Research article Special Issues

Existence of solutions of an impulsive integro-differential equation with a general boundary value condition


  • Received: 17 November 2021 Revised: 14 January 2022 Accepted: 20 January 2022 Published: 17 February 2022
  • In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-differential equation with a general boundary value condition. New comparison principles are developed, and existence results for extremal solutions are obtained using the established principles and the monotone iterative technique. The results are more general than those of the periodic boundary problems, which may be widely applied in this field.

    Citation: Bing Hu, Minbo Xu, Zhizhi Wang, Jiahui Lin, Luyao Zhu, Dingjiang Wang. Existence of solutions of an impulsive integro-differential equation with a general boundary value condition[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4166-4177. doi: 10.3934/mbe.2022192

    Related Papers:

  • In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-differential equation with a general boundary value condition. New comparison principles are developed, and existence results for extremal solutions are obtained using the established principles and the monotone iterative technique. The results are more general than those of the periodic boundary problems, which may be widely applied in this field.



    加载中


    [1] K. Zhao, L. Suo, Y. Liao, Boundary value problem for a class of fractional integro-differential coupled systems with Hadamard fractional calculus and impulses, Boundary Value Probl., 2019 (2019), 1–18. https://doi.org/10.1186/s13661-019-1219-8 doi: 10.1186/s13661-019-1219-8
    [2] M. J. Mardanov, Y. A. Sharifov, F. M. Zeynalli, Existence and uniqueness of the solutions to impulsive nonlinear integro-differential equations with nonlocal boundary conditions, in Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan., 45 (2019), 222–233. https://doi.org/10.29228/proc.6
    [3] S. Asawasamrit, S. K. Ntouyas, P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Boundary Value Probl., 2016 (2016), 1–18. https://doi.org/10.1186/s13661-016-0629-0 doi: 10.1186/s13661-016-0629-0
    [4] Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl., 48 (2004), 73–84. https://doi.org/10.1016/j.camwa.2004.01.005 doi: 10.1016/j.camwa.2004.01.005
    [5] Z. Luo, J. J. Nieto, New results for the periodic boundary value problem for impulsive integro-differential equations, Nonlinear Anal.: Theory, Methods Appl., 70 (2009), 2248–2260. https://doi.org/10.1016/j.na.2008.03.004 doi: 10.1016/j.na.2008.03.004
    [6] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Boundary Value Probl., 2017 (2017), 1–15. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [7] B. Zhu, L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Probl., 2018 (2018), 1–14. https://doi.org/10.1186/s13661-018-1048-1 doi: 10.1186/s13661-018-1048-1
    [8] L. Zhang, A. Liu, L. Xiao, Anti-periodic boundary value problem for second-order impulsive integro-differential equation with delay, J. Cent. China Norm. Univ., 52 (2018), 298–302.
    [9] V. Kumar, M. Malik, Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales, J. King Saud Univ.-Sci., 31 (2019), 1311–1317. https://doi.org/10.1016/j.jksus.2018.10.011 doi: 10.1016/j.jksus.2018.10.011
    [10] A. Anguraj, P. Karthikeyan, Anti-periodic boundary value problem for impulsive fractional integro differential equations, Fractional Calculus Appl. Anal., 13 (2010), 281–294. http://hdl.handle.net/10525/1653
    [11] L. Ibnelazyz, K. Guida, K. Hilal, S. Melliani, Existence results for nonlinear fractional integro-differential equations with integral and antiperiodic boundary conditions, Comput. Appl. Math., 40 (2021), 1–12. https://doi.org/10.1007/s40314-021-01419-4 doi: 10.1007/s40314-021-01419-4
    [12] R. Agarwal, D. O'Regan, S. Hristova, Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses, Appl. Math. Comput., 298 (2017), 45–56. https://doi.org/10.1016/j.amc.2016.10.009 doi: 10.1016/j.amc.2016.10.009
    [13] R. Chaudhary, D. N. Pandey, Monotone iterative technique for impulsive Riemann-Liouville fractional differential equations, Filomat, 32 (2018), 3381–3395. https://doi.org/10.2298/FIL1809381C doi: 10.2298/FIL1809381C
    [14] H. Gou, Y. Li, Existence of mild solutions for impulsive fractional evolution equations with periodic boundary conditions, J. Pseudo-Differ. Oper. Appl., 11 (2020), 425–445. https://doi.org/10.1007/s11868-019-00278-2 doi: 10.1007/s11868-019-00278-2
    [15] J. Henderson, A. Ouahab, S. Youcefi, Existence results for phi-Laplacian impulsive differential equations with periodic conditions, Aims Math., 4 (2019), 1640–1633. https://doi.org/10.3934/math.2019.6.1610 doi: 10.3934/math.2019.6.1610
    [16] W. Ding, Y. Xing, M. Han, Anti-periodic boundary value problems for first order impulsive functional differential equations, Appl. Math. Comput., 186 (2007), 45–53. https://doi.org/10.1016/j.amc.2006.07.087 doi: 10.1016/j.amc.2006.07.087
    [17] B. Ahmad, A. Alsaedi, Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type, Nonlinear Anal. Hybrid Syts., 3 (2009), 501–509. https://doi.org/10.1016/j.nahs.2009.03.007 doi: 10.1016/j.nahs.2009.03.007
    [18] Y. Hou, L. Zhang, G. Wang, A new comparison principle and its application to nonlinear impulsive functional integro-differential equations, Adv. Differ. Equations, 2018 (2018), 380. https://doi.org/10.1186/s13662-018-1849-7 doi: 10.1186/s13662-018-1849-7
    [19] J. J. Nieto, R. Rodriguez-Lopez, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328 (2007), 1343–1368. https://doi.org/10.1016/j.jmaa.2006.06.029 doi: 10.1016/j.jmaa.2006.06.029
    [20] L. Chen, J. Sun, Nonlinear boundary problem of first order impulsive integro-differential equations, J. Comput. Appl. Math., 202 (2007), 392–401. https://doi.org/10.1016/j.cam.2005.10.041 doi: 10.1016/j.cam.2005.10.041
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1930) PDF downloads(96) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog