In this paper, we obtain solution sequences converging uniformly and quadratically to extremal solutions of an impulsive integro-differential system with delay. The main tools are the method of quasilinearization and the monotone iterative. The results obtained are more general and applicable than previous studies, especially the quadratic convergence of the solution for a class of integro-differential equations, which have been involved little by now.
Citation: Bing Hu, Zhizhi Wang, Minbo Xu, Dingjiang Wang. Quasilinearization method for an impulsive integro-differential system with delay[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 612-623. doi: 10.3934/mbe.2022027
[1] | Biwen Li, Qiaoping Huang . Synchronization of time-delay systems with impulsive delay via an average impulsive estimation approach. Mathematical Biosciences and Engineering, 2024, 21(3): 4501-4520. doi: 10.3934/mbe.2024199 |
[2] | Yilin Tu, Jin-E Zhang . Event-triggered impulsive control for input-to-state stability of nonlinear time-delay system with delayed impulse. Mathematical Biosciences and Engineering, 2025, 22(4): 876-896. doi: 10.3934/mbe.2025031 |
[3] | Tyler Cassidy, Morgan Craig, Antony R. Humphries . Equivalences between age structured models and state dependent distributed delay differential equations. Mathematical Biosciences and Engineering, 2019, 16(5): 5419-5450. doi: 10.3934/mbe.2019270 |
[4] | Xinli Hu, Yansheng Liu, Jianhong Wu . Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences and Engineering, 2009, 6(2): 301-319. doi: 10.3934/mbe.2009.6.301 |
[5] | Haitao Zhu, Xinrui Ji, Jianquan Lu . Impulsive strategies in nonlinear dynamical systems: A brief overview. Mathematical Biosciences and Engineering, 2023, 20(2): 4274-4321. doi: 10.3934/mbe.2023200 |
[6] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[7] | Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan . Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences and Engineering, 2018, 15(6): 1495-1515. doi: 10.3934/mbe.2018069 |
[8] | Bing Hu, Minbo Xu, Zhizhi Wang, Jiahui Lin, Luyao Zhu, Dingjiang Wang . Existence of solutions of an impulsive integro-differential equation with a general boundary value condition. Mathematical Biosciences and Engineering, 2022, 19(4): 4166-4177. doi: 10.3934/mbe.2022192 |
[9] | Linni Li, Jin-E Zhang . Input-to-state stability of stochastic nonlinear system with delayed impulses. Mathematical Biosciences and Engineering, 2024, 21(2): 2233-2253. doi: 10.3934/mbe.2024098 |
[10] | A. Vinodkumar, T. Senthilkumar, S. Hariharan, J. Alzabut . Exponential stabilization of fixed and random time impulsive delay differential system with applications. Mathematical Biosciences and Engineering, 2021, 18(3): 2384-2400. doi: 10.3934/mbe.2021121 |
In this paper, we obtain solution sequences converging uniformly and quadratically to extremal solutions of an impulsive integro-differential system with delay. The main tools are the method of quasilinearization and the monotone iterative. The results obtained are more general and applicable than previous studies, especially the quadratic convergence of the solution for a class of integro-differential equations, which have been involved little by now.
In this paper, we employ the monotone iterative [1,2] and quasilinearization method [3,4] to discuss the existence, uniform and quadratic convergence of solution sequences for an antiperiodic boundary value problem (BVP) of impulsive integro-differential system with delay [5]:
{y′(h)=f(h,y(h),[Γy](h),[δy](h),y(τ(h)))h≠hk,h∈I△y(hk)=Ik(y(hk))k=1,2,⋯,my(0)=−y(T)y(h)=y(0)h∈[−r,0], | (1.1) |
where f∈C(I×R4,R), I=[0,T],I+=[−r,T],r>0,h−r≤τ(h)≤h, h0=0<h1<h2<⋯<hm<T=hm+1,Ik∈C(R,R), △y(hk)=y(h+k)−y(h−k),
[Γy](h)=∫h0K(h,s)y(s)ds,[δy](h)=∫T0H(h,s)y(s)ds, |
K∈C(L,R+),L={(h,s)∈I×I:h≥s}, H∈C(I×I,R+),R+=[0,∞). We denote k0=max{K(h,s):(h,s)∈L}, h0=max{H(h,s):(h,s)∈I×I},ρ=max{hu+1−hu},u=0,1,...,m.
Impulsive differential equation is a basic mathematical model to describe real world phenomena which suddenly alter states at some moments [6,7]. It is widely used in physics, population dynamics, ecology, industrial robotic, etc [8,9,10]. Note that, in recent years, there are many authors interest in impulsive integro-differential equations [11,12,13]. And, the existence and approximate controllability for neutral differential equations with delay have been widely concerned [14,15,16,17]. Nisar and Vijayakumar discussed approximate controllability for a class of Sobolev-type Hilfer fractional neutral delay differential equations [18]. The controllability result for a fuzzy delay differential system can refer to [19]. The existence and controllability for fractional integro-differential delay equations of order 1<r<2 have been considered in [20] and [21].
The monotone iterative method is effective to get solution sequences, which uniformly converge to extreme solutions of equations [1]. Moreover, the quasilinearization(QSL) method is often used to get solution sequences, which are square convergent [3,22,23,24]. The QSL method, whose iterations are constructed to yield rapid convergence, has been used for solving a series of problems and obtained many excellent results [25,26,27]. The application of the QSL method in functional differential equations, can see [3,28,29]. However, the application of the QSL method in impulsive integro-differential systems with delay has been little discussed.
Similar to previous studies [1,3,5], we introduce some spaces for the following use:
Letting I−=I+∖{h1,h2,⋯,hm}, PC(I+,R)={y:I+→R;y(h) is a continuous function in I−, hk(k=1,⋯,m) are some jumping points, y(h+k) and y(h−k) exist at hk, and y(h−k)=y(hk)};
PC′(I+,R) = {y∈PC(I+,R);y′ is continuous in I−, y′(h+k), y′(h−k), y′(0+) and y′(T−) exist};
E0={y∈PC(I+,R):y(h)=y(0),h∈[−r,0]}, then the norm of E0 is defined as ‖y‖E0=suph∈I+|y(h)|;
E=PC(I+,R)⋂PC′(I+,R). Then y∈E is a solution of system (1.1) if and only if y satisfies system (1.1).
Firstly, we give the definition of upper and lower solutions.
Concept 2.1. 1001[5] A function ϕ0∈E⋂E0 is a lower solution of system (1.1) if and only if
{ϕ′0(h)≤f(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))h≠hk,h∈I=[0,T]△ϕ0(hk)≤Ik(ϕ0(hk))k=1,2,⋯,mϕ0(0)≤−φ0(T)ϕ0(h)≤ϕ0(0)h∈[−r,0]. |
Concept 2.2. 1001[5] A function φ0∈E⋂E0 is an upper solution of system (1.1) if and only if
{φ′0(h)≥f(h,φ0(h),[Γφ0](h),[δφ0](h),φ0(τ(h)))h≠hk,h∈I=[0,T]△φ0(hk)≥Ik(φ0(hk))k=1,2,⋯,mφ0(0)≥−ϕ0(T)φ0(h)≥φ0(0)h∈[−r,0]. |
Then, we give some lemmas [5] to the following problem:
{y′(h)+Ay(h)=σ(h)−B1[Γy](h)−B2[δy](h)−By(τ(h)),h≠hkh∈I△y(hk)=−Lky(hk)+Ik(η(hk))+Lk(η(hk)),k=1,2,⋯,my(0)=−y(T)y(h)=y(0)h∈[−r,0], | (2.1) |
where A>0,B1,B2,B≥0,0≤Lk<1 and σ(h)∈PC(I,R), η(h)∈PC′(I+,R).
Lemma 2.1. 1001[5] Let A>0,B1,B2,B≥0 and 0≤Lk<1 satisfy the inequality:
(B1k0T+B2h0T+B)(eAT−1)A(eAT+1)+eATeAT+1m∑k=1Lk<1. | (2.2) |
Then y∈E is the unique solution of system (2.1) if y∈E0 satisfies:
y(h)={∫T0F(h,s)[σ(s)−B1[Γy](s)−B2[δy](s)−By(τ(s))]ds+m∑k=1F(h,hk)[−Lky(hk)+Ik(η(hk))+Lkη(hk)]h∈I∫T0F(0,s)[σ(s)−B1[Γy](s)−B2[δy](s)−By(τ(s))]ds+m∑k=1F(0,hk)[−Lky(hk)+Ik(η(hk))+Lkη(hk)]h∈[−r,0], | (2.3) |
where
F(h,s)=1eAT+1{eA(T−h+s),0≤s≤h≤T,−eA(s−h),0≤h<s≤T. |
Lemma 2.2. 1001[5] Suppose that y∈E satisfies
{y′(h)+Ay(h)+B1[Γy](h)+B2[δy](h)+By(τ(h))≤0,h≠hk,h∈I△y(hk)≤−Lky(hk)k=1,2,⋯,my(0)≤0y(h)=y(0),h∈[−r,0], |
where constants A>0,B1,B2,B≥0,0≤Lk<1, with
m∑k=1Lk+ρ(m+1)(A+B1k0T+B2h0T+B)≤1. |
Then y(h)≤0 on I+.
Lemma 2.3. 1001[5] If the functions ϕ0,φ0 are lower and upper solutions of BVP system (1.1), which satisfy ϕ0(h)≤φ0(h) in I+, and both the f and Ik satisfy one-sided Lipschitz condition, then we can find sequences ϕn,φn⊂[ϕ0,φ0] that uniformly converge to minimal and maximal solutions of the BVP system (1.1).
Theorem 3.1. Suppose that the following assumptions are true:
(S1) Functions ϕ0(h),φ0(h) are lower and upper solutions of the BVP system (1.1), which satisfy ϕ0(h)≤φ0(h) in I+;
(S2) f satisfies fy(h,y(h),[Γy](h),[δy](h),y(τ(h)))<0,fΓy(h,y(h), [Γy](h),[δy](h),y(τ(h)))≤0, fδy(h,y(h),[Γy](h),[δy](h),y(τ(h)))≤0, and fyτ(h,y(h),[Γy](h),[δy](h),y(τ(h)))≤0. And, the quadratic form K(f(h,y,k,z,p)) is
K(f)=(y−v)2fyy(h,y1,y2,y3,y4)+(k−u)2fΓyΓy(h,y1,y2,y3,y4)+(z−w)2fδyδy(h,y1,y2,y3,y4)+(p−q)2fyτyτ(h,y1,y2,y3,y4)+2(y−v)(k−u)fyΓy(h,y1,y2,y3,y4)+2(y−v)(z−w)fyδy(h,y1,y2,y3,y4)+2(y−v)(p−q)fyyτ(h,y1,y2,y3,y4)+2(k−u)(z−w)fΓyδy(h,y1,y2,y3,y4)+2(k−u)(p−q)fΓyyτ(h,y1,y2,y3,y4)+2(z−w)(p−q)fδyyτ(h,y1,y2,y3,y4), |
and K(f)≤0 on I×R4, where ϕ0≤v≤y1≤y≤φ0, ϕ0≤u≤y2≤k≤φ0, ϕ0≤w≤y3≤z≤φ0, ϕ0≤q≤y4≤p≤φ0,h≠hk,h∈I;
(S3) The functions Ik satisfy −1≤I′k(.)≤0 and I″k(.)≥0, k=1,2,⋯,m.
Then we can find monotone solution sequences {ϕn(h)} and {φn(h)}, which quadratically and uniformly converge to extremal solutions of system (1.1) on [ϕ0,φ0].
Proof: By using (S2) and the Taylor's formula, we can obtain
f(h,y(h),[Γy](h),[δy](h),y(τ(h)))≤Q(h,y(h),[Γy](h),[δy](h),y(τ(h));v(h)), |
where
Q(h,y(h),[Γy](h),[δy](h),y(τ(h));v(h))=f(h,v(h),[Γv](h),[δv](h),v(τ(h)))+fy(h,v(h),[Γv](h),[δv](h),v(τ(h)))(y(h)−v(h))+fΓy(h,v(h),[Γv](h),[δv](h),v(τ(h)))([Γy](h)−[Γv](h))+fδy(h,v(h),[Γv](h),[δv](h),v(τ(h)))([δy](h)−[δv](h))+fyτ(h,v(h),[Γv](h),[δv](h),v(τ(h)))(y(τ(h))−v(τ(h))), |
and employing the Taylor's formula together with (S3), we obtain
Δa(hk)≥Ik(b(hk))+I′k(b(hk))(a(hk)−b(hk)), |
where ϕ0(hk)≤b(hk)≤a(hk)≤φ0(hk).
Now, solution sequences ϕi(h) and φi(h) are constructed to satisfy:
{ϕ′i(h)−fy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))ϕi(h)−fΓy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[Γϕi](h)−fδy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[δϕi](h)−fyτ(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))ϕi(τ(h))=f(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))−fy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))ϕi−1(h)−fΓy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[Γϕi−1](h)−fδy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[δϕi−1](h)−fyτ(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))ϕi−1(τ(h))h≠hk,h∈IΔϕi(hk)=Ik(ϕi−1(hk))+I′k(ϕi−1(hk))(ϕi(hk)−ϕi−1(hk))k=1,2,⋯,mϕi(0)=−φi−1(T)ϕi(h)=ϕi(0)h∈[−r,0], | (3.1) |
{φ′i(h)−fy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))φi(h)−fΓy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[Γφi](h)−fδy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[δφi](h)−fyτ(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))φi(τ(h))=f(h,φi−1(h),[Γφi−1](h),[δφi−1](h),φi−1(τ(h)))−fy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))φi−1(h)−fΓy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[Γφi−1](h)−fδy(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))[δφi−1](h)−fyτ(h,ϕi−1(h),[Γϕi−1](h),[δϕi−1](h),ϕi−1(τ(h)))φi−1(τ(h))h≠hk,h∈IΔφi(hk)=Ik(φi−1(hk))+I′k(ϕi−1(hk))(φi(hk)−φi−1(hk))k=1,2,⋯,mφi(0)=−ϕi−1(T)φi(h)=φi(0)h∈[−r,0]. | (3.2) |
Obviously, by Lemma 2.1, we know that system (3.1) or (3.2) has an unique solution, respectively. We will finish our proof in four steps:
1. We prove that ϕ0≤ϕ1 and φ1≤φ0.
Let i=1, then by system (3.1), we have
{ϕ′1(h)−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ1](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ1](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(τ(h))=f(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ0](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ0](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(τ(h))h≠hk,h∈IΔϕ1(hk)=Ik(ϕ0(hk))+I′k(ϕ0(hk))(ϕ1(hk)−ϕ0(hk))ϕ1(0)=−φ0(T)ϕ1(h)=ϕ1(0)h∈[−r,0]. |
Setting ϖ(h)=ϕ0(h)−ϕ1(h), we get
ϖ′(h)−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϖ(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϖ](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϖ](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϖ(τ(h))=ϕ′0(h)−ϕ′1(h)−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(h)+fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ0](h)+fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ1](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ0](h)+fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ1](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(τ(h))+fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(τ(h))≤f(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ1](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ1](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(τ(h))−f(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))+fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(h)+fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ0](h)+fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ0](h)+fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(τ(h))−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(h)+fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ0](h)+fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϕ1](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ0](h))+fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϕ1](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ0(τ(h))+fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϕ1(τ(h))=0. |
We can easily prove that
Δϖ(hk)≤I′k(ϕ0(hk))ϖ(hk),ϖ(0)≤0,ϖ(h)=ϖ(0),h∈[−r,0]. |
So it is clear that ϖ(h)≤0 (from Lemma 2.2), i.e., ϕ0≤ϕ1. Similarly, we can get that φ1≤φ0 for all h∈I+.
2. We show that ϕ1≤φ1 on I+.
Letting ϖ(h)=ϕ1−φ1 and by (S1)−(S3), we have
ϖ′(h)−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϖ(h)−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[Γϖ](h)−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))[δϖ](h)−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))ϖ(τ(h))=f(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))−f(h,φ0(h),[Γφ0](h),[δφ0](h),φ0(τ(h)))−fy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))(ϕ0(h)−φ0(h))−fΓy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))([Γϕ0](h)−[Γφ0](h))−fδy(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))([δϕ0](h)−[δφ0](h))−fyτ(h,ϕ0(h),[Γϕ0](h),[δϕ0](h),ϕ0(τ(h)))(ϕ0(τ(h))−φ0(τ(h)))≤0,Δϖ(hk)=Ik(ϕ0(hk))−Ik(φ0(hk))+I′k(ϕ0(hk))ϖ(hk)−I′k(ϕ0(hk))(ϕ0(hk)−φ0(hk))≤I′k(ϕ0(hk))ϖ(hk),ϖ(0)≤0,ϖ(h)=ϖ(0)h∈[−r,0]. |
From Lemma 2.2, we get ϖ(h)≤0, i.e., ϕ1≤φ1 for all h∈I+. So we have ϕ0(h)≤ϕ1(h)≤φ1(h)≤φ0(h) in I+. Then, by mathematical induction, we obtain ϕn(h) and φn(h) satisfying
ϕ0(h)≤ϕ1(h)≤⋯≤ϕn(h)≤⋯φn(h)≤⋯φ1(h)≤φ0(h),h∈I+, |
and each ϕi(h),φi(h)∈E⋂E0(i=1,2,⋯) satisfy system (3.1) or (3.2), respectively. We can easily prove that the sequences ϕn(h) and φn(h) are uniformly bounded and equi-continuous, then by Ascoli-Arzela criterion[6], they uniformly converge to two solutions of system (1.1):
limn→∞ϕn(h)=ς(h),limn→∞φn(h)=q(h). |
3. We verify that ς(h) and q(h) are minimum and maximum solutions of system (1.1) in [ϕ0,φ0], respectively.
Suppose y(h) is an arbitrary solution of system (1.1), which satisfies ϕ0(h)≤y(h)≤φ0(h) in I+. Now, we assume that ϕn(h)≤y(h)≤φn(h) is hold for a positive integer n, in what follows we prove that ϕn+1(h)≤y(h)≤φn+1(h).
Letting ϖ(h)=ϕn+1(h)−y(h), we obtain
ϖ′(h)=ϕ′n+1(h)−y′(h)=fy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϕn+1(h)+fΓy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[Γϕn+1](h)+fδy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[δϕn+1](h)+fyτ(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϕn+1(τ(h))+f(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))−fy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϕn(h)−fΓy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[Γϕn](h)−fδy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[δϕn](h)−fyτ(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϕn(τ(h))−f(h,y(h),[Γy](h),[δy](h),y(τ(h)))=fy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϖ(h)+fΓy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[Γϖ](h)+fδy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[δϖ](h)+fyτ(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϖ(τ(h))+f(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))−fy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))(ϕn(h)−y(h))−fΓy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))([Γϕn](h)−[Γy](h))−fδy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))([δϕn](h)−[δy](h))−fyτ(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))(ϕn(τ(h))−y(τ(h)))−f(h,y(h),[Γy](h),[δy](h),y(τ(h)))≤fy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϖ(h)+fΓy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[Γϖ](h)+fδy(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))[δϖ](h)+fyτ(h,ϕn(h),[Γϕn](h),[δϕn](h),ϕn(τ(h)))ϖ(τ(h))h≠hk,h∈I,Δϖ(hk)=Ik(ϕn(hk))−Ik(y(hk))+I′k(ϕn(hk))ϖ(hk)−I′k(ϕn(hk))(ϕn(hk)−y(hk))≤I′k(ϕn(hk))ϖ(hk),ϖ(0)≤0,ϖ(h)=ϖ(0)h∈[−r,0]. |
Clearly, by Lemma 2.2, we have ϖ(h)≤0, i.e., ϕn+1(h)≤y(h) on I+. Similarly, it can be proved that y(h)≤φn+1(h) on I+. So ϕn+1(h)≤y(h)≤φn+1(h). Then, by taking n→∞, it is clear that ς(h)≤y(h)≤q(h).
4. Finally, we prove that the quadratic convergence of ϕn and φn.
First of all, letting ϖn(h)=ς(h)−ϕn(h)≥0, then
ϖn′(h)=ς′(h)−ϕ′n(h)=f(h,ς(h),[Γς](h),[δς](h),ς(τ(h)))−fy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϕn(h)−fΓy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[Γϕn](h)−fδy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[δϕn](h)−fyτ(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϕn(τ(h))−f(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))+fy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϕn−1(h)+fΓy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[Γϕn−1](h)+fδy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[δϕn−1](h)+fyτ(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϕn−1(τ(h))=fy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϖn(h)+fΓy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[Γϖn](h)+fδy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[δϖn](h)+fyτ(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϖn(τ(h))+12[ϖ2n−1(h)fyy(h,y1,y2,y3,y4)+[Γϖn−1]2(h)fΓyΓy(h,y1,y2,y3,y4)+[δϖn−1]2(h)fδyδy(h,y1,y2,y3,y4)+(ϖn−1(τ(h)))2fyτyτ(h,y1,y2,y3,y4)+2ϖn−1(h)[Γϖn−1](h)fyΓy(h,y1,y2,y3,y4)+2ϖn−1(h)[δϖn−1](h)fyδy(h,y1,y2,y3,y4)+2ϖn−1(h)(ϖn−1(τ(h)))fyyτ(h,y1,y2,y3,y4)+2[Γϖn−1](h)[δϖn−1](h)fΓyδy(h,y1,y2,y3,y4)+2[Γϖn−1](h)(ϖn−1(τ(h)))fΓyyτ(h,y1,y2,y3,y4)+2[δϖn−1](h)(ϖn−1(τ(h)))fδyyτ(h,y1,y2,y3,y4)]. |
We write the above expression as follows:
ϖn′(h)−fy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϖn(h)=fΓy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[Γϖn](h)+fδy(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))[δϖn](h)+fyτ(h,ϕn−1(h),[Γϕn−1](h),[δϕn−1](h),ϕn−1(τ(h)))ϖn(τ(h))+σ(ϖn−1(h),[Γϖn−1](h),[δϖn−1](h),ϖn−1(τ(h))),h≠hkh∈I, |
where
ϕn−1(h)≤y1≤ς(h),[Γϕn−1](h)≤y2≤[Γς](h),[δϕn−1](h)≤y3≤[δς](h),ϕn−1(τ(h))≤y4≤ς(τ(h)), |
and
σ(ϖn−1(h),[Γϖn−1](h),[δϖn−1](h),ϖn−1(τ(h)))=12[ϖ2n−1(h)fyy(h,y1,y2,y3,y4)+[Γϖn−1]2(h)fΓyΓy(h,y1,y2,y3,y4)+[δϖn−1]2(h)fδyδy(h,y1,y2,y3,y4)+(ϖn−1(τ(h)))2fyτyτ(h,y1,y2,y3,y4)+2ϖn−1(h)[Γϖn−1](h)fyΓy(h,y1,y2,y3,y4)+2ϖn−1(h)[δϖn−1](h)fyδy(h,y1,y2,y3,y4)+2ϖn−1(h)(ϖn−1(τ(h)))fyyτ(h,y1,y2,y3,y4)+2[Γϖn−1](h)[δϖn−1](h)fΓyδy(h,y1,y2,y3,y4)+2[Γϖn−1](h)(ϖn−1(τ(h)))fΓyyτ(h,y1,y2,y3,y4)+2[δϖn−1](h)(ϖn−1(τ(h)))fδyyτ(h,y1,y2,y3,y4)], |
Δϖn(hk)=Δς(hk)−Δϕn(hk)=Ik(ς(hk))−Ik(ϕn−1(hk))−Ik′(ϕn−1(hk))[ϕn(hk)−ϕn−1(hk)]=Ik(ϕn−1(hk))+Ik′(ϕn−1(hk))[ς(hk)−ϕn−1(hk)]+12Ik″(ξ)[ς(hk)−ϕn−1(hk)]2−Ik(ϕn−1(hk))−Ik′(ϕn−1(hk))[ϕn(hk)−ϕn−1(hk)]=Ik′(ϕn−1(hk))ϖn(hk)+12Ik″(ξ)ϖ2n−1(hk),k=1,2,⋯,m,ϖn(0)=ς(0)−ϕn(0)=−ϖn(T)+η,ϖn(h)=ς(h)−ϕn(h)=ς(0)−ϕn(0)=ϖn(0),h∈[−r,0], |
where ϕn−1(hk)≤ξ≤ς(hk),η=φn−1(T)−ϕn(T). By Lemma 2.1, the solution of the above system is
ϖn(h)={∫T0F(h,s)[σ(ϖn−1(s),[Γϖn−1](s),[δϖn−1](s),ϖn−1(τ(s)))+fΓy(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))[Γϖn](s)+fδy(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))[δϖn](s)+fyτ(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))ϖn(τ(s))]ds+eM(T)−M(h)1+eM(T)η+m∑k=1F(h,hk)[I′k(ϕn−1(hk))ϖn(hk)+12Ik″(ξ)ϖ2n−1(hk)]h∈I,∫T0F(0,s)[σ(ϖn−1(s),[Γϖn−1](s),[δϖn−1](s),ϖn−1(τ(s)))+fΓy(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))[Γϖn](s)+fδy(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))[δϖn](s)+fyτ(s,ϕn−1(s),[Γϕn−1](s),[δϕn−1](s),ϕn−1(τ(s)))ϖn(τ(s))]ds+eM(T)1+eM(T)η+m∑k=1F(0,hk)[I′k(ϕn−1(hk))ϖn(hk)+12Ik″(ξ)ϖ2n−1(hk)]h∈[−r,0], |
where M(h)=−∫h0fy(v,ϕn−1(v),[Γϕn−1](v), [δϕn−1](v),ϕn−1(τ(v)))dv. Letting |fyy|≤δ1,|fΓyΓy|≤δ2,|fδyδy|≤δ3, |fyτyτ|≤δ4,|fyΓy|≤δ5,|fyδy|≤δ6,|fyyτ|≤δ7, |fΓyδy|≤δ8,|fΓyyτ|≤δ9,|fδyyτ|≤δ10, we have
σ(ϖn−1(h),[Γϖn−1](h),[δϖn−1](h),ϖn−1(τ(h)))≤12δ1ϖ2n−1(h)+12δ2[Γϖn−1]2(h)+12δ3[δϖn−1]2(h)+12δ4(ϖn−1(τ(h)))2+δ5ϖn−1(h)[Γϖn−1](h)+δ6ϖn−1(h)[δϖn−1](h)+δ7ϖn−1(h)(ϖn−1(τ(h)))+δ8[Γϖn−1](h)[δϖn−1](h)+δ9[Γϖn−1](h)(ϖn−1(τ(h)))+δ10[δϖn−1](h)(ϖn−1(τ(h)))≤(12δ1+12δ5+12δ6+12δ7)ϖ2n−1(h)+(12δ2+12δ5+12δ8+12δ9)[Γϖn−1]2(h)+(12δ3+12δ6+12δ8+12δ10)[δϖn−1]2(h)+(12δ4+12δ7+12δ9+12δ10)(ϖn−1(τ(h)))2. |
Taking the norm of ϖn−1 on I+ is ‖ϖn−1‖E0=maxI+{ϖn−1(h),[Γϖn−1](h),[δϖn−1](h),ϖn−1(τ(h))}. Obviously, from the expression of ϖn(h) we know that the follow formula is established for a constant ζ:
‖ϖn‖E0≤ζ‖ϖn−1‖2E0. |
Therefore, the ϖn is quadratic convergent.
In this paper, we mainly use the monotone iterative and quasilinearization method to study the quadratic convergence of the extremal solution for a class of integro-differential equations with delay. The results obtained are new and more general than previous studies, which can be applied to several special cases: 1) If τ(h)=h, then the Bvp(1.1) is an impulsive integro-differential system with anti-periodic boundary value conditions; 2) If τ(h)=h+θ, θ∈[−r,0], then the Bvp(1.1) becomes a delay impulsive integro-differential equation; 3) If Ik(y(hk))=0, then the Bvp(1.1) is a non-impulsive integro-differential equation; 4) If K(h,s)=0,H(h,s)=0, then the Bvp(1.1) is reduced to an impulsive functional differential equation with delay; 5) If K(h,s)=0,H(h,s)=0,τ(h)=h, then the Bvp(1.1) becomes an impulsive ordinary differential equation.
This research was supported by the National Science Foundation of China (No. 11602092); the China Postdoctoral Science Foundation (No. 2018M632184).
The authors declare there is no conflict of interest.
[1] |
Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl., 48 (2004), 73–84. doi: 10.1155/S1687120004020052. doi: 10.1155/S1687120004020052
![]() |
[2] |
R. Chaudhary, D. N. Pandey, Monotone iterative technique for impulsive Riemann-Liouville fractional differential equations, Filomat, 32 (2018), 3381–3395. doi: 10.2298/FIL1809381C. doi: 10.2298/FIL1809381C
![]() |
[3] |
B. Ahmad, J. J. Nieto, Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal. Theor., 69 (2008), 3291–3298. doi: 10.1016/j.na.2007.09.018. doi: 10.1016/j.na.2007.09.018
![]() |
[4] | P. Wang, C. Li, J. Zhang, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differ. Equ., 46 (2019), 2019. |
[5] |
B. Ahmad, A. Alsaedi, Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type, Nonlinear Anal-Hybri., 3 (2009), 501–509. doi: 10.1016/j.nahs.2009.03.007. doi: 10.1016/j.nahs.2009.03.007
![]() |
[6] |
V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World Sci., 1989. doi: 10.1142/0906. doi: 10.1142/0906
![]() |
[7] |
S. Tang, A. Zada, S. Faisal, Stability of higher Corder nonlinear impulsive differential equations, J. Nonlinear Sci. Appl., 9 (2016), 4713–4721. doi: 10.22436/jnsa.009.06.110. doi: 10.22436/jnsa.009.06.110
![]() |
[8] |
X. J. Ran, M. Z. Liu, Q. Y. Zhu, Numerical methods for impulsive differential equation, Math. Comput. Model., 48 (2008), 46–55. doi: 10.1016/j.mcm.2007.09.010. doi: 10.1016/j.mcm.2007.09.010
![]() |
[9] |
H. Chen, J. Sun, An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput., 217 (2010), 1863–1869. doi: 10.1016/j.amc.2010.06.040. doi: 10.1016/j.amc.2010.06.040
![]() |
[10] |
W. Zhang, M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479–493. doi: 10.1016/S0895-7177(04)90519-5. doi: 10.1016/S0895-7177(04)90519-5
![]() |
[11] |
X. Hao, L. Liu, Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces, Math. Method. Appl. Sci., 40 (2017), 4832–4841. doi: 10.1002/mma.4350. doi: 10.1002/mma.4350
![]() |
[12] |
H. Khan, Z. A. Khan, H. Tajadodi, Existence and data-dependence theorems for fractional impulsive integro-differential system, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0. doi: 10.1186/s13662-019-2438-0
![]() |
[13] |
L. Zhang, Y. F. Xing, Extremal solutions for nonlinear first-order impulsive integro-differential dynamic equations, Math. Notes, 105 (2019), 123–131. doi: 10.1134/S0001434619010139. doi: 10.1134/S0001434619010139
![]() |
[14] |
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay, Numer. Meth. Part. D. E., 2020. doi: 10.1002/num.22698. doi: 10.1002/num.22698
![]() |
[15] |
V. Vijayakumar, S. K. Panda, K. S. Nisar, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Meth. Part. D. E., 37 (2021), 1200–1221. doi: 10.1002/num.22573. doi: 10.1002/num.22573
![]() |
[16] |
K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci., 44 (2021), 1438–1455. doi: 10.1002/mma.6843. doi: 10.1002/mma.6843
![]() |
[17] |
N. Valliammal, C. Ravichandran, K. S. Nisar, Solutions to fractional neutral delay differential nonlocal systems, Chaos, Solitons Fractals, 138 (2020), 109912. doi: 10.1016/j.chaos.2020.109912. doi: 10.1016/j.chaos.2020.109912
![]() |
[18] |
K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Methods Appl. Sci., 2020. doi: 10.1002/mma.7647. doi: 10.1002/mma.7647
![]() |
[19] |
A. Kumar, M. Malik, K. S. Nisar, Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses, Alexandria Eng. J., 60 (2021), 6001–6012. doi: 10.1016/j.aej.2021.04.017. doi: 10.1016/j.aej.2021.04.017
![]() |
[20] |
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1<r<2, Math. Comput. Simulat., 190 (2021), 1003–1026. doi: 10.1016/j.matcom.2021.06.026. doi: 10.1016/j.matcom.2021.06.026
![]() |
[21] |
W. Kavitha Williams, V. Vijayakumar, R. Udhayakumar, Existence and controllability of nonlocal mixed Volterra CFredholm type fractional delay integro-differential equations of order 1<r<2, Numer. Meth. Part. D. E., (2020), 1–21. doi: 10.1002/num.22697. doi: 10.1002/num.22697
![]() |
[22] |
R. Khan, The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions, Electron. J. Qual. Ther., 2003 (2003), 1–15. doi: 10.14232/EJQTDE.2003.1.19. doi: 10.14232/EJQTDE.2003.1.19
![]() |
[23] |
E. S. Lee, Quasilinearization, difference approximation, and nonlinear boundary value problems, AIChE J., 14 (1968), 490–496. doi: 10.1002/aic.690140327. doi: 10.1002/aic.690140327
![]() |
[24] |
C. V. Sreedhar, J. V. Devi, Generalized Quasilinearization using coupled lower and upper solutions for periodic boundary value problem of an integro differential equation, Eur. J. Pure. Appl. Math., 12 (2019), 1662–1675. doi: 10.29020/nybg.ejpam.v12i4.3529. doi: 10.29020/nybg.ejpam.v12i4.3529
![]() |
[25] |
H. M. Srivastava, F. A. Shah, M. Irfan, Generalized wavelet quasilinearization method for solving population growth model of fractional order, Math. Method. Appl. Sci., 43 (2020), 8753–8762. doi: 10.1002/mma.6542. doi: 10.1002/mma.6542
![]() |
[26] |
W. Ibrahim, Spectral quasilinearization method for solution of convective heating condition, Eng. Trans., 68 (2020), 69–87. doi: 10.24423/EngTrans.1062.20200102. doi: 10.24423/EngTrans.1062.20200102
![]() |
[27] |
V. A. Vijesh, A short note on the quasilinearization method for fractional differential equations, Numer. Func. Anal. Opt., 37 (2016), 1158–1167. doi: 10.1080/01630563.2016.1188827. doi: 10.1080/01630563.2016.1188827
![]() |
[28] |
B. Ahmad, R. A. Khan, S. Sivasundaram, Generalized quasilinearization method for nonlinear functional differential equations, J. Appl. Math. Stochastic. Anal., 16 (2003), 33–43. doi: 10.1155/S1048953303000030. doi: 10.1155/S1048953303000030
![]() |
[29] |
Z. Drici, F. A. McRae, J. V. Devi, Quasilinearization for functional differential equations with retardation and anticipation, Nonlinear Anal.: Theory, Methods Appl., 70 (2009), 1763–1775. doi: 10.1016/j.na.2008.02.079. doi: 10.1016/j.na.2008.02.079
![]() |
1. | Haitao Zhu, Xinrui Ji, Jianquan Lu, Impulsive strategies in nonlinear dynamical systems: A brief overview, 2022, 20, 1551-0018, 4274, 10.3934/mbe.2023200 | |
2. | Mohammad Izadi, Jagdev Singh, Samad Noeiaghdam, Simulating accurate and effective solutions of some nonlinear nonlocal two-point BVPs: Clique and QLM-clique matrix methods, 2023, 9, 24058440, e22267, 10.1016/j.heliyon.2023.e22267 | |
3. | Yan Li, Zihan Rui, Bing Hu, Monotone iterative and quasilinearization method for a nonlinear integral impulsive differential equation, 2025, 10, 2473-6988, 21, 10.3934/math.2025002 |