Research article

Analysis of a hybrid pest management model incorporating pest resistance and different control strategies

  • Received: 08 April 2020 Accepted: 16 June 2020 Published: 22 June 2020
  • In this paper, we describe a hybrid dynamical model incorporating residual and delayed effects of pesticides and pest resistance to simulate the process of integrated pest management. It assumes that spraying pesticides is more frequently used than releasing natural enemies. The threshold condition for pest-eradication is given. Combined with numerical simulations, the effects of chemical control factors on the threshold are discussed. The results confirm that it is not that the more frequently the pesticides are sprayed and the stronger effects the pesticides have on pests, the smaller the threshold is. Further, we give three different control strategies, including switching pesticide strategy and strategy for releasing natural enemies elastically for the pest-eradication, and the state feedback strategy for controlling pests not exceeding the economic injury level (EIL). The results indicate that if the purpose is to prevent the density of pest population from increasing to the EIL, from an ecological and economic perspective, it is not that the more natural enemies are released, and the better results are obtained.

    Citation: Bing Liu, Gang Hu, Baolin Kang, Xin Huang. Analysis of a hybrid pest management model incorporating pest resistance and different control strategies[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4364-4383. doi: 10.3934/mbe.2020241

    Related Papers:

  • In this paper, we describe a hybrid dynamical model incorporating residual and delayed effects of pesticides and pest resistance to simulate the process of integrated pest management. It assumes that spraying pesticides is more frequently used than releasing natural enemies. The threshold condition for pest-eradication is given. Combined with numerical simulations, the effects of chemical control factors on the threshold are discussed. The results confirm that it is not that the more frequently the pesticides are sprayed and the stronger effects the pesticides have on pests, the smaller the threshold is. Further, we give three different control strategies, including switching pesticide strategy and strategy for releasing natural enemies elastically for the pest-eradication, and the state feedback strategy for controlling pests not exceeding the economic injury level (EIL). The results indicate that if the purpose is to prevent the density of pest population from increasing to the EIL, from an ecological and economic perspective, it is not that the more natural enemies are released, and the better results are obtained.


    加载中


    [1] C. V. L. Joop, J. W. V. R. Herman, S. Susanne, Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: how does it work?, Biol. Control., 6 (1996), 1-10.
    [2] A. L. Marten, C. C. Moore, An options based bioeonomic model for biological and chemical control of invasive species, Ecol. Econ., 70 (2011), 2050-2061.
    [3] J. C. Van Lenteren, J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Ent., 33 (1988), 239-250.
    [4] S. Udayagiri, A. P. Norton, S. C. Welter, Interating pesticide effects with inundative biological control: interpretation of pesticide toxicity curves for Anaphesiole in strawberries, Entomol. Exp. Appl., 95 (2000), 87-95.
    [5] J. C. Van Lenteren, The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake, Biocontrol, 57 (2012), 1-20.
    [6] S. Y. Tang, Y. N. Xiao, L. S. Chen, R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005), 115-135.
    [7] B. Liu, W. B.Liu, F. M. Tao, B. L. Kang, A dynamical analysis of a piecewise smooth pest control SI model, Int. J. Bifurcat. Chaos., 25 (2015), 1550068.
    [8] J. J. Jiao, L. S. Chen, Global attractivity of a stage-structure variable coefficients predatorprey system with time delay and impulsive perturbations on predators, Int. J. Biomath., 1 (2008), 197-208.
    [9] G. J. Lan, Y. J. Fu, C. J. Wei, S. W. Zhang, A research of pest management SI stochastic model concerning spraying pesticide and releasing natural enemies, Commun. Math. Biol. Neurosci., 2018 (2018), 3648.
    [10] C. T. Li, S. Y. Tang, The effects of timing of pulse spraying and releasing periods on dynamics of generalized predator-prey model, Int. J. Biomath., 5 (2012), 1250012.
    [11] S. H. Cai, J. J. Jiao,L. M. Li, Dynamics of a pest management predator-prey model with stage structure and impulsive stocking, J. Appl. Math. Comput., 52 (2016), 125-138.
    [12] X. J. Fang, Y. F. Shao, W. L. Kong, X. M. Ma, Z. Wang, Z. X. Ju, The dynamics of a delayed Gompertz model with Holling IV function response and impulsive effects at different moment on the prey, J. Appl. Math. Comput. 15 (2010), 421-429.
    [13] J. Yang, S. Y.Tang, Y. S. Tan, Complex dynamics and bifurcation analysis of host-parasitoid models with impulsive control strategy, Chaos. Soliton. Fract., 91 (2016), 522-532.
    [14] H. Malchow, B. Radtke, M. Kallache, A. B. Medvinsky, D. A. Tikhonov, S. V. Petrovskii, Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion, Nonlinear Anal. Real World Appl., 1 (2000), 53-67.
    [15] B. Liu, Y. Tian, B. L. Kang, Dynamics on a Holling II predator-prey model with statedependent impulsive control, Int. J. Biomath., 5 (2012), 12600066.
    [16] G. P. Pang, L. S. Chen, W. J. Xu, A stage structure pest management model with impulsive state feedback control, Commun. Nonlinear. Sci. Numer. Simulat., 23 (2015), 78-88.
    [17] Y. Tian, S. Y. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Model. Anal., 24 (2019), 134-154.
    [18] J. B. Fu, L. S. Chen, Modelling and qualitative analysis of water hyacinth ecological system with two state-dependent impulse controls, Complexity, 2018 (2018), 4543976.
    [19] H. Zhou, X. Wang, S. Y. Tang, Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate, Math. Biosci. Eng., 16 (2019), 7327-7361.
    [20] L. R. Liu, C. C. Xiang, G. Y. Tang, Y. Fu, Sliding dynamics of a Filippov forest-Pest model with threshold policy control, Complexity, 2019 (2019), 2371838.
    [21] W. J. Qin, X. W. Tan, X. T. Shi, J. H.Chen, X. Z. Liu, Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcat. Chaos., 29 (2019), 1950020.
    [22] S. Y. Tang, G. Y. Tang, W. J. Qin, Codimension-1 Sliding bifurcations of a Filippov pest growth model with threshold policy, Int. J. Bifurcat. Chaos., 24 (2014), 1450122.
    [23] S. Y. Tang, J. H. Liang, Y. N. Xiao, R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds, SIAM. J. Appl. Math., 72 (2012), 1061-1080.
    [24] C. E. Suttman, G. W. Barrett, Effects of sevin on arthropods in an agricultural and an oldfield plant community, Ecology, 69 (1979), 628-641.
    [25] D. J. Ward, R. E. Wilson, Pesticide effects on decomposition and recycling of Avena litter in a monoculture ecosystem, Am. Midl. Nat., 90 (1973), 266-276.
    [26] B. L. Kang, B. Liu, F. M. Tao, An integrated pest management model with dose-response effect of pesticides, J. Biol. Syst., 26 (2018), 59-86.
    [27] J. H. Liang, S. Y. Tang, R. A. Cheke, An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics, Nonlinear Anal. Real World Appl., 13 (2012), 2352-2374.
    [28] J. C. Panetta, A logistic model of periodic chemotherapy, Appl. Math. Lett., 8 (1995), 83-86.
    [29] J. H. Liang, S. Y. Tang, J. J. Nieto, R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249-257.
    [30] J. H. Liang, S. Y. Tang, R. A. Cheke, J. H. Wu, Adaptive release of natural enemies in a pestnatural enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167-2195.
    [31] J. H. Liang, S. Y. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear. Sci. Numer. Simulat., 36 (2016), 327-341.
    [32] D. Suandi, K. P. Wijaya, M. Apri, K. A. Sidarto, D. Syafruddin, T. Götz, et al., A one-locus model describing the evolutionary dynamics of resistance against insecticide in Anopheles mosquitoe, Appl. Math. Comput., 359 (2019), 90-106.
    [33] A. d'Onofrio, Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures, Math. Comput. Model, 36 (2002), 473-489.
    [34] A. d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput., 151 (2004), 181-187.
    [35] Q. Liu, Q. M. Chen, Dynamics of stochastic delay Lotka-Volterra systems with impulsive toxicant input and Levy noise in polluted environments, Appl. Math. Comput., 256 (2015), 52-67.
    [36] B. Liu, Y. Duan, S. Luan, Dynamics of an SI epidemic model with external effects in a polluted environment, Nonlinear Anal. Real World Appl., 13 (2012), 27-38.
    [37] Y. Xue, S. Y. Tang, J. H. Liang, Optimal timing of interventions in fishery resource and pest management, Nonlinear Anal. Real World Appl., 13 (2012), 1630-1646.
    [38] Y. Tan, L. J. Ning, S. Y. Tang, Optimal threshold density in a stochastic resource management model with pulse intervention, Nat. Resour. Model, 32 (2019), e12220.
    [39] J. Yang, Y. S. Tan, R. A. Cheke, Complex dynamics of an impulsive chemostat model, Int. J. Bifurcat. Chaos, 29 (2019), 1950101
    [40] Z. X. Li, L. S. Chen, Z. J. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Appl. Math. Model, 36 (2012), 1255-1266.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4265) PDF downloads(350) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog