Citation: Bruno Buonomo , Francesco Giannino , Stéphanie Saussure , Ezio Venturino. Effects of limited volatiles release by plants in tritrophic interactions[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3331-3344. doi: 10.3934/mbe.2019166
[1] | Z. Aljbory and M. S. Chen, Indirect plant defense against insect herbivores: a review, Insect Sci.,25 (2018), 2–23. |
[2] | M. Heil, Indirect defence via tritrophic interactions, New Phytol., 178 (2008), 41–61. |
[3] | D. Piesik, K. J. Delaney, A. Wenda-Piesik, et al., Meligethes aeneus pollen-feeding suppresses, and oviposition induces, Brassica napus volatiles: beetle attraction/repellence to lilac aldehydesand veratrole, Chemoecology 23 (2013), 241–250. |
[4] | D. Piesik, I. Kalka, A. Wenda-Piesik, et al., Apion miniatum Germ. Herbivory on the MossySorrel, Rumex confertus Willd.: Induced Plant Volatiles and Weevil Orientation Responses, Pol.J. Environ. Stud., 23 (2014), 2149–2156. |
[5] | D. Piesik, A. Wenda-Piesik, D. K. Weaver, et al., Influence of Fusarium crown rot disease onsemiochemical production by wheat plants, J. Phytopathol., 155 (2007), 488–496. |
[6] | T. C. Turlings and M. Erb, Tritrophic interactions mediated by herbivore-induced plant volatiles:mechanisms, ecological relevance, and application potential, Annu. Rev. Entomol., 63 (2018),433–452. |
[7] | V. Ninkovic, A. Al Abassi and J. Pettersson, The influence of aphid-induced plant volatiles onladybird beetle searching behavior, Biol. Control., 21 (2001), 191–195. |
[8] | R. D. Girling and M. Hassall, Behavioural responses of the seven-spot ladybird Coccinellaseptempunctata to plant headspace chemicals collected from four crop Brassicas and Arabidopsisthaliana, infested with Myzus persicae, Agr. Forest Entomol., 10 (2008), 297–306. |
[9] | M. L. Rosenzweig, Exploitation in three trophic levels, Am. Nat., 107 (1973), 275–294. |
[10] | D. J. Wollkind, Exploitation in three trophic levels: an extension allowing intraspecies carnivoreinteraction, Am. Nat., 110 (1976), 431–447. |
[11] | M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions ofpredator–prey interactions, Am. Nat., 97 (1963), 209–223. |
[12] | K. McCann and P. Yodzis, Biological conditions for chaos in a three–species food-chain, Ecology,75 (1994), 561–564. |
[13] | A. Hastings and T. Powell, Chaos in a three–species food–chain, Ecology, 72 (1991), 896–903. |
[14] | R. K. Upadhyay and R. K. I. Satteluri, Introduction to Mathematical Modeling and ChaoticDynamics, Chapman and Hall/CRC, 2013. |
[15] | A. Klebanoff and A. Hastings, Chaos in three species food chains, J. Math. Biol., 32 (1994),427–451. |
[16] | S. Rinaldi, C. Renato and A. Gragnani, Reduced order models for the prediction of the time ofoccurrence of extreme episodes, Chaos Solition Fract., 12 (2001), 313–320. |
[17] | V.RaiandR.K.Upadhyay, ChaoticPopulationDynamicsandBiologyoftheTop-Predator, ChaosSolition Fract., 21 (2004), 1195–1204. |
[18] | A. Maiti, A. K. Pal and G. P. Samanta, Usefulness of biocontrol of pests in tea: a mathematicalmodel, Math. Mod. Nat. Phenom., 3 (2008), 96–113. |
[19] | N. Pal, S. Samanta and J. Chattopadhyay, Revisited Hastings and Powell model with omnivoryand predator switching, Chaos Solition Fract., 66 (2014), 58–73. |
[20] | H. Zhang and P. Georgescu, The influence of the multiplicity of infection upon the dynamics of acrop–pest–pathogen model with defence mechanisms, Appl. Math. Model., 39 (2015), 2416–2435. |
[21] | S. Gakkhar and A. Singh, Control of chaos due to additional predator in the Hastings–Powell foodchain model, J. Math. Anal. Appl., 385 (2012), 423–438. |
[22] | G. Blé, V. Castellanos and M. A. Dela–Rosa, Coexistence of species in a tritrophic food chainmodel with Holling functional response type IV, Math. Meth. Appl. Sci., 41 (2018), 6683–6701. |
[23] | P. Ghosh, P. Das and D. Mukherjee, Chaos to order–Effect of random predation in a Holling typeIV tri–trophic food chain system with closure terms, Int. J. Biomath., 9 (2016), 1650073. |
[24] | S. Mandal, S. Ray, S. Roy, et al., Order to chaos and vice versa in an aquatic ecosystem, Ecol.Model., 197 (2006), 498–504. |
[25] | Y. H. Liu, D. L. Liu, M. An, et al., Modelling tritrophic interactions mediated by induced defencevolatiles, Ecol. Model., 220 (2009), 3241–3247. |
[26] | P. Fergola and W. Wang, On the influences of defensive volatiles of plants in tritrophic interactions,J. Biol. Syst., 19 (2011), 345–363. |
[27] | H. M. Poehling, B. Freier and A. M. Klüken, IPM Case studies: Grain, in Aphids as Crop Pests(eds. H.F. van Emden and R. Harrington), CABI, Wallingford, United Kingdom, (2007), 597–606. |