Research article Special Issues

Quasilinearization method for an impulsive integro-differential system with delay


  • Received: 27 August 2021 Accepted: 19 October 2021 Published: 18 November 2021
  • In this paper, we obtain solution sequences converging uniformly and quadratically to extremal solutions of an impulsive integro-differential system with delay. The main tools are the method of quasilinearization and the monotone iterative. The results obtained are more general and applicable than previous studies, especially the quadratic convergence of the solution for a class of integro-differential equations, which have been involved little by now.

    Citation: Bing Hu, Zhizhi Wang, Minbo Xu, Dingjiang Wang. Quasilinearization method for an impulsive integro-differential system with delay[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 612-623. doi: 10.3934/mbe.2022027

    Related Papers:

  • In this paper, we obtain solution sequences converging uniformly and quadratically to extremal solutions of an impulsive integro-differential system with delay. The main tools are the method of quasilinearization and the monotone iterative. The results obtained are more general and applicable than previous studies, especially the quadratic convergence of the solution for a class of integro-differential equations, which have been involved little by now.



    加载中


    [1] Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl., 48 (2004), 73–84. doi: 10.1155/S1687120004020052. doi: 10.1155/S1687120004020052
    [2] R. Chaudhary, D. N. Pandey, Monotone iterative technique for impulsive Riemann-Liouville fractional differential equations, Filomat, 32 (2018), 3381–3395. doi: 10.2298/FIL1809381C. doi: 10.2298/FIL1809381C
    [3] B. Ahmad, J. J. Nieto, Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal. Theor., 69 (2008), 3291–3298. doi: 10.1016/j.na.2007.09.018. doi: 10.1016/j.na.2007.09.018
    [4] P. Wang, C. Li, J. Zhang, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differ. Equ., 46 (2019), 2019.
    [5] B. Ahmad, A. Alsaedi, Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type, Nonlinear Anal-Hybri., 3 (2009), 501–509. doi: 10.1016/j.nahs.2009.03.007. doi: 10.1016/j.nahs.2009.03.007
    [6] V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World Sci., 1989. doi: 10.1142/0906. doi: 10.1142/0906
    [7] S. Tang, A. Zada, S. Faisal, Stability of higher Corder nonlinear impulsive differential equations, J. Nonlinear Sci. Appl., 9 (2016), 4713–4721. doi: 10.22436/jnsa.009.06.110. doi: 10.22436/jnsa.009.06.110
    [8] X. J. Ran, M. Z. Liu, Q. Y. Zhu, Numerical methods for impulsive differential equation, Math. Comput. Model., 48 (2008), 46–55. doi: 10.1016/j.mcm.2007.09.010. doi: 10.1016/j.mcm.2007.09.010
    [9] H. Chen, J. Sun, An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput., 217 (2010), 1863–1869. doi: 10.1016/j.amc.2010.06.040. doi: 10.1016/j.amc.2010.06.040
    [10] W. Zhang, M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479–493. doi: 10.1016/S0895-7177(04)90519-5. doi: 10.1016/S0895-7177(04)90519-5
    [11] X. Hao, L. Liu, Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces, Math. Method. Appl. Sci., 40 (2017), 4832–4841. doi: 10.1002/mma.4350. doi: 10.1002/mma.4350
    [12] H. Khan, Z. A. Khan, H. Tajadodi, Existence and data-dependence theorems for fractional impulsive integro-differential system, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0. doi: 10.1186/s13662-019-2438-0
    [13] L. Zhang, Y. F. Xing, Extremal solutions for nonlinear first-order impulsive integro-differential dynamic equations, Math. Notes, 105 (2019), 123–131. doi: 10.1134/S0001434619010139. doi: 10.1134/S0001434619010139
    [14] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay, Numer. Meth. Part. D. E., 2020. doi: 10.1002/num.22698. doi: 10.1002/num.22698
    [15] V. Vijayakumar, S. K. Panda, K. S. Nisar, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Meth. Part. D. E., 37 (2021), 1200–1221. doi: 10.1002/num.22573. doi: 10.1002/num.22573
    [16] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci., 44 (2021), 1438–1455. doi: 10.1002/mma.6843. doi: 10.1002/mma.6843
    [17] N. Valliammal, C. Ravichandran, K. S. Nisar, Solutions to fractional neutral delay differential nonlocal systems, Chaos, Solitons Fractals, 138 (2020), 109912. doi: 10.1016/j.chaos.2020.109912. doi: 10.1016/j.chaos.2020.109912
    [18] K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Methods Appl. Sci., 2020. doi: 10.1002/mma.7647. doi: 10.1002/mma.7647
    [19] A. Kumar, M. Malik, K. S. Nisar, Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses, Alexandria Eng. J., 60 (2021), 6001–6012. doi: 10.1016/j.aej.2021.04.017. doi: 10.1016/j.aej.2021.04.017
    [20] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order $1<r<2$, Math. Comput. Simulat., 190 (2021), 1003–1026. doi: 10.1016/j.matcom.2021.06.026. doi: 10.1016/j.matcom.2021.06.026
    [21] W. Kavitha Williams, V. Vijayakumar, R. Udhayakumar, Existence and controllability of nonlocal mixed Volterra CFredholm type fractional delay integro-differential equations of order $1<r<2$, Numer. Meth. Part. D. E., (2020), 1–21. doi: 10.1002/num.22697. doi: 10.1002/num.22697
    [22] R. Khan, The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions, Electron. J. Qual. Ther., 2003 (2003), 1–15. doi: 10.14232/EJQTDE.2003.1.19. doi: 10.14232/EJQTDE.2003.1.19
    [23] E. S. Lee, Quasilinearization, difference approximation, and nonlinear boundary value problems, AIChE J., 14 (1968), 490–496. doi: 10.1002/aic.690140327. doi: 10.1002/aic.690140327
    [24] C. V. Sreedhar, J. V. Devi, Generalized Quasilinearization using coupled lower and upper solutions for periodic boundary value problem of an integro differential equation, Eur. J. Pure. Appl. Math., 12 (2019), 1662–1675. doi: 10.29020/nybg.ejpam.v12i4.3529. doi: 10.29020/nybg.ejpam.v12i4.3529
    [25] H. M. Srivastava, F. A. Shah, M. Irfan, Generalized wavelet quasilinearization method for solving population growth model of fractional order, Math. Method. Appl. Sci., 43 (2020), 8753–8762. doi: 10.1002/mma.6542. doi: 10.1002/mma.6542
    [26] W. Ibrahim, Spectral quasilinearization method for solution of convective heating condition, Eng. Trans., 68 (2020), 69–87. doi: 10.24423/EngTrans.1062.20200102. doi: 10.24423/EngTrans.1062.20200102
    [27] V. A. Vijesh, A short note on the quasilinearization method for fractional differential equations, Numer. Func. Anal. Opt., 37 (2016), 1158–1167. doi: 10.1080/01630563.2016.1188827. doi: 10.1080/01630563.2016.1188827
    [28] B. Ahmad, R. A. Khan, S. Sivasundaram, Generalized quasilinearization method for nonlinear functional differential equations, J. Appl. Math. Stochastic. Anal., 16 (2003), 33–43. doi: 10.1155/S1048953303000030. doi: 10.1155/S1048953303000030
    [29] Z. Drici, F. A. McRae, J. V. Devi, Quasilinearization for functional differential equations with retardation and anticipation, Nonlinear Anal.: Theory, Methods Appl., 70 (2009), 1763–1775. doi: 10.1016/j.na.2008.02.079. doi: 10.1016/j.na.2008.02.079
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1806) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog