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Abstract: In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive
integro-differential equation with a general boundary value condition. New comparison principles are
developed, and existence results for extremal solutions are obtained using the established principles
and the monotone iterative technique. The results are more general than those of the periodic boundary
problems, which may be widely applied in this field.
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1. Introduction

In recent years, impulsive integro-differential equations with boundary conditions have attracted
much attentions and been studied extensively [1-3]. We notice that the periodic and antiperiodic
boundary value problems are very common, and they have a wide range of applications [4-11]. The
monotone iterative technique is a common method to prove the existence of extremal solutions for
impulsive integro-differential equations [4]. The monotone sequences of a linear system is developed
from the upper and lower solutions, and this method can prove monotone sequences converge mono-
tonically to the extremal solutions of the original system [12, 13]. Luo et al. [5] developed some new
comparison principles and existence results of solutions for an impulsive integro-differential equation
with the periodic boundary conditions. Recently, Kumar et al. [9] discussed the stability and existence
of a fractional integro differential equation with the periodic boundary condition. Gou et al. [14] ex-
plored the existence of mild solutions for the periodic boundary conditions in a semilinear fractional
evolution system. The existence result for the periodic boundary conditions in the phi-Laplacian im-
pulsive differential equation can refer to [15]. Ibnelazyz et al. [11] studied the existence results for
a fractional integro-differential equation with the antiperiodic boundary conditions. Ding et al. used
the monotone iterative technique to discuss the existence of solutions for a class of impulsive func-
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tional differential equations with the anti-periodic boundary value condition [16]. Zuo et al. [6] studied
the existence and uniqueness of solutions of an antiperiodic boundary problem in a mixed impulsive
fractional integro-differential equation. However, we note that the periodic and anti-periodic boundary
values are both two special conditions. For the impulsive integro-differential equation with a more
general boundary condition, such as “w(0) = yw(T), ¥ € R”, have not been involved by now.

Inspired by Luo and Nieto [5],in this paper, we consider the follow two-point boundary value prob-
lem (TP-BVP) for a first-order impulsive integro-differential system:

w'(0) = (6, w(0), [Tw](0),[6w](0)) Oe€& =&—061,0s,....0n,
Aw(l) = L(w(6)) i=12,---,m (1.1)
w(0) = xw(T)

where & = [0,T], f € CE X R*),I, € C(R,R),0 =0y <6, <---6,, < Opy1 =T, Aw(6)) = w(@;) —w(6,),
w(@,) and w(6}) are the left and right limits of w(6) at 6 = 6,

T
[Tw](B) = f DO, s)w(s)ds, [ow](8) = f Yo, s)w(s)ds,
0 0

®eC(D,R"),D={0,s)eéEXE02> 51, Y eC(EXERT),R =]0,0),x €R. It should be noted that
X 1s an arbitrary real number and the boundary condition in Eq (1.1) is more general than the periodic
or antiperiodic boundary value. Therefore, the existence result of the solution of Eq (1.1) will have a
wider range of application than previous studies.

In Section 2, we establish new comparison principles. In Section 3, we discuss the existence and

uniqueness of the solutions for a linear BVP. Finally, we obtain the extremal solutions for TP-BVP Eq
(1.1) in Section 4.

2. Preliminaries and some basic results

Similar to previous studies [2,5,17,18], we give the follow spaces to define the solution of Eq (1.1):
LCE) = {w: & > R: wlggu € C(0k 01l R), k = 0,1,---m; w(g}) and w(6;) exist for k =
L,2,--- ,m with w(@,) = w(@)}; LC'(&) = {w € LC(§);W|(gk,gk+l] € C'((6k, 6111, R), k =0,1,--- ,m;
Limits w'(6,), w'(6;), w'(0") and w'(T") exist when k = 1,2,--- ,m}. It is not difficult to verify that
LC(¢) and LC’(¢) are both Bananch spaces with the following norms [5]:

Wlle = sup{iw(O)]; 6 € £}, IWllzer = Iwllze + W llzc.

Then, a function w € LC’(£) is a solution of Eq (1.1) when it satisfies Eq (1.1).

Now, we prove the follow key comparison lemmas.

Lemma 2.1. (New comparison principles) Suppose that Ay > —1(k =1,2,--- ,m), p1,p2 >0,y >
¢~ and € > 0, such as

w'(0) — ew(0) — p1[TwW](@) — p2[ow](@) > 0 0eé&
Aw(6y) = Aw(6y), k=1,2,---,m (2.1)
w(0) = xyw(T)
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or
w(0) — ew(0) — p1[Tw](0) — p2[6W](O) = b, (0) 20 Ol
Aw(O) = Apw(6r) + Lk, k=1,2,---,m (2.2)
w(0) < xyw(T)
Lo = Avg(0r) — Ag(6y) and b,,(0) = —g'(0) + £g(0) + p1[T'gl(0) + p2[0g](6). Where g > 0 is a function
in space LC ’(gi which satisfies g(0) — yg(T) > yw(T) — w(0) > 0.
We define A; = min {Ar,O0} fork=1,2,...,m, and

0 T
7(0) = py f © (0,9 [ | (1+Ads +p f WO, e | | (1+Avds
0 0

<O, <T <6, <T

the following inequality is assumed to be true:

e f (s < ﬁ (1 ; f) 2.3)
0 I !

Then, we can draw a conclusion that w(6) < 0 for 6 € &.
Proof. For A; > —1, then we define ¢, = 1 + A, > 0. If boundary conditions satisfy w(0) > yw(T),

we let £(0) = ( I c,;l) w(#)e~, then the signs of w and £ are same and it can be obtained that
0<0,<T

4“’(9)2( I1 c;l)(,o1 1 @6, $)e () 1 (eods

6<6,,<T s<O<T

01 ) WO, 5)eCL(s) T (ck>ds), feg

s<Or<T

{(9;)2ck§(6k), k:1,2,---,m
£@0) = x{(T) (klj1 C,Ql)eaT

Now, we complete the proof by two cases:

(i): If £ > 0 and ¢ # O; then clearly {'(f) > 0 for 6 € ¢ and {(T) > {(0)[1i%, ¢c; > x{(T)eT . If
L(T) = 0, it is easy to know that £(#) < 0 by two conditions ¢, > 0 and ’(0) > 0, i.e., = 0, which
is inconsistent with the assumption. Moreover, if /(T) > 0, one can obtain that ye®’ < 1, which is a
wrong conclusion.

(i1): Denote r; € [0, T], which satisfies {(r;) > 0. Suppose that {(r,) = minge{(f) = n, then
clearly n < 0. It can be obtained that

7'(0) > n[ l—[ c,;l)n(e)
0<0,<T
If r; > rp, we have
n=1{_{@r) = {(r) l—[ Ck+nf [ 1—[ ck}( l—[ c;l)ﬂ(é’)de

r1<6r<ry 0<6r<ry 0<6r<T

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4166—4177.



4169

> nfz[ [ c,gl]n(e)de

r<Op<T

then

T 1) m_
)(eng n(s)dszf r@do> [ 2]
0 r

r<Op<T j=1

ci=1+ X,-,j =1,2,...m, it is a contradiction with the condition Eq (2.3). If r; < r,, we have

n=1{_r) > L0) l—[ cX+nf(;r2( l_[ ck]( l—[ c,;l]n(e)de

0<by<ry 0<0r<ry 0<6,<T
)
= £(0) 1—[ ck+nf ( 1_[ c,;l)n(e)de
0<6<r2 0 \r<o<r

and
T
LT) = L(r) 1—[ ck+nf [ 1_[ ck][ 1_[ cgl)ﬂ(e)a’Q
r1<O<T ' \g<6<T 9<O<T

T
> n f n(6)do

For £(0) > x(T) (H c,;l) T, it is easy to obtain that
k=1

n Z)({(T)[ﬁc,zl]eﬂ rl ck+nj;r2[ ]—[ c,zl]ﬂ(Q)dG

k=1 0<0r<r r<O<T
T o)
>)(ne‘9T[ ]—[ c,?l)f 7T(9)d9+nf [ H c,?l)ir(e)de.
ra<Oi<T 1 0 \r<o<r

Then, the follow inequality can be obtained with conditions r, < r, ye*’ > 1 andn <0 :

T o)
1</\(e8T[ ]_[ c,;l]frl n(e)d9+f0 ( ]_[ c,;l]n(e)de

<Oy <T <O <T

T
S)(e‘gT{ rl C/:l]j(; 7 (0)dé.

r<Or<T

1.e.,

v
o

T
)(esTfo m(s)ds > 1—1 C;

r<O<T

J

m
j=1

It is a contradiction with Eq (2.3).
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On the other hand, if boundary conditions satisty w(0) < yw(T'), we let b(6) = w(0) + g(6). It is easy
to get that
b'(0) — eb(0) — p1[I'D](6) — p2[6b](6) = 0, fed
Ab(6)) = N b(6r), k=1,2,---,m
b(0) = xb(T),

Clearly, b < 0 from the above proof, and w(6) < 0.

Remark 2.1. Lemma 2.1 is a key comparison result to obtain extremal solutions of Eq (1.1). Ex-
pression and proof of Lemma 2.1 are similar to previous studies [5]. Moreover, the boundary condition
“w(0) = yw(T)” with y > e~*T is more general than the periodic condition “y = 1”. Our method
can also generalize some known results, such as Corollary 2.1 [5, 19], Corollary 2.2 [5] and Corollary
2.3 [5,20].

Corollary 2.1. Lete > 0,01,0, > 0,x > e T, Ay >0,k =1,2,--- ,m, w € LC'(¢) satisfies Eq (2.1)
or (2.2), and define

9 T
i (0) = pi f D (6, 5)e ™ ds + p, f ¥ (6, s)e*Ids
0 0

if the follow inequality Eq (2.4) holds

T
)(eng [1_[ (1+A)™!
0

0<6;<s

m 2
1 (s)ds < (]—[ (1+ Aj)‘l] (2.4)

j=1

then, we have w(f) < 0 for 6 € &.
Proof. We prove that Eq (2.3) holds as follows:

T )
f (p1 f @ (6, s)e Vs
0 0

T
+ f ¥ (6, s)e-f“’-f)ds)dt
0

fOT[]_[ (1+Ap)

0<6r<s

2 T
[
0

0<6y<s

Z[Im (1 +Aj)_1}2 - 1< ﬁ(l +

m

el j:ﬁ(s)ds < yel [1—[ (1 + Aj)

j=1

m

[1(1+4))

J=1

— XesT

[Ta +Ak)—1]m 6)do

0<6r<s

V8 (0) do

m

S){eET[l]_][(l+Aj)
< [ﬁ(lw\j)

J=1

—_

We know that w(8) < 0 by Lemma 2.1.
Corollary 2.2. Suppose that £ > 0,01,0, > 0,y > e*T, Ay > 0,k = 1,2,--- ,m, w € LC'(&) satisfies
Eq (2.1) or (2.2), and let

s

2
-1
X(p1k0+p2h0) (e = 1) < (}. 1(1 +A,) )

P foT(
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then, we can obtain w(#) < 0 on &.
Proof. The condition Eq (2.3) is derived as follows:

T T T
xe [ 7@ < xe (piko + poho) [ [ | (]_[ (14 AD
0 0 0

s<6,<T

o
< x (piko +P2h0) f [l_[ (I+Ap|d

s<Or<T
T[]_[ 1+A)) (]_[ (1+ A"
j=1 0<br<s

]_[(1+A) (ﬁ(l+A ]< ﬁ(u/\)

1 =1
From Lemma 2.1, we have w(6) < 0 on &.
Corollary 2.3. Let Ay >0,k =1,2,---,m, p;,p2 >0, >0,y > e *T, w € LC'(¢) satisfies Eq (2.1)
or (2.2), and suppose that

e‘g(e_s)ds]de

= x (prko + cho)

m

<([](1+n)

J=1

<1, (2.6)

(e + xo1 Tko +Xp2ThO)T[1 +(m+1) ]—[ (1+A;)
j=1
where 7 = max {6, — 6, : k =1,2,..m + 1}. Then, we have w(6) < 0 on &.
Proof. We prove that the inequality Eq (2.3) holds as follows:

T T T m
el f 7(0)dO < ye (piko + paho) f [ f (]—[(1 +Ak))e‘8(9‘s)ds]d9
0 0 0 %=1

1= —&T eT _ 1) .m
= XegT (plk() +p2ho) ( ‘ )(e ) l_[ (1 + AJ)

&2 o
(esT_ )2 m
< X1 Tko + paTho)———(m + 1) (1+A;)
j=1
(eaT -1 2 m
S ¥ e+ pTho+pTho = )| 1+ m+ D[ [(1+4))
j=1

(eeT_l)z m
< —(1—87[1+(m+1)ﬂ(1+Aj)

er7? .
J=1

(egT—1>2 mn o
< a-ensis[[(1+K)

J=1

3. A linear system

Now, we study the solution of a linear system (LS) with the general boundary condition:

w'(0) + ew(0) = ¢(0), feé, (3.1
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w(er)=w(e;)+1;(w(o). Jj=1..m
w(0) = xw(T),

where I; € C (R, R) and ¢ € LC(€).
Lemma 3.1. The solution of (LS) can be described as follows:

T m
w(6) = fo U, s)s(ds+ y U(0.0,)1;(w(0)), 0e¢,
=1

where .
1 (L —0+s < < <T

U@.s) = e_(e_‘), 0<s<6<

el —y | xe ™, 0<f6<s<T.

Proof. Set z(6) = e**w(6),0 € & Then
7O =¢"©.,0€&;  z(0)=yxz(T)e™;
2(67) = 2(07) + 1; (2 (6))

where I (x) = e ; (e‘sef'x), " (0) = e (0).
Ifoe (Oj, j+1] ,j=1,...,m, we obtain

2(0) = 2 () + f e (s)ds.
0

J

0.
z(e;.):z(ej._l)+f6’g* (s)ds.

-1

Since

So, when 0 € (0;,0;,1], we have

0
c0=2(01)+ [ 5 @1 (:(6)
Therefore,

0
z(@):z(0)+f0g*(s)ds+ > I(z(9). o€

J:0;€(0,6)

In Eq (3.6), we let 8 = T, then we have

T m
20 = 7 fo ¢ s+ 3 L((6)) es

Finally, substitute z(0) into Eq (3.6), we get that

—&fl T —&f “
w(f) = eiT _XX j; " (s)ds + eiT _XX Z 1 (=(9)

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)
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+ e ‘[09 §*(s)ds + e Z [; (Z (Gj))

J:0;€(0,6)
—&6

T e m
=22 [Cenctos e S e ((6)

+e fo 9 e”g (s)ds+ e Z y (W (91‘))

:60;€0,6)

’ m
— f U@, s)s(s)ds + Z U (09 9‘/)11' (W (HJ)) ’

0 ]:1

4. Main results

Lemma 4.1 is given without proof since it is similar to Lemma 3.1.
Lemmad4.1. Let Ay > -1,k =1,2,--- ,m, p1,02 > 0,6 >0,y > e*7, 9 € LC'(¢) and ¢ € LC(¢),
then the solution (w € LC’(£)) of the follow Eq (4.1) can be expressed as Eq (4.2):

w'(0) — ew(0) — p1[Tw](6) — p2[6W](O) = ¢(6), geé

Aw() = New (6r) — I (9 (6) — Ay (9 (6r)) k=1,2,---,m 4.1)
w(0) = xw(T)

T
w(b) = —f U (0, 5) {o1 [Tw] (s) + p2 [6w] (s) + ¢ (s)}ds
0

= > UO00Aw @) - L@ 0) - A @ 6) 0 (4.2)
0<6k<T
where o)
1 e 0<s<0LT
U(Q, S) - 1 _XegT { eS(T+9_S),O <0<s<T

Lemmad4.2. Let Ay > -1,k=1,2,--- ,m, p,p»>0,6>0,xy >e*", I, € C(R,R), ¥ € LC'(¢) and
¢ € LC(¢), if the follow inequality holds:

T X T 1 m
sup f U@®,s)!{p f @ (s,r)dr + ps f ¥ (s, F)dr pds + — ZlAk|<1 (4.3)
0 0 0 el —x

fgeé

then the solution of Eq (4.1) is unique.
Proof. Define the operator F' : LC(§) — LC(€), where Fw is given by the right-hand term in Eq
(4.2). Clearly, the solution of Eq (4.1) is also the fixed point of the operator equation w=Fw. Since,

|Fw — F{|| = sup
feé

T
- f U 6, 5) {p1 {[Tw] () = [TZ] (5)) + pa {[6w] (5) — [62] ()} dls]
0

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4166—4177.
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D U@,00M (w0 - £ 60

0<0,<T

T s
sup{ f Uw,s)[pl f (s, ) Iw () — ¢ (P dr
feé 0 0

T
+ P f W (s, ) w () = L @ldr|ds+ Y U600 1Ad 10w (0 = £ @)
0

0<Ok<T

T X T
llw —Zl| (supf U@,s) [pl f O (s,r)dr + p; f Y (s, r)dr]ds
& JO 0 0

1 )4
v _XZ |Ak|]

k=1

IA

IA

Then, we know that F is a contractive mapping by condition Eq (4.3). So, according to Banach’s
fixed point theorem, the solution of Eq (4.1) is unique.

Finally, we can obtain the following existence theorem of extremal solutions by using Lemmas 2.1
and 4.2. The arguments of Theorem 4.1 are similar to that in [4] and [5], the proof process is omitted.

Theorem 4.1. Suppose that Ay > -1,k = 1,2,--- ,m, p1,p» > 0, > 0,y > e~*7, and the follow
four conditions satisfy:

(i)The conditions Eqgs (2.3) and (4.3) hold.

(i1)There exist two functions v, u € LC’(€) such as u(6) < v(6) and

WO = f(0, w0, [TulO), [0u)(0) O€& =E&—-061,0s,...,00
M) = L)) k=1,2,---,m
u(0) = x(T)

or
1) = f(0,u(0), [Tul®), [6u]O) +b,(0) €& =E—61,05,...,0,,
A0 > Liu@O)) + L k=1,2,-- ,m
H1(0) < xu(T)

b.(0) = —g5(0) + £g2(0) + p1[I'g21(0) + p2[6821(0).Luc = Arg2(6k) — Aga(6k), where g, € LC'(€) with
g2 2>0,22(0) — xg2(T) > xu(T) — u(0) > 0.

and
V() < f(0,v(0),[TV](0),[6vI(0) 0€& =&—01,0,,...,0,,
AvO) < LG k=1,2,---,m
v(0) < xw(T)

or

v'(6) < £(0,v(6), [TvI0), [6v](6)) = b,(0) 0€& =&-0,,0,,....0,
AV(O) < LV(0)) =Ly k=1,2,---,m
v(0) > xn(T)

bv(g) = —g;(@) + 8g1(9) + pl[rgl](ﬁ) + p2[5g1](6)alvk = Akgl(gk) — Agl(gk), where g € Lc/(é;) with
g1 2 0,81(0) — xgi(T) = v(0) — xy»(T) > 0.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4166—4177.
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(ii1)) When u(6y) <y < x <v(6y), [j(k=1,2,--- ,m) meet
Ii(x) = I (y) < Ap(x —y).

(iv) When 0 € &, u <w < w < v, [Tul(0) < 2(6) < £6) < [Tv]I(0), [6u](6) < Z(6) < z(0) < [6v](6),
and f meets

fO,w,0,2)— f(0.W,0,2) < ew—W)+pi1({ =) +pa(z—72)

Then, two monotone sequences v, i, can be found suchas v = vy > v, > ... > u, > yo = u, which
converge uniformly to the maximal and minimal solutions of Eq (1.1) in

[, v] = {w € LC() : u(®) < w(@) < v(0),6 € &}.

Remark 4.1. If y = 1, then the Eq (1.1) is a periodic BVP. Therefore, the condition “y > ™7 is
more general than the periodic boundary condition. Existence result of solution (Theorem 4.1) obtained
in this paper is more applicable than that in the periodic BVP.

5. Conclusions

In this paper, we discuss the existence of solutions for a first-order nonlinear impulsive integro-
differential equation with a general boundary value condition “w(0) = yw(T)”. Firstly, new comparison
principles are developed in Section 2, which are key comparison results to obtain extremal solutions
of Eq (1.1). We note that the boundary condition “w(0) = yw(T)” with y > ¢~*T is more general than
the periodic condition “y = 17. Then, the expression of solution for a linear system is given in Section
3. Finally, we obtain the existence results of extremal solutions for Eq (1.1) by using the monotone
iterative technique, as shown in Theorem 4.1. Previous studies mainly focused on the periodic and
antiperiodic boundary value conditions, therefore, the condition “y > 77" is more general. The main
results in Section 4 are more general than previous studies, which may be widely applied in this field.
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