. [11] studied the existence results for a fractional integro-differential equation with the antiperiodic boundary conditions. Ding et al. used the monotone iterative technique to discuss the existence of solutions for a class of impulsive functional differential equations with the anti-periodic boundary value condition[16]. Zuo et al. [6] studied the existence and uniqueness of solutions of an antiperiodic boundary problem in a mixed impulsive fractional integro-differential equation. However, we note that the periodic and anti-periodic boundary values are both two special conditions. For the impulsive integro-differential equation with a more general boundary condition, such as "w(0)=χw(T),χ∈R", have not been involved by now.
Inspired by Luo and Nieto [5], in this paper, we consider the follow two-point boundary value problem (TP-BVP) for a first-order impulsive integro-differential system:
{w′(θ)=f(θ,w(θ),[Γw](θ),[δw](θ))θ∈ξ′=ξ−θ1,θ2,…,θm,△w(θi)=Ik(w(θi))i=1,2,⋯,mw(0)=χw(T) | (1.1) |
where ξ=[0,T],f∈C(ξ×R3), Ik∈C(R,R),0=θ0<θ1<⋯θm<θm+1=T,△w(θk)=w(θ+k)−w(θ−k), w(θ−k) and w(θ+k) are the left and right limits of w(θ) at θ=θk,
[Γw](θ)=∫θ0Φ(θ,s)w(s)ds,[δw](θ)=∫T0Ψ(θ,s)w(s)ds, |
Φ∈C(D,R+),D={(θ,s)∈ξ×ξ:θ≥s},Ψ∈C(ξ×ξ,R+),R+=[0,∞),χ∈R. It should be noted that χ is an arbitrary real number and the boundary condition in Eq (1.1) is more general than the periodic or antiperiodic boundary value. Therefore, the existence result of the solution of Eq (1.1) will have a wider range of application than previous studies.
In Section 2, we establish new comparison principles. In Section 3, we discuss the existence and uniqueness of the solutions for a linear BVP. Finally, we obtain the extremal solutions for TP-BVP Eq (1.1) in Section 4.
Similar to previous studies[2,5,17,18], we give the follow spaces to define the solution of Eq (1.1): LC(ξ)={w:ξ→R:w|(θk,θk+1]∈C((θk,θk+1],R), k=0,1,⋯m; w(θ+k) and w(θ−k) exist for k=1,2,⋯,m with w(θ−k)=w(θk)}; LC′(ξ)={w∈LC(ξ);w|(θk,θk+1]∈C′((θk,θk+1],R), k=0,1,⋯,m; Limits w′(θ−k), w′(θ+k), w′(0+) and w′(T−) exist when k=1,2,⋯,m}. It is not difficult to verify that LC(ξ) and LC′(ξ) are both Bananch spaces with the following norms[5]:
‖w‖LC=sup{|w(θ)|;θ∈ξ},‖w‖LC′=‖w‖LC+‖w′‖LC. |
Then, a function w∈LC′(ξ) is a solution of Eq (1.1) when it satisfies Eq (1.1).
Now, we prove the follow key comparison lemmas.
Lemma 2.1. (New comparison principles) Suppose that Λk>−1(k=1,2,⋯,m), ρ1,ρ2≥0,χ>e−εT and ε>0, such as
{w′(θ)−εw(θ)−ρ1[Γw](θ)−ρ2[δw](θ)≥0θ∈ξ′△w(θk)≥Λkw(θk),k=1,2,⋯,mw(0)≥χw(T) | (2.1) |
or
{w′(θ)−εw(θ)−ρ1[Γw](θ)−ρ2[δw](θ)−bw(θ)≥0θ∈ξ′△w(θk)≥Λkw(θk)+lwk,k=1,2,⋯,mw(0)<χw(T) | (2.2) |
lwk=Λkg(θk)−Δg(θk) and bw(θ)=−g′(θ)+εg(θ)+ρ1[Γg](θ)+ρ2[δg](θ). Where g≥0 is a function in space LC′(ξ), which satisfies g(0)−χg(T)≥χw(T)−w(0)>0.
We define ¯¯Λk=min{Λk,0} for k=1,2,...,m, and
¯π(θ)=ρ1∫θ0Φ(θ,s)e−ε(θ−s)∏s<θk<T(1+Λk)ds+ρ2∫T0Ψ(θ,s)e−ε(θ−s)∏s<θk<T(1+Λk)ds |
the following inequality is assumed to be true:
χeεT∫T0¯π(s)ds≤m∏j=1(1+¯¯Λj) | (2.3) |
Then, we can draw a conclusion that w(θ)≤0 for θ∈ξ.
Proof. For Λk>−1, then we define ck=1+Λk>0. If boundary conditions satisfy w(0)≥χw(T), we let ζ(θ)=(∏θ<θk<Tc−1k)w(θ)e−εθ, then the signs of w and ζ are same and it can be obtained that
{ζ′(θ)≥(∏θ<θk<Tc−1k)(ρ1∫θ0Φ(θ,s)e−ε(θ−s)ζ(s)∏s<θk<T(ck)ds+ρ2∫T0Ψ(θ,s)e−ε(θ−s)ζ(s)∏s<θk<T(ck)ds),θ∈ξ′ζ(θ+k)≥ckζ(θk),k=1,2,⋯,mζ(0)≥χζ(T)(m∏k=1c−1k)eεT |
Now, we complete the proof by two cases:
(i): If ζ≥0 and ζ≢; then clearly \zeta'(\theta)\geq 0 for \theta\in \xi' and \zeta(T)\geq \zeta(0)\prod_{i = 1}^mc_j\geq \chi \zeta(T)e^{\varepsilon T}. If \zeta(T) = 0 , it is easy to know that \zeta(\theta)\leq 0 by two conditions c_k > 0 and \zeta'(\theta)\geq 0 , i.e., \zeta\equiv 0 , which is inconsistent with the assumption. Moreover, if \zeta(T) > 0, one can obtain that \chi e^{\varepsilon T}\leq1 , which is a wrong conclusion.
(ii): Denote r_1\in [0, T] , which satisfies \zeta(r_1) > 0 . Suppose that \zeta(r_2) = \mbox{min}_{\theta\in [0, T]}\zeta(\theta) = n , then clearly n < 0 . It can be obtained that
\zeta'(\theta)\geq n\left(\prod\limits_{\theta < \theta_k < T}c_k^{-1}\right)\pi(\theta) |
If r_1 > r_2 , we have
\begin{eqnarray*} n = \zeta(r_2)&\geq & \zeta\left( {r_1 } \right)\prod\limits_{r_1 < \theta_k < r_2 } {c_k^{} } + n\int_{r_1 }^{r_2 } {\left( {\prod\limits_{\theta < \theta_k < r_2 } {c_k^{} } } \right)} \left( {\prod\limits_{\theta < \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \\ & > &n\int_{r_1 }^{r_2 } {\left( {\prod\limits_{r_2 < \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta} \end{eqnarray*} |
then
\chi e^{\varepsilon T} \int_0^T {\pi\left( s \right)ds}\ge\int_{r_1 }^{r_2 }{\pi\left(\theta\right)d\theta} > \prod\limits_{r_2 < \theta_k < T} {c_k^{} } \ge \prod\limits_{j = 1}^m {\overline {\overline {c_j } } }, |
\overline {\overline {c_j } } = 1+\overline{\overline {\Lambda_j}}, j = 1, 2, ...m , it is a contradiction with the condition Eq (2.3). If r_1 < r_2 , we have
\begin{eqnarray*} n = \zeta(r_2)&\geq & \zeta\left( 0 \right)\prod\limits_{0 < \theta_\chi < r_2 } {c_\chi^{} }+ n\int_0^{r_2 } {\left( {\prod\limits_{\theta < \theta_k < r_2 } {c_k^{} } } \right)} \left( {\prod\limits_{\theta < \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \\ & = &\zeta\left( 0 \right)\prod\limits_{0 < \theta_k < r_2 } {c_k^{} } + n\int_0^{r_2 } {} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \end{eqnarray*} |
and
\begin{eqnarray*} \zeta(T)&\geq &\zeta\left( {r_1 } \right)\prod\limits_{r_1 < \theta_k < T} {c_k^{} } + n\int_{r_1 }^T {\left( {\prod\limits_{\theta < \theta_k < T} {c_k^{} } } \right)} \left( {\prod\limits_{\theta < \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \\ & > &n\int_{r_1}^T\pi(\theta)d\theta \end{eqnarray*} |
For \zeta(0)\geq \chi \zeta(T)\left(\prod\limits_{k = 1}^m c_k^{-1}\right)e^{\varepsilon T} , it is easy to obtain that
\begin{eqnarray*} n&\geq & \chi \zeta\left( T \right)\left( {\prod\limits_{k = 1}^m {c_k^{ - 1} } } \right)e^{\varepsilon T} \prod\limits_{0 < \theta_k < r_2 } {c_k^{} } + n\int_0^{r_2 } {} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \\ & > &\chi ne^{\varepsilon T} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\int_{r_1 }^T {} \pi\left( \theta \right)d\theta + n\int_0^{r_2 } {} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta. \end{eqnarray*} |
Then, the follow inequality can be obtained with conditions r_2 < r_1, \chi e^{\varepsilon T} > 1 and n < 0:
\begin{eqnarray*} 1& < & \chi e^{\varepsilon T} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\int_{r_1 }^T {} \pi\left( \theta \right)d\theta + \int_0^{r_2 } {} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\pi\left( \theta \right)d\theta \\ &\leq & \chi e^{\varepsilon T} \left( {\prod\limits_{r_2 \le \theta_k < T} {c_k^{ - 1} } } \right)\int_0^T {} \pi\left( \theta \right)d\theta. \end{eqnarray*} |
i.e.,
\chi e^{\varepsilon T} \int_0^T {} \pi\left( s \right)ds > \prod\limits_{r_2 \le \theta_k < T} {c_k^{} } \ge \prod\limits_{j = 1}^m {\overline {\overline {c_j } } } , |
It is a contradiction with Eq (2.3).
On the other hand, if boundary conditions satisfy w(0) < \chi w(T) , we let b(\theta) = w(\theta)+g(\theta) . It is easy to get that
\left\{ \begin{array}{l} b'(\theta)-\varepsilon b(\theta) - \rho_1[\Gamma b](\theta)-\rho_2[\delta b](\theta) \geq0, \qquad \theta \in \xi' \\ \Delta b(\theta_k)\geq \Lambda_kb(\theta_k), \qquad k = 1, 2, \cdots , m \\ b(0)\geq \chi b(T), \\ \end{array} \right. |
Clearly, b\leq 0 from the above proof, and w(\theta)\leq 0 .
Remark 2.1. Lemma 2.1 is a key comparison result to obtain extremal solutions of Eq (1.1). Expression and proof of Lemma 2.1 are similar to previous studies[5]. Moreover, the boundary condition "w(0) = \chi w(T)" with \chi > e^{-\varepsilon T} is more general than the periodic condition "\chi = 1" . Our method can also generalize some known results, such as Corollary 2.1[5,19], Corollary 2.2[5] and Corollary 2.3[5,20].
Corollary 2.1. Let \varepsilon > 0, \rho_1, \rho_2\geq0, \chi > e^{-\varepsilon T} , \Lambda_k\geq 0, k = 1, 2, \cdots, m , w\in LC'(\xi) satisfies Eq (2.1) or (2.2), and define
\pi_1 \left( \theta \right) = \rho _1 \int_0^\theta {\Phi\left( {\theta, s} \right)} e^{ - \varepsilon \left( {\theta - s} \right)} ds + \rho _2 \int_0^T {\Psi\left( {\theta, s} \right)} e^{ - \varepsilon \left( {\theta - s} \right)} ds |
if the follow inequality Eq (2.4) holds
\chi e^{\varepsilon T} \int_0^T {\left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)^{ - 1} } } \right)} \pi_1 \left( s \right)ds \le \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)^{ - 1} } } \right)^2 | (2.4) |
then, we have w(\theta)\leq0 for \theta\in \xi .
Proof. We prove that Eq (2.3) holds as follows:
\begin{eqnarray*} \chi e^{\varepsilon T} \int_0^T {\overline \pi \left( s \right)} ds &\leq& \chi e^{\varepsilon T} \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)\int_0^T {\left(\rho_1 {\int_0^\theta {\Phi\left( {\theta, s} \right)} e^{ - \varepsilon \left( {\theta - s} \right)} ds} \right.} \\&+&\left. {\rho _2 \int_0^T {\Psi\left( {\theta, s} \right)} e^{ - \varepsilon \left( {\theta - s} \right)} ds} \right)dt \\ & = &\chi e^{\varepsilon T} \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)\int_0^T {\left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)} } \right)} \left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)^{ - 1} } } \right)\pi_1 \left( \theta \right)d\theta \\&\leq& \chi e^{\varepsilon T} \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)^2 \int_0^T {} \left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)^{ - 1} } } \right)\pi_1 \left( \theta \right)d\theta \\&\leq&\left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)^2 \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)^{ - 1} } } \right)^2 = 1 \le \prod\limits_{j = 1}^m {\left( {1 + \overline{\overline {\Lambda_j }} } \right)} . \end{eqnarray*} |
We know that w(\theta)\leq0 by Lemma 2.1.
Corollary 2.2. Suppose that \varepsilon > 0, \rho_1, \rho_2\geq0, \chi > e^{-\varepsilon T} , \Lambda_k\geq 0, k = 1, 2, \cdots, m , w\in LC'(\xi) satisfies Eq (2.1) or (2.2), and let
\chi\frac{{\left( {\rho _1 k_0 + \rho _2 h_0 } \right)\left( {e^{\varepsilon T} - 1} \right)e^{\varepsilon T} }}{\varepsilon } \le \frac{{\left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)^{ - 1} } } \right)^2 }}{{\int_0^T {\left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)^{ - 1} } } \right)ds} }}, | (2.5) |
then, we can obtain w(\theta)\leq 0 on \xi .
Proof. The condition Eq (2.3) is derived as follows:
\begin{eqnarray*} \chi e^{\varepsilon T} \int_0^T {\overline \pi \left( \theta \right)} d\theta &\leq &\chi e^{\varepsilon T} \left( {\rho _1 k_0 + \rho _2 h_0 } \right)\int_0^T {\left( {\int_0^T {\left( {\prod\limits_{s < \theta_k < T}^{} {\left( {1 + \Lambda_k } \right)} } \right)e^{ - \varepsilon \left( {\theta - s} \right)} ds} } \right)} d\theta \\ &\leq & \chi\left( {\rho _1 k_0 + \rho _2 h_0 } \right)\frac{{e^{\varepsilon T} - 1}}{\varepsilon }e^{\varepsilon T} \int_0^T {\left( {\prod\limits_{s < \theta_k < T}^{} {\left( {1 + \Lambda_k } \right)} } \right)ds} \\ & = & \chi\left( {\rho _1 k_0 + \rho _2 h_0 } \right)\frac{{e^{\varepsilon T} - 1}}{\varepsilon }e^{\varepsilon T} \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)\int_0^T {} \left( {\prod\limits_{0 < \theta_k \le s}^{} {\left( {1 + \Lambda_k } \right)^{ - 1} } } \right)ds\\ &\leq & \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)\left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)^{ - 1} } } \right)^2 = \left( {\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)^{ - 1} } } \right) \le 1 \le \prod\limits_{j = 1}^m {\left( {1 + \overline{\overline {\Lambda_j }} } \right)} \end{eqnarray*} |
From Lemma 2.1, we have w(\theta)\leq 0 on \xi .
Corollary 2.3. Let \Lambda_k\geq 0, k = 1, 2, \cdots, m , \rho_1, \rho_2\geq0, \varepsilon > 0, \chi > e^{-\varepsilon T} , w\in LC'(\xi) satisfies Eq (2.1) or (2.2), and suppose that
\left( {\varepsilon + \chi\rho _1 Tk_0 + \chi\rho _2 Th_0 } \right)\tau \left( {1 + (m + 1)\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right) \le 1, | (2.6) |
where \tau = \max \left\{ {\theta_k - \theta_{k - 1} :k = 1, 2, ...m + 1} \right\}. Then, we have w(\theta)\leq 0 on \xi .
Proof. We prove that the inequality Eq (2.3) holds as follows:
\begin{eqnarray*} \chi e^{\varepsilon T}\int_0^T{\overline \pi(\theta)d\theta} &\leq&\chi e^{\varepsilon T}\left( {\rho _1 k_0 + \rho _2 h_0 } \right)\int_0^T {\left( {\int_0^T {\left( {\prod\limits_{k = 1}^m {\left( {1 + \Lambda_k } \right)} } \right)e^{ - \varepsilon \left( {\theta - s} \right)} ds} } \right)} d\theta \\ & = &\chi e^{\varepsilon T} \left( {\rho _1 k_0 + \rho _2 h_0 } \right)\frac{{\left( {1 - e^{ - \varepsilon T} } \right)\left( {e^{\varepsilon T} - 1} \right)}}{{\varepsilon ^2 }}\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} \\ &\leq & \chi(\rho_1Tk_0+\rho_2Th_0)\frac{(e^{\varepsilon T}- 1)^2}{\varepsilon ^2 T^2}\tau(m + 1)\prod\limits_{j = 1}^m\left(1 + \Lambda_j \right) \\ &\leq & \chi\frac{{\left( {e^{\varepsilon T} - 1} \right)^2 }}{{\varepsilon ^2 T^2 _{} }}\left( {\varepsilon + \rho _1 Tk_0 + \rho _2 Th_0 - \varepsilon } \right)\tau \left( {1 + \left( {m + 1} \right)\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right) \\ &\leq & \frac{{\left( {e^{\varepsilon T} - 1} \right)^2 }}{{\varepsilon ^2 T^2 _{} }}\left( {1 - \varepsilon \tau \left( {1 + \left( {m + 1} \right)\prod\limits_{j = 1}^m {\left( {1 + \Lambda_j } \right)} } \right)} \right) \\ &\leq & \frac{{\left( {e^{\varepsilon T} - 1} \right)^2 }}{{\varepsilon ^2 T^2 _{} }}\left( {1 - \varepsilon T} \right) \le 1 \le \prod\limits_{j = 1}^m {\left( {1 + \overline{\overline {\Lambda_j }} } \right)} . \end{eqnarray*} |
Now, we study the solution of a linear system (LS) with the general boundary condition:
\begin{align} w'(\theta)+ \varepsilon w(\theta) = \varsigma ( \theta ), \qquad \theta \in \xi', \end{align} | (3.1) |
\begin{align} w\left( {\theta_j^ + } \right) = w\left( {\theta_j^ - } \right) + I_j \left( {w\left( {\theta_j^{} } \right)} \right), \qquad j = 1, ..., m, \end{align} | (3.2) |
\begin{align} w(0) = \chi w ( T ), \end{align} | (3.3) |
where I_j \in C\left({R, R} \right) and \varsigma \in LC(\xi) .
Lemma 3.1. The solution of (LS) can be described as follows:
\begin{align} w\left( \theta \right) = \int_0^T {U\left( {\theta, s} \right)\varsigma \left( s \right)} ds + \sum\limits_{j = 1}^m {U\left( {\theta, \theta_j } \right)} I_j \left( {w\left( {\theta_j^{} } \right)} \right), \qquad \theta \in \xi', \end{align} | (3.4) |
where
\begin{align} U\left( {\theta, s} \right) = \frac{1}{{e^{\varepsilon T} - \chi}}\left\{ \begin{array}{l} e^{\varepsilon (T - \theta + s)} , \qquad 0 \le s \le \theta \le T \\ \chi e^{ - \varepsilon (\theta - s)} , \qquad 0 \le \theta < s \le T. \\ \end{array} \right. \end{align} | (3.5) |
Proof. Set z(\theta) = e^{\varepsilon \theta}w(\theta), \theta\in \xi. Then
z' \left( \theta \right) = \varsigma ^* \left( \theta \right), \theta \in \xi' ;\qquad z\left( 0 \right) = \chi z\left( T \right)e^{ - \varepsilon T} ; |
z\left( {\theta_j^ + } \right) = z\left( {\theta_j^ - } \right) + I_j^* \left( {z\left( {\theta_j^{} } \right)} \right), |
where I_j^* \left(x \right) = e^{\varepsilon \theta_j } I_j^{} \left({e^{ - \varepsilon \theta_j } x} \right) , \varsigma ^* \left(\theta \right) = e^{\varepsilon \theta} \varsigma \left(\theta \right) .
If \theta \in \left({\theta_j, \theta_{j + 1} } \right], j = 1, ..., m, we obtain
z\left( \theta \right) = z\left( {\theta_j^ + } \right) + \int_{\theta_j }^\theta {\varsigma ^* \left( s \right)} ds. |
Since
z\left( {\theta_j^ - } \right) = z\left( {\theta_{j - 1}^ + } \right) + \int_{\theta_{j - 1} }^{\theta_j^{} } {\varsigma ^* \left( s \right)} ds. |
So, when \theta\in (\theta_j, \theta_{j+1}], we have
z\left( \theta \right) = z\left( {\theta_{j - 1}^ + } \right) + \int_{\theta_{j - 1} }^\theta {\varsigma ^* \left( s \right)} ds + I_j^* \left( {z\left( {\theta_j^{} } \right)} \right). |
Therefore,
z\left( \theta \right) = z\left( 0 \right) + \int_0^\theta {\varsigma ^* \left( s \right)} ds + \sum\limits_{j:\theta_j \in \left( {0, \theta} \right)} {I_j^* \left( {z\left( {\theta_j^{} } \right)} \right)} , \theta \in \xi. | (3.6) |
In Eq (3.6), we let \theta = T , then we have
z\left( 0 \right) = \frac{\chi}{{e^{\varepsilon T} - \chi}}\int_0^T {\varsigma ^* \left( s \right)} ds + \frac{\chi}{{e^{\varepsilon T} - \chi}}\sum\limits_{j = 1}^m {I_j^* \left( {z\left( {\theta_j^{} } \right)} \right)} . \qquad \theta \in \xi. |
Finally, substitute z(0) into Eq (3.6), we get that
\begin{eqnarray*} w(\theta) & = &\frac{{e^{ - \varepsilon \theta} \chi}}{{e^{\varepsilon T} - \chi}}\int_0^T {\varsigma ^* \left( s \right)} ds + \frac{{e^{ - \varepsilon \theta} \chi}}{{e^{\varepsilon T} - \chi}}\sum\limits_{j = 1}^m {I_j^* \left( {z\left( {\theta_j^{} } \right)} \right)} \\&+& e^{ - \varepsilon \theta} \int_0^\theta {\varsigma ^* \left( s \right)} ds + e^{ - \varepsilon \theta} \sum\limits_{j:\theta_j \in \left( {0, \theta} \right)} {I_j^* \left( {z\left( {\theta_j^{} } \right)} \right)} \\ & = & \frac{{e^{ - \varepsilon \theta} \chi}}{{e^{\varepsilon T} - \chi}}\int_0^T {e^{\varepsilon s} \varsigma \left( s \right)} ds + \frac{{e^{ - \varepsilon \theta} \chi}}{{e^{\varepsilon T} - \chi}}\sum\limits_{j = 1}^m {e^{\varepsilon \theta_j } I_j^{} \left( {w\left( {\theta_j } \right)} \right)} \\ &+& e^{ - \varepsilon \theta} \int_0^\theta {e^{\varepsilon s} \varsigma \left( s \right)} ds + e^{ - \varepsilon \theta} \sum\limits_{j:\theta_j \in \left( {0, \theta} \right)} {e^{\varepsilon \theta_j } I_j^{} \left( {w\left( {\theta_j } \right)} \right)} \\ & = & \int_0^T {U\left( {\theta, s} \right)\varsigma \left( s \right)} ds + \sum\limits_{j = 1}^m {U\left( {\theta, \theta_j } \right)} I_j \left( {w\left( {\theta_j^{} } \right)} \right). \end{eqnarray*} |
Lemma 4.1 is given without proof since it is similar to Lemma 3.1.
Lemma 4.1. Let \Lambda_k > -1, k = 1, 2, \cdots, m , \rho_1, \rho_2 \geq 0, \varepsilon > 0, \chi > e^{-\varepsilon T} , \vartheta\in LC'(\xi) and \varsigma\in LC(\xi) , then the solution ( w\in LC'(\xi) ) of the follow Eq (4.1) can be expressed as Eq (4.2):
\begin{align} \left\{ {\begin{array}{l} w'(\theta)-\varepsilon w(\theta)-\rho_1[\Gamma w](\theta)-\rho_2[\delta w](\theta) = \varsigma(\theta), \qquad \theta\in \xi' \\ \triangle w(\theta_k) = \Lambda_k w\left( {\theta_k } \right) - I_k \left( {\vartheta \left( {\theta_k } \right)} \right) - \Lambda_k \left( {\vartheta \left( {\theta_k } \right)} \right), \qquad k = 1, 2, \cdots, m \\ w(0) = \chi w(T) \end{array}} \right. \end{align} | (4.1) |
\begin{eqnarray*} w(\theta)& = &-\int_0^T {U\left( {\theta, s} \right)\left\{ {\rho _1 \left[ {\Gamma w} \right]\left( s \right) + \rho _2 \left[ {\delta w} \right]\left( s \right) + \varsigma \left( s \right)} \right\}} ds \\ &-& \sum\limits_{0 < \theta_k < T}^{} {U\left( {\theta, \theta_k } \right)} \left( {\Lambda_k w\left( {\theta_k } \right) - I_k \left( {\vartheta \left( {\theta_k } \right)} \right) - \Lambda_k \left( {\vartheta \left( {\theta_k } \right)} \right)} \right) \qquad \theta \in \xi \end{eqnarray*} | (4.2) |
where
U\left( {\theta, s} \right) = \frac{1}{{1 - \chi e^{\varepsilon T} }}\left\{ \begin{array}{l} e^{\varepsilon (\theta - s)} , 0 \le s \le \theta \le T \\ e^{\varepsilon (T + \theta - s)} , 0 \le \theta < s \le T \\ \end{array} \right. |
Lemma 4.2. Let \Lambda_k > -1, k = 1, 2, \cdots, m , \rho_1, \rho_2 \geq 0, \varepsilon > 0, \chi > e^{-\varepsilon T} , I_k\in C(R, R) , \vartheta\in LC'(\xi) and \varsigma\in LC(\xi) , if the follow inequality holds:
\mathop {\sup }\limits_{\theta \in \xi} \int_0^T {U\left( {\theta, s} \right)\left\{ {\rho _1 \int_0^s {\Phi\left( {s, r} \right)dr} + \rho _2 \int_0^T {\Psi\left( {s, r} \right)} dr} \right\}} ds + \frac{1}{{e^{ - \varepsilon T} - \chi}}\sum\limits_{j = 1}^m {\left| {\Lambda_k } \right|} < 1 | (4.3) |
then the solution of Eq (4.1) is unique.
Proof. Define the operator F:LC(\xi)\rightarrow LC(\xi), where Fw is given by the right-hand term in Eq (4.2). Clearly, the solution of Eq (4.1) is also the fixed point of the operator equation w = Fw. Since,
\begin{eqnarray*} \left\| {Fw - F\zeta} \right\|& = &\mathop {\sup }\limits_{\theta \in \xi} \left| { - \int_0^T {U\left( {\theta, s} \right)\left\{ {\rho _1 \left\{ {\left[ {\Gamma w} \right]\left( s \right) - \left[ {\Gamma \zeta} \right]\left( s \right)} \right\} + \rho _2 \left\{ {\left[ {\delta w} \right]\left( s \right) - \left[ {\delta \zeta} \right]\left( s \right)} \right\}ds} \right\}} } \right. \\ &-& \left.{\sum\limits_{0 < \theta_k < T}^{} {U\left( {\theta, \theta_k } \right)} \Lambda_k \left( {w\left( {\theta_k } \right) - \zeta\left( {\theta_k } \right)} \right)} \right| \\&\leq& \mathop {\sup }\limits_{\theta \in \xi} \left\{ {\int_0^T {U\left( {\theta, s} \right)} \left[ {\rho _1 \int_0^s {\Phi\left( {s, r} \right)\left| {w\left( r \right) - \zeta\left( r \right)} \right|dr} } \right.} \right. \\&+& \left. {\rho _2 \int_0^T {\Psi\left( {s, r} \right)} \left| {w\left( r \right) - \zeta\left( r \right)} \right|dr} \right]ds + \sum\limits_{0 < \theta_k < T}^{} {U\left( {\theta, \theta_k } \right)} \left| {\Lambda_k } \right|\left| {\left( {w\left( {\theta_k } \right) - \zeta\left( {\theta_k } \right)} \right)} \right|\} \\&\leq& \left\| {w - \zeta} \right\|\left( {\mathop {\sup }\limits_{\theta \in \xi} \int_0^T {U\left( {\theta, s} \right)\left[ {\rho _1 \int_0^s {\Phi\left( {s, r} \right)dr} + \rho _2 \int_0^T {\Psi\left( {s, r} \right)} dr} \right]} ds} \right. \\&+& \left. {\frac{1}{{e^{ - \varepsilon T} - \chi}}\sum\limits_{k = 1}^p {} \left| {\Lambda_k } \right|} \right) \end{eqnarray*} |
Then, we know that F is a contractive mapping by condition Eq (4.3). So, according to Banach's fixed point theorem, the solution of Eq (4.1) is unique.
Finally, we can obtain the following existence theorem of extremal solutions by using Lemmas 2.1 and 4.2. The arguments of Theorem 4.1 are similar to that in [4] and [5], the proof process is omitted.
Theorem 4.1. Suppose that \Lambda_k > -1 , k = 1, 2, \cdots, m , \rho_1, \rho_2 \geq 0, \varepsilon > 0, \chi > e^{-\varepsilon T} , and the follow four conditions satisfy:
(i) The conditions Eqs (2.3) and (4.3) hold.
(ii) There exist two functions \nu, \mu\in LC'(\xi) such as \mu(\theta) \leq \nu(\theta) and
\left\{{\begin{array}{l} \mu'(\theta)\geq f(\theta, \mu(\theta), [\Gamma\mu](\theta), [\delta\mu](\theta))\quad \theta\in \xi' = \xi-{\theta_1, \theta_2, \ldots, \theta_m}, \\ \triangle\mu(\theta_k)\geq I_k(\mu(\theta_k))\quad k = 1, 2, \cdots, m \\ \mu(0)\geq \chi\mu(T) \end{array}} \right. |
or
\left\{ {\begin{array}{l} \mu'(\theta)\geq f(\theta, \mu(\theta), [\Gamma\mu](\theta), [\delta\mu](\theta))+b_\mu(\theta)\quad \theta\in \xi' = \xi-{\theta_1, \theta_2, \ldots, \theta_m}, \\ \triangle\mu(\theta_k)\geq I_k(\mu(\theta_k))+l_{\mu k}\quad k = 1, 2, \cdots, m \\ \mu(0) < \chi\mu(T) \end{array}} \right. |
b_\mu(\theta) = -g_2'(\theta)+\varepsilon g_2(\theta) +\rho_1[\Gamma g_2](\theta)+\rho _2[\delta g_2](\theta) , l_{\mu k} = \Lambda_k g_2(\theta_k)-\Delta g_2(\theta_k) , where g_2\in LC'(\xi) with g_2\ge 0, g_2(0)-\chi g_2(T) \geq \chi\mu(T) -\mu(0) > 0 .
and
\left\{ {\begin{array}{l} \nu'(\theta)\leq f(\theta, \nu(\theta), [\Gamma \nu](\theta), [\delta\nu](\theta))\quad \theta\in \xi' = \xi-{\theta_1, \theta_2, \ldots, \theta_m}, \\ \triangle \nu(\theta_k)\leq I_k(\nu(\theta_k))\quad k = 1, 2, \cdots, m \\ \nu(0)\leq \chi\nu (T) \end{array}} \right. |
or
\left\{ {\begin{array}{l} \nu'(\theta)\leq f(\theta, \nu(\theta), [\Gamma \nu](\theta), [\delta\nu](\theta))-b_\nu(\theta)\quad \theta\in \xi' = \xi-{\theta_1, \theta_2, \ldots, \theta_m}, \\ \triangle \nu(\theta_k)\leq I_k(\nu(\theta_k))-l_{\nu k}\quad k = 1, 2, \cdots, m \\ \nu(0) > \chi\nu (T) \end{array}} \right. |
b_\nu(\theta) = -g_1'(\theta)+\varepsilon g_1(\theta) +\rho_1[\Gamma g_1](\theta)+\rho_2[\delta g_1](\theta) , l_{\nu k} = \Lambda_kg_1(\theta_k)-\Delta g_1(\theta_k) , where g_1\in LC'(\xi) with g_1\geq 0, g_1(0)-\chi g_1(T)\geq\nu(0)-\chi\nu(T) > 0.
(iii) When \mu(\theta_k)\leq y\leq x\leq\nu(\theta_k), I_k(k = 1, 2, \cdots, m) meet
I_k(x)-I_k(y)\leq \Lambda_k(x-y). |
(iv) When \theta \in \xi, \mu \leq \overline w\leq w\leq\nu, [\Gamma\mu](\theta)\leq \overline \zeta(\theta)\leq \zeta(\theta)\leq[\Gamma\nu](\theta), [\delta\mu](\theta) \leq \overline z(\theta)\leq z(\theta)\leq[\delta\nu](\theta), and f meets
f(\theta, w, \zeta, z)-f(\theta, \overline w , \overline \zeta , \overline z)\leq\varepsilon(w-\overline w) +\rho_1(\zeta-\overline \zeta)+\rho _2(z-\overline z) |
Then, two monotone sequences {\nu_n}, {\mu_n} can be found such as \nu = \nu _0 \geq\nu _n \geq... \geq\mu _n \geq \mu _0 = \mu , which converge uniformly to the maximal and minimal solutions of Eq (1.1) in
[\mu , \nu] = \{w \in LC(\xi):\mu(\theta)\le w(\theta)\le\nu(\theta), \theta\in \xi\}. |
Remark 4.1. If \chi = 1 , then the Eq (1.1) is a periodic BVP. Therefore, the condition " \chi > e^{-\varepsilon T} " is more general than the periodic boundary condition. Existence result of solution (Theorem 4.1) obtained in this paper is more applicable than that in the periodic BVP.
In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-differential equation with a general boundary value condition "w(0) = \chi w(T)" . Firstly, new comparison principles are developed in Section 2, which are key comparison results to obtain extremal solutions of Eq (1.1). We note that the boundary condition "w(0) = \chi w(T)" with \chi > e^{-\varepsilon T} is more general than the periodic condition "\chi = 1" . Then, the expression of solution for a linear system is given in Section 3. Finally, we obtain the existence results of extremal solutions for Eq (1.1) by using the monotone iterative technique, as shown in Theorem 4.1. Previous studies mainly focused on the periodic and antiperiodic boundary value conditions, therefore, the condition " \chi > e^{-\varepsilon T} " is more general. The main results in Section 4 are more general than previous studies, which may be widely applied in this field.
This research was supported by the National Science Foundation of China (No. 11602092); the China Postdoctoral Science Foundation (No. 2018M632184).
All authors declare no conflicts of interest in this paper.
[1] |
K. Zhao, L. Suo, Y. Liao, Boundary value problem for a class of fractional integro-differential coupled systems with Hadamard fractional calculus and impulses, Boundary Value Probl., 2019 (2019), 1–18. https://doi.org/10.1186/s13661-019-1219-8 doi: 10.1186/s13661-019-1219-8
![]() |
[2] | M. J. Mardanov, Y. A. Sharifov, F. M. Zeynalli, Existence and uniqueness of the solutions to impulsive nonlinear integro-differential equations with nonlocal boundary conditions, in Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan., 45 (2019), 222–233. https://doi.org/10.29228/proc.6 |
[3] |
S. Asawasamrit, S. K. Ntouyas, P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Boundary Value Probl., 2016 (2016), 1–18. https://doi.org/10.1186/s13661-016-0629-0 doi: 10.1186/s13661-016-0629-0
![]() |
[4] |
Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl., 48 (2004), 73–84. https://doi.org/10.1016/j.camwa.2004.01.005 doi: 10.1016/j.camwa.2004.01.005
![]() |
[5] |
Z. Luo, J. J. Nieto, New results for the periodic boundary value problem for impulsive integro-differential equations, Nonlinear Anal.: Theory, Methods Appl., 70 (2009), 2248–2260. https://doi.org/10.1016/j.na.2008.03.004 doi: 10.1016/j.na.2008.03.004
![]() |
[6] |
M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Boundary Value Probl., 2017 (2017), 1–15. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
![]() |
[7] |
B. Zhu, L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Probl., 2018 (2018), 1–14. https://doi.org/10.1186/s13661-018-1048-1 doi: 10.1186/s13661-018-1048-1
![]() |
[8] | L. Zhang, A. Liu, L. Xiao, Anti-periodic boundary value problem for second-order impulsive integro-differential equation with delay, J. Cent. China Norm. Univ., 52 (2018), 298–302. |
[9] |
V. Kumar, M. Malik, Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales, J. King Saud Univ.-Sci., 31 (2019), 1311–1317. https://doi.org/10.1016/j.jksus.2018.10.011 doi: 10.1016/j.jksus.2018.10.011
![]() |
[10] | A. Anguraj, P. Karthikeyan, Anti-periodic boundary value problem for impulsive fractional integro differential equations, Fractional Calculus Appl. Anal., 13 (2010), 281–294. http://hdl.handle.net/10525/1653 |
[11] |
L. Ibnelazyz, K. Guida, K. Hilal, S. Melliani, Existence results for nonlinear fractional integro-differential equations with integral and antiperiodic boundary conditions, Comput. Appl. Math., 40 (2021), 1–12. https://doi.org/10.1007/s40314-021-01419-4 doi: 10.1007/s40314-021-01419-4
![]() |
[12] |
R. Agarwal, D. O'Regan, S. Hristova, Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses, Appl. Math. Comput., 298 (2017), 45–56. https://doi.org/10.1016/j.amc.2016.10.009 doi: 10.1016/j.amc.2016.10.009
![]() |
[13] |
R. Chaudhary, D. N. Pandey, Monotone iterative technique for impulsive Riemann-Liouville fractional differential equations, Filomat, 32 (2018), 3381–3395. https://doi.org/10.2298/FIL1809381C doi: 10.2298/FIL1809381C
![]() |
[14] |
H. Gou, Y. Li, Existence of mild solutions for impulsive fractional evolution equations with periodic boundary conditions, J. Pseudo-Differ. Oper. Appl., 11 (2020), 425–445. https://doi.org/10.1007/s11868-019-00278-2 doi: 10.1007/s11868-019-00278-2
![]() |
[15] |
J. Henderson, A. Ouahab, S. Youcefi, Existence results for phi-Laplacian impulsive differential equations with periodic conditions, Aims Math., 4 (2019), 1640–1633. https://doi.org/10.3934/math.2019.6.1610 doi: 10.3934/math.2019.6.1610
![]() |
[16] |
W. Ding, Y. Xing, M. Han, Anti-periodic boundary value problems for first order impulsive functional differential equations, Appl. Math. Comput., 186 (2007), 45–53. https://doi.org/10.1016/j.amc.2006.07.087 doi: 10.1016/j.amc.2006.07.087
![]() |
[17] |
B. Ahmad, A. Alsaedi, Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type, Nonlinear Anal. Hybrid Syts., 3 (2009), 501–509. https://doi.org/10.1016/j.nahs.2009.03.007 doi: 10.1016/j.nahs.2009.03.007
![]() |
[18] |
Y. Hou, L. Zhang, G. Wang, A new comparison principle and its application to nonlinear impulsive functional integro-differential equations, Adv. Differ. Equations, 2018 (2018), 380. https://doi.org/10.1186/s13662-018-1849-7 doi: 10.1186/s13662-018-1849-7
![]() |
[19] |
J. J. Nieto, R. Rodriguez-Lopez, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328 (2007), 1343–1368. https://doi.org/10.1016/j.jmaa.2006.06.029 doi: 10.1016/j.jmaa.2006.06.029
![]() |
[20] |
L. Chen, J. Sun, Nonlinear boundary problem of first order impulsive integro-differential equations, J. Comput. Appl. Math., 202 (2007), 392–401. https://doi.org/10.1016/j.cam.2005.10.041 doi: 10.1016/j.cam.2005.10.041
![]() |
1. | Bing Hu, Yingting Qiu, Weiting Zhou, Luyao Zhu, Existence of solution for an impulsive differential system with improved boundary value conditions, 2023, 8, 2473-6988, 17197, 10.3934/math.2023878 |