Citation: Tyler Cassidy, Morgan Craig, Antony R. Humphries. Equivalences between age structured models and state dependent distributed delay differential equations[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5419-5450. doi: 10.3934/mbe.2019270
[1] | A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 98–130. |
[2] | E. Trucco, Mathematical models for cellular systems. The Von Foerster equation. Part II, Bull. Math. Biophys., 27 (1965), 449–471. |
[3] | J. A. J Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, vol. 68 of Lecture Notes in Biomathematics. Berlin, Heidelberg: Springer, 3 ed., 1986. |
[4] | H. L. Smith, Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study, Math. Biosci., 113 (1993), 1–23. |
[5] | M. Craig, A. R. Humphries and M. C. Mackey, A mathematical model of granulopoiesis incor-porating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internal-ization, Bull. Math. Biol., 78 (2016), 2304–2357. |
[6] | T. Cassidy and A. R. Humphries, A mathematical model of viral oncology as an immuno-oncology instigator, Math. Med. Biol., Online First (2019), dqz008. Available from: https://doi.org/10.1093/imammb/dqz008. |
[7] | A. Otto and G. Radons, Transformations from variable delays to constant delays with applica-tions in engineering and biology, in Time Delay Syst. (T. Insperger, T. Ersal, and G. Orosz, eds.), vol. 7 of Advances in Delays and Dynamics, 169–183, Cham: Springer International Publishing, 2017. |
[8] | S. Bernard, Moving the boundaries of granulopoiesis modelling, Bull. Math. Biol., 78 (2016), 2358–2363. |
[9] | J. M. Mahaffy, J. Bélair and M. C. Mackey, Hematopoietic model with moving boundary condi-tion and state dependent delay: application in erythropoiesis, J. Theor. Biol., 190 (1998), 135–146. |
[10] | D. R. Cox, Regression models and life-tables, J. R. Stat. Soc., 34 (1972), 187–220. |
[11] | E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53 (1958), 457. |
[12] | D. Câmara de Souza, M. Craig, T. Cassidy, et al., Transit and lifespan in neutrophil production: implications for drug intervention, J. Pharmacokinet. Pharmacodyn., 45 (2018),59–77. |
[13] | J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol. 99 of Applied Mathematical Sciences. New York, NY: Springer New York, 1993. |
[14] | Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, vol. 1473 of Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. |
[15] | W. Liu, T. Hillen and H. I. Freedman, A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse., Math. Biosci. Eng., 4 (2007), 239–259. |
[16] | F. Hartung, T. Krisztin, H. O. Walther, et al., Chapter 5 Functional Differential Equations with State-Dependent Delays: Theory and Applications, in Handb. Differ. Equations (A. Canada, P. Drabek, and A. Fonda, eds.), ch. 5, pp. 435–545, North Holland 2004: Elsevier, 3rd ed., 2006. |
[17] | Y. Yuan and J. Bélair, Stability and Hopf Bifurcation Analysis for Functional Differential Equa-tion with Distributed Delay, SIAM J. Appl. Dyn. Syst., 10 (2011), 551–581. |
[18] | H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sci-ences, vol. 57 of Texts in Applied Mathematics. New York, NY: Springer New York, 2011. |
[19] | A. Teslya, Predator-Prey Models With Distributed Time Delay. Doctoral dissertation, McMaster University, 2015. |
[20] | T. Vogel, Systèmes Déferlants, Systèmes Héréditaires, Systèmes Dynamiques, in Proc. Int. Symp. Nonlinear Vib., (Kiev), pp. 123–130, Academy of Sciences USSR, 1961. |
[21] | N. MacDonald, Time Lags in Biological Models. Berlin: Springer, 1978. |
[22] | W. Krzyzanski, Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models., J. Pharmacokinet. Pharmacodyn., 38 (2011),179–204. |
[23] | W. Gurney, R. Nisbet and S. Blythe, The systematic formulation of models of stage-structured populations, in Dyn. Physiol. Struct. Popul. (J. A. J. Metz and O. Diekmann, eds.), ch. 11, 474–493, Berlin, Heidelberg: Springer Berlin Heidelberg, 3 ed., 1986. |
[24] | A. L. Quartino, M. O. Karlsson, H. Lindman, et al., Characterization of endogenous G-CSF and the inverse correlation to chemotherapy-induced neutropenia in patients with breast cancer using population modeling, Pharm. Res., 31 (2014), 3390–3403. |
[25] | L. Glass, Dynamical disease: Challenges for nonlinear dynamics and medicine, Chaos An Inter-discip. J. Nonlinear Sci., 25 (2015). |
[26] | S. Rubinow and J. Lebowitz, A mathematical model of neutrophil production and control in normal man, J. Math. Biol., 225 (1975), 187–225. |
[27] | M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941–956. |
[28] | C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia, J. Theor. Biol., 237 (2005), 117–132. |
[29] | F. Crauste and M. Adimy, Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay, Discret. Contin. Dyn. Syst. - Ser. B, 8 (2007), 19–38. |
[30] | T. Hearn, C. Haurie and M. C. Mackey, Cyclical neutropenia and the peripherial control of white blood cell production, J. Theor. Biol., 192 (1998), 167–181. |
[31] | L. E. Friberg, A. Henningsson, H. Maas, et al., Model of chemotherapy-induced myelosuppres-sion with parameter consistency across drugs, J. Clin. Oncol., 20 (2002), 4713–4721. |
[32] | G. von Schulthess and N. Mazer, Cyclic neutropenia (CN): A clue to the control of granu-lopoiesis, Blood, 59 (1982), 27–37. |
[33] | W. Krzyzanski, P. Wiczling, P. Lowe, et al., Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations, J. Clin. Pharmacol., 50 (2010), 101S–112S. |
[34] | J. J. Pérez-Ruixo, W. Krzyzanski and J. Hing, Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects., Clin. Pharmacokinet., 47 (2008), 399–415. |
[35] | O. Diekmann, M. Gyllenberg and J. A. J. Metz, Finite dimensional state representation of linear and nonlinear delay systems, J. Dyn. Differ. Equations, 30 (2018), 1439–1467. |
[36] | L. K. Roskos, P. Lum, P. Lockbaum, et al., Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects, J. Clin. Pharmacol., 46 (2006), 747–757. |
[37] | A. Roberts, G-CSF: A key regulator of neutrophil production, but that's not all!, Growth Factors, 23 (2005), 33–41. |
[38] | E. Shochat, V. Rom-Kedar and L. Segel, G-CSF control of neutrophils dynamics in the blood., Bull. Math. Biol., 69 (2007), 299–338. |